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Abstract: A simple approach to synthesize 4b,5,6,9-tetrahydro-7H-dibenzo[c,e]pyrrolo[1,2-a]azepin-
7-one has been developed, based on a three-step transformation of 2-(2-bromophenyl)cyclopropane-
1,1-diester. The key stage in this method is an intramolecular cross-coupling of 1-(2-bromobenzyl)-5-(2-
bromophenyl)pyrrolidin-2-one under continuous flow conditions in an H-Cube-Pro using commercially
available supported Pd catalysts.
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1. Introduction

Dibenz[c,e]azepine derivatives attract the attention of synthetic and medicinal chemists due to their
potential use in human and veterinary medicine. This scaffold is present in the vasodilator azapetine [1],
as well as in a broad variety of compounds exhibiting anticancer [2–8], anti-inflammatory [9],
hypolipidemic [10,11], and other types of biological activities [6,12–18]. In addition, dibenz[c,e]azepines
have been used as chiral organocatalysts in enantioselective synthesis [19,20]. Owing to these
applications, the development of new efficient methodologies for the preparation of dibenz[c,e]azepines
is of great interest [21]. One of the methods for the synthesis of this scaffold is based on
a palladium-catalyzed intramolecular cross-coupling reaction between two aromatic rings in
N,N-dibenzylamine derivatives [22–29].

As a part of our efforts towards the synthesis of N-containing heterocycles of potential pharmacological
value based on the donor-acceptor cyclopropane transformations [30–35], we have recently described a
convenient synthesis of polyoxygenated tetrahydrodibenzo[c,e]pyrrolo[1,2-a]azepines [35]. This protocol
included: (1) Cyclopropane ring opening with an azide ion, followed by in situ Krapcho
dealkoxycarbonylation; (2) the phosphine-mediated reaction of the obtained 4-aryl-4-azidobutyrate
with aromatic aldehydes and subsequent in situ reductive cyclization of the formed imine, yielding
5-aryl-1-benzylpyrrolidin-2-ones; (3) their oxidative cyclization to dibenzo[c,e]pyrrolo[1,2-a]azepine
derivatives. The last step, however, can be carried out only for substrates containing two electron-rich
aromatic rings, and, therefore, has limited application.

We envisioned that the related dibenzo[c,e]pyrrolo[1,2-a]azepines without electron-donating
groups in the aryl moieties could be synthesized by an intramolecular cross-coupling reaction of
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pyrrolidones bearing halogen(s) in ortho-position(s) of the aromatic groups. Herein, we report the
synthesis of 4b,5,6,9-tetrahydro-7H-dibenzo[c,e]pyrrolo[1,2-a]azepin-7-one (1) from donor-acceptor
cyclopropane in only three steps, the key one is an intramolecular cross-coupling under continuous
flow conditions.

2. Results and Discussion

Title compound 1 was synthesized from readily available dimethyl 2-(2-bromophenyl)-cyclopropane-
1,1-dicarboxylate 2. At the first step, cyclopropane 2 was converted into azide 3 by the Kerr’s
procedure [36], including partial hydrolysis of 2 followed by cyclopropane ring opening with sodium
azide, accompanied by decarboxylation (Scheme 1).
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Scheme 1. Synthesis of azide 3.

Afterward, we transformed 4-aryl-4-azidobutyrate 3 into pyrrolidone 4 using a simple synthetic
methodology developed earlier [30]. Namely, azide 3 reacted with 2-bromobenzaldehyde in the
presence of triphenylphosphine producing the corresponding imine via a sequence of the Staudinger
and aza-Wittig reaction. The treatment of the obtained imine in a one-pot manner with sodium
cyanoborohydride induced its reductive cyclization to 5-aryl-1-benzylpyrrolidin-2-one 4. We found
that the use of polymer-bound triphenylphosphine instead of the conventional reagent both increased
the yield and saved the trouble of imine separation from triphenylphosphine. These advantages
outweigh the increase of the reaction time required for the full conversion of azide 3. The formed imine
was treated with methanolic NaBH3CN in the presence of acetic acid using a “telescoped” procedure [37].
The resulting amine underwent immediate cyclization affording the desired pyrrolidin-2-one 4 in a
reasonable yield (Scheme 2).
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The synthesis of tricyclic compound 1 was accomplished by the palladium-catalyzed coupling of
two aryl halide functionalities in compound 4. This cross-coupling proceeds with low-to-moderate
yield under continuous flow conditions [38] using commercial cartridges, with Pd catalysts FibreCat
1001, FibreCat 1007, FibreCat 1031, FibreCat 1032 (Scheme 3). The best results were achieved with
cartridge FibreCat 1007, containing a complex of palladium(II) acetate with polymer-supported
phenyldicyclohexylphosphine as a catalyst.

In summary, the facile three-step sequence, including a cyclopropane ring opening with an
azide ion, accompanied by decarboxylation, a Staudinger/aza-Wittig domino reaction combined with
the reductive cyclization, and an intramolecular cross-coupling reaction of 1-(2-bromobenzyl)-5-(2-
bromophenyl)pyrrolidin-2-one, provides a concise route to 4b,5,6,9-tetrahydro-7H-dibenzo[c,
e]pyrrolo[1,2-a]azepin-7-one.
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3. Materials and Methods

NMR spectra were acquired on Bruker Avance 500 spectrometer at room temperature; the chemical
shifts δ were measured in ppm with respect to the solvent (1Н: CDCl3, δ = 7.27 ppm; 13C: CDCl3,
δ = 77.0). The splitting patterns are designated as s, singlet; d, doublet; m, multiplet; dd, double
doublet; br., broad. The coupling constants (J) were in Hertz. The 1H-NMR, 13C-NMR for the
synthesized compounds, as well as 2D (HSQC and HMBC) NMR spectra for the selected compounds,
are available in the Supplementary Materials. Infrared spectra were recorded on the Infralum
FT-801 spectrometer. High resolution and accurate mass measurements were carried out using
a micrOTOF-QTM ESI-TOF (Electro Spray Ionization/Time of Flight, Bruker, Billerica, MA, USA)
and LTQ Orbitrap mass spectrometer (Thermo Fischer Scientific, Waltham, MA, USA). Elemental
analyses were performed with an EA-1108 CHNS elemental analyzer instrument (Fisons, Ipswich,
UK). The microwave reaction was performed in a Monowave 300–Anton Paar microwave reactor
(Anton Paar Gmbh, Graz, Austria) in sealed reaction vessels. The temperature was monitored with
the installed IR detector. The melting points (m.p.) were determined using a 9100 capillary melting
point apparatus (Electrothermal, Stone, UK). Analytical thin layer chromatography (TLC) was carried
out with silica gel plates (silica gel 60, F254, supported on aluminum); the revelation was done by
UV lamp (365 nm). Column chromatography was performed on silica gel 60 (230–400 mesh, Merck,
Darmstadt, Germany). All reactions were carried out using freshly distilled and dry solvents. Dimethyl
2-(2-bromophenyl)cyclopropane-1,1-dicarboxylate 2 was synthesized by the published procedure [30].
Commercial reagents employed in the synthesis were analytical grade, obtained from Aldrich (St. Louis,
MI, USA) or Alfa Aesar (Ward Hill, MO, USA). The flow reactions were carried out in a ThalesNano
H-Cube Pro featuring an HPLC pump to deliver the substrates at flow rates of 0.3 mL/min, the reactor
box for CatCarts (FibreCat 1001, FibreCat 1007, FibreCat 1032) employed in this study were purchased
in ABCR Gmbh (Karlruhe, Germany).

3.1. Methyl 4-Azido-4-(2-bromophenyl)butanoate (3)

A solution of cyclopropane 2 (225 mg, 0.72 mmol) and KOH (60 mg, 1.07 mmol) in a mixture
of methanol (2.9 mL) and water (3.6 mL) was refluxed for 6.5 h. Then, the reaction mixture was
quenched with water (2.9 mL) and concentrated to half volume under reduced pressure. The residue
was extracted with ethyl acetate (10 mL); aqueous HCl was added to the aqueous layer until pH
1. The obtained suspension was extracted with diethyl ether (3 × 10 mL). The combined organic
fractions were dried with Na2SO4 and concentrated, affording 165 mg (76%) of a crude cyclopropane
hemimalonate as a colorless oil. This oil was dissolved in the mixture of 2-methoxyethanol (5 mL) and
water (0.5 mL), NaN3 (43 mg, 0.66 mmol) and NH4OAc (42 mg, 0.54 mmol) were added. The reaction
mixture was heated under reflux for 2 h, quenched with water and extracted with diethyl ether
(3 × 10 mL). The combined organic fractions were dried with Na2SO4 and concentrated. Purification
by flash chromatography gave 117 mg (72%) of the desired product 3 as a colorless oil, Rf = 0.54 (ethyl
acetate:petroleum ether, 1:10).

1H-NMR (CDCl3, 500 MHz) δ = 2.03–2.16 (m, 2H, CH2), 2.43–2.49 (m, 2H, CH2), 3.69 (s, 3H,
CH3O), 5.10 (dd, 3J = 8.4 Hz, 3J = 5.4 Hz, 1H, CH), 7.20 (ddd, 3J = 8.0 Hz, 3J = 7.5 Hz, 4J = 1.7 Hz, 1H,
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Ar), 7.38 (ddd, 3J = 7.8 Hz, 3J = 7.5 Hz, 4J = 1.2 Hz, 1H, Ar), 7.45 (dd, 3J = 7.8 Hz, 4J = 1.7 Hz, 1H, Ar),
7.60 (dd, 3J = 8.0 Hz, 4J = 1.2 Hz, 1H, Ar). 13C-NMR (CDCl3, 125 MHz) δ = 30.5 (CH2), 30.7 (CH2), 51.8
(CH3O), 63.9 (CH), 123.3 (C, Ar), 128.0 (CH, Ar), 128.2 (CH, Ar), 129.8 (CH, Ar), 133.3 (CH, Ar), 138.6
(C, Ar), 173.1 (CO). IR (cm−1) 2995, 2952, 2101, 1739, 1590, 1568, 1469, 1437, 1328, 1251, 1198, 1169, 1120,
1024. HRMS ESI/Q-TOF: m/z = 320.0003 [M + H]+ (320.0005 calculated for C11H12BrN3NaO2). Anal.
calculated for C11Н12BrN3O2: C, 44.32; H, 4.06; N, 14.09. Found: C, 44.31; H, 3.89; N, 14.08.

3.2. 1-(2-Bromobenzyl)-5-(2-bromophenyl)pyrrolidin-2-one (4)

A suspension of azide 3 (1.18 g., 3.96 mmol) and polymer-bound triphenylphosphine
(Sigma-Aldrich 93093; 1.34 g, ca. 3 mmol/g, 4.02 mmol) in 1,2-dichloroethane (8 mL) was stirred at room
temperature for 45 min. After that, 2-bromobenzaldehyde (2.22 g, 12 mmol) was added, the resulting
mixture was heated in a microwave reactor at 90 ◦C for 15 h. The resin was filtered off and washed
with dichloroethane; the combined filtrates were concentrated in vacuo. The residue was dissolved in
methanol (9.7 mL) and treated with sodium cyanoborohydride (1.51 g, 24 mmol) and glacial acetic acid
(2.5 mL, 43.7 mmol). The reaction mixture was refluxed for 4 h, quenched with concentrated aqueous
NaHCO3 and extracted with ethyl acetate (3 × 10 mL). The combined organic extracts were washed
with brine, dried with anhydrous Na2SO4 and concentrated in vacuo. The residue was purified by
column chromatography on a silica gel to afford the desired product. The yield was 1.10 g (68%) as
a yellowish solid; mp 112–113 ◦C; Rf = 0.50 (ethyl acetate:petroleum ether, 1:1). 1Н-NMR (CDCl3,
500 MHz) δ = 1.81–1.86 (m, 1H, C(4)H2), 2.44–2.65 (m, 3H, C(4)H2, C(3)H2), 3.93 (d, 2J = 15.2 Hz, 1H,
CH2N), 4.91 (br. s, 1H, C(5)H), 5.13 (d, 2J = 15.2 Hz, 1H, CH2N), 7.11–7.36 (m, 6H, Ar), 7.51 (d, 3J =

8.1 Hz, 1H, Ar), 7.56 (d, 3J = 8.1 Hz, 1H, Ar). 13C-NMR (CDCl3, 125 MHz) δ = 26.8 (CH2), 29.2 (CH2),
44.9 (CH2N), 60.4 (CH), 123.0 (C, Ar), 123.9 (CH, Ar), 126.3 (C, Ar), 127.6 (CH, Ar), 127.8 (CH, Ar),
129.1 (CH, Ar), 129.2 (CH, Ar), 130.4 (CH, Ar), 132.9 (CH, Ar), 133.4 (C, Ar), 135.1 (CH, Ar), 139.4 (C,
Ar), 175.8 (C=O). IR (сm−1) 3361, 3086, 3057, 2989, 2969, 2934, 2899, 2852, 2695, 1647, 1587, 1567, 1463,
1447, 1436, 1426, 1410, 1358, 1349, 1323, 1292, 1265, 1239, 1216, 1207, 1115, 1099, 1066, 1045, 1038, 1025.
HRMS ESI/Q-TOF: m/z = 386.1605 [M + H]+ (385.1598 calculated for C17H15Br2NO).

Continuous Flow Procedure

In a typical experiment for the reductive coupling, a solution containing pyrrolidin-2-one 4
(1 equivalent) and K2CO3 (3 equivalents) in ultra-pure methanol (0.001 M) was pumped through a
catalyst cartridge (FibreCat 1001, FibreCat 1007, FibreCat 1032) heated up to 120 ◦C at a flow rate of
0.3 mL/min (optimized flow conditions) in the H-Cube Pro A. The solvent was removed under reduced
pressure, the product was purified by silica gel flash column chromatography (eluent–petroleum
ether:ethylacetate, 10:1 to 1:1).

4b,5,6,9-Tetrahydro-7H-dibenzo[c,e]pyrrolo[1,2-a]azepin-7-one (1). This compund was obtained in a
41% yield (102 mg) using the FiberCat 1007, as a yellow thick oil; Rf = 0.54 (ethyl acetate:petroleum
ether; 1:3). 1Н-NMR (CDCl3, 500 MHz) δ = 2.23–2.29 (m, 1H, CH2), 2.51–2.61 (m, 3H, CH2), 3.67 (d,
2J = 13.3 Hz, 1H, CH2N), 4.41 (dd, 3J = 7.6 Hz, 3J = 5.7 Hz, 1H, CH), 4.90 (d, 2J = 13.3 Hz, 1H, CH2N),
7.39–7.54 (m, 8H, Ar). 13C-NMR (CDCl3, 125 MHz) δ = 21.9 (CH2), 31.7 (CH2), 44.2 (CH2N), 57.5 (CH),
124.4 (CH, Ar), 128.3 (CH, Ar), 128.5 (CH, Ar), 128.6 (CH, Ar), 128.7 (CH, Ar), 129.0 (CH, Ar), 129.3
(CH, Ar), 129.5 (CH, Ar), 133.1 (C, Ar), 134.1 (C, Ar), 140.5 (C, Ar), 140.6 (C, Ar), 172.4 (C=O). HRMS
ESI-TOF: m/z = 250.1226 [M + H]+ (250.1229 calculated for C17H16NO).

Supplementary Materials: The following are available online, Figure S1: 1H-NMR spectrum of 3; Figure S2:
13C-NMR spectrum of 3; Figure S3: HSQC 1H-13C spectrum of 3; Figure S4: HMBC 1H-13C spectrum of 3;
Figure S5: 1H-NMR spectrum of 4; Figure S6: 13C-NMR spectrum of 4; Figure S7: COSY 1H-1H spectrum of 4;
Figure S8: HSQC 1H-13C spectrum of 4; Figure S9: HMBC 1H-13C spectrum of 4; Figure S10: 1H-NMR spectrum
of 1; Figure S11: 13C-NMR spectrum of 1; Figure S12–S15: GC/MS data of mass spectrometry.
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