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Abstract: (E)-3-[4-(Pent-4-en-1-yloxy)phenyl]acetic acid is one of the useful components of liquid
crystal materials which can be produced through Williamson ether synthesis by synthesizing
4-hydroxy-cinnamic acid and 5-bromo-1-pentene. Although Williamson ether synthesis is generally
slow under conventional external heating conditions, microwave irradiation was effective for
significant acceleration of the etherification. Furthermore, we demonstrated the rapid and continuous
synthesis of (E)-3-[4-(pent-4-en-1-yloxy)phenyl]acetic acid, using a microwave-assisted flow reactor
developed by us, in which the blockage by salt precipitation was suppressed by the continuous
addition of an aqueous methanol solution after the reaction cavity.
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1. Introduction

(E)-3-[4-(Pent-4-en-1-yloxy)phenyl]acrylic acid is utilized as a component of liquid crystal
materials [1]. This compound is usually produced through Williamson ether synthesis by synthesizing
4-hydroxy-cinnamic acid and 5-bromo-1-pentene under basic conditions. Williamson ether synthesis
is recognized as a representative method for carbon-oxygen bond formation to provide ethereal
compounds, and a huge number of examples have been reported to date [2,3]. In general, however,
a long reaction time and a number of additives used to activate electrophiles in SN2 reactions are required
for Williamson ether synthesis. Starting from 4-hydroxy-cinnamic acid (1) and 5-bromo-1-pentene (2),
(E)-3-[4-(pent-4-en-1-yloxy)phenyl]acrylic acid (3) was reportedly prepared with KOH as a base and KI
as an activator at high reaction temperature; the reaction needed 24 h for completion [1].

Rapid heating by MicroWave (MW) irradiation is often used for the acceleration of target reactions,
and tremendous efforts have been made towards microwave-assisted organic synthesis [4,5]. Not
surprisingly, the application of MW heating to Williamson ether synthesis has been investigated by
using simple microwave applicators [6–9]. However, the application of MW chemistry to a scale-up
synthesis is difficult because of the limited penetration depth of MW. On the other hand, flow chemistry
has benefits in terms of safe on-demand synthesis, and thus various types of reactions have been
demonstrated successfully in a continuous manner [10–14]. In this context, some flow-microwave
systems have been reported [15,16]. Wang reported a continuous-flow system with a domestic
microwave oven and examined some organic reactions, including Williamson ether synthesis between
benzyl chloride and phenol [17]. Strauss and colleagues developed their continuous microwave
reactor, equipped with a pressure control valve to increase the reaction temperature, and its applications
revealed that Strauss’s system allowed for improved productivity in comparison with Wang’s prototype

Molbank 2018, 2018, M996; doi:10.3390/M996 www.mdpi.com/journal/molbank

http://www.mdpi.com/journal/molbank
http://www.mdpi.com
https://orcid.org/0000-0002-7784-4987
https://orcid.org/0000-0002-6509-8956
http://www.mdpi.com/1422-8599/2018/2/M996?type=check_update&version=1
http://dx.doi.org/10.3390/M996
http://www.mdpi.com/journal/molbank


Molbank 2018, 2018, M996 2 of 5

system [18]. However, the reported yields (49% and 67%) were not adequate, and only a single example
was demonstrated. Thus, these reactions have much room for improvement, in terms of the reaction
efficiency and the number of reaction examples.

In 2015, we reported a highly efficient single-mode microwave applicator with a resonance cavity and
demonstrated the synthetic application of our apparatus, in which two well-known reactions (the Fischer
indole synthesis and the Diels-Alder reaction) were performed on a large scale (e.g., 100 g h−1 for the
Fischer indole synthesis) continuously at high reaction temperature [19,20]. It is known that MW
is absorbed directly by polarized organic molecules, and the resulting molecular vibration enables
rapid heating of the reaction mixture. Therefore, we expected that rapid heating by MW irradiation
would be effective in flow chemistry with starting materials having a good electrostatic property,
since the residence time of the reactants is normally limited. Herein, we disclose the continuous-flow
synthesis of (E)-3-[4-(pent-4-en-1-yloxy)phenyl]acrylic acid via Williamson ether synthesis using the
flow-microwave applicator.

2. Results and Discussion

2.1. Initial Screening of the Reaction Conditions Using a Batch Reactor

To check the effect of MW irradiation, we first examined the reaction between 4-hydroxy-cinnamic
acid (1) and 5-bromo-1-pentene (2) under the batch conditions (Table 1). According to the literature [1],
the reaction was carried out at 90 ◦C under oil bath heating, and the desired compound 3 was obtained
in 96% yield, although the reaction required 24 h for completion (entry 1). When the reaction time was
changed to 10 min, the yield dropped dramatically to only 23% (entry 2). Even though the reason is not
clear at present, MW heating increased the yield slightly even at 90 ◦C (entry 3). Interestingly, it was
found that KI was not essential for this reaction, and the etherification was further accelerated when
the temperature was raised up to 150 ◦C (entry 4). In this case, ester compound 4 was also formed in
19% yield as a byproduct, suggesting that substitution by the carboxylate anion could occur at high
temperature. Therefore, we reduced the amount of 2 to minimize the overreaction, and 3.0 equivalents
of KOH was added for promoting hydrolysis of the resultant ester 4. As we expected, the desired ether
3 was selectively obtained in 91% yield (entry 5). MeOH was slightly less effective for this reaction in
comparison with EtOH (entry 6).

Table 1. Williamson ether synthesis under batch conditions 1.
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2.2. Continuous Williamson Ether Synthesis Using our Flow-Microwave Applicator

On the basis of the results obtained in Table 1, we needed to devise a flow-microwave system for
this Williamson ether synthesis (Figure 1). The carboxylate form of 3 was found to precipitate quite
easily from the reaction mixture, when the solution was cooled to ambient temperature. Thus, a mixed
solvent of MeOH/H2O was continuously added, using the second pump just after the reaction cavity
to dissolve the potassium salt of 3, so that potential clogging by the precipitate would be prevented.
The detailed conditions are listed in Scheme 1. The volume of the reaction vessel in the microwave
cavity was approximately 6 mL. The desired product 3 was quantitatively obtained, when the flow
rate was 1.2 mL/min and the irradiation power was 120 W. In addition, over 90% chemical yield was
retained even when the flow rate was increased to 4.0 mL/min (the residence time in the reaction
vessel was 1.5 min), while higher MW irradiation power (170 W) was required to elevate the reaction
temperature. These results suggest that the reaction reaches completion quickly (less than 1.5 min)
at more than 160 ◦C. In this case, about 300 g of 3 can be produced by this system theoretically, if the
continuous reaction is operated for 1 day.
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3. Experiments

3.1. General

The 1H-NMR spectrum was measured on a JEOL JNM-ECA-500 spectrometer (JEOL, Tokyo,
Japan) at 500 MHz, and the 13C-NMR spectrum was recorded on a JEOL JNM-ECA-500 spectrometer
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at 125 MHz. Chemical shifts were reported in parts per million (ppm) downfield from residual
chloroform in CDCl3 for 1H-NMR. For 13C-NMR, chemical shifts were reported in a scale relative
to CDCl3. Column chromatography was performed with silica gel N-60 (40–100 mm) purchased
from Kanto Chemical Co., Inc., (Tokyo, Japan). A thin layer choromatography (TLC) analysis was
performed on Silica gel 60 F254-coated glass plates (Merck, Darmstadt, Germany). The visualization
of TLC plates was carried out by means of UltraViolet (UV) irradiation at 254 nm, or by spraying
a 12-molybdo(VI)phosphoric acid ethanol solution. Reagents and solvents were purchased from
commercial suppliers and were used without purification.

3.2. Typical Procedure of Willimason Ether Synthesis Using Flow-Microwave System

A stock solution of 4-hydroxy-cinnamic acid (2.05 g, 12.5 mmol), 5-bromo-1-pentene (2.23 g,
15.0 mmol) and KOH (2.10 g, 37.4 mmol) in EtOH/H2O (3/1, 50 mL) was pumped into the microwave
applicator at a flow rate of 4.0 mL/min, and the irradiation power of the microwave reactor was set at
170 W. Meanwhile, the MeOH/H2O (5/1) solution was pumped into the line between the reaction
vessel and the backpressure regulator at 6.0 mL/min. To stabilize the applicator, the solution was
first run for 5 min. After the exit temperature reached 155–160 ◦C, the reaction mixture was collected
for 1 min. The organic solvent was evaporated in vacuo, and the resultant residue was neutralized
with 1 N HCl. The organic materials were extracted with EtOAc, and the combined organic layers
were dried over Na2SO4. After filtration, the filtrate was concentrated, and the 1H-NMR was measured
to determine the yield (91%). The residue was purified by column chromatography on silica gel
(n-hexane/EtOAc = 10/1 to 3/1) to give 3 (211 mg, 91%) as a colorless solid.

1H-NMR (500 MHz, CDCl3): δ = 7.74 (d, J = 16.0 Hz, 1H), 7.50 (d, J = 8.6 Hz, 2H), 6.91 (d, J = 8.6 Hz,
2H), 6.32 (d, J = 16.0 Hz, 1H), 5.85 (tdd, J = 6.9, 10.3, 17.2 Hz, 1H), 5.07 (dd, J = 1.7, 17.2 Hz, 1H), 5.01 (dd,
J = 1.7, 10.3 Hz, 1H), 4.01 (t, J = 6.3 Hz, 2H), 2.27–2.23 (m, 2H), 1.93–1.88 (m, 2H); 13C-NMR (125 MHz,
CDCl3): δ = 172.4, 161.3, 146.8, 137.6, 130.1, 126.6, 115.4, 114.9, 114.5, 67.3, 30.0, 28.3.

The NMR spectra were consistent with the previous paper [1].

4. Conclusions

We have demonstrated Williamson ether synthesis using a flow-microwave applicator. Our
system is effective for the continuous synthesis of (E)-3-[4-(pent-4-en-1-yloxy)phenyl]acrylic acid (3),
and we believe that this method would be applicable to the synthesis of other ethereal compounds.
Further applications of this flow-microwave system is being investigated in our group.

Supplementary Materials: The following are available online, flow-microwave applicator and NMR spectra of
(E)-3-[4-(pent-4-en-1-yloxy)phenyl]acrylicc acid.
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