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Abstract: The title compound—cis,exo-1,2,3,4,4a,13b-hexahydro-1,4-methano-5-isopropoxy-9H-tribenzo
[b,f ]azepine—was synthesized in 83% isolated yield by a palladium-catalyzed one-pot strategy from
1-iodo-2-isopropoxybenzene and ortho-bromoaniline. The azepine derivative was fully characterized
(FT-IR, MS, 1H and 13C-NMR, elemental analysis) and all proton and carbon signals have been completely
assigned by 2D NMR experiments.
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1. Introduction

The selective activation and functionalization of inert C-H bonds is a great challenge in
synthetic chemistry [1–5]. In 1997 Marta Catellani discovered an innovative strategy aimed
at the derivatization of both the ortho and ipso positions of aryl halides [6]. Over the years,
this palladium/norbornene-catalyzed C-H activation and functionalization reaction has been proven to
be a powerful tool for the construction of complex molecules in a one-pot fashion [7,8]. In this context,
we have successfully applied this methodology to the synthesis of many compounds, including natural
product derivatives [9–20]. Notably, in 2011, we enriched the versatility of the Catellani reaction by
the synthesis of dibenzo[b,f ]azepines [21].

A dibenzo[b,f ]azepine scaffold is essential for the construction of important therapeutic agents,
exhibiting a variety of biological activities including anticancer, antidepressant, and antiepileptic
properties [22–25].

In this Note, we report the preparation of azepine 3—that is, cis,exo-1,2,3,4,4a,13b-hexahydro-
1,4-methano-5-isopropoxy-9H-tribenzo[b,f ]azepine—by employing the abovementioned palladium-
catalyzed methodology [21] (Scheme 1). The structure of compound 3 was confirmed by NMR, MS,
and FT-IR, and all data are in concordance with the assumed structure.

Scheme 1. Synthesis of the title compound 3.
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2. Results and Discussion

As shown in Scheme 1, cis,exo-1,2,3,4,4a,13b-hexahydro-1,4-methano-5-isopropoxy-9H-tribenzo
[b,f ]azepine (3) was synthesized in 83% isolated yield. The reaction was carried out using
1-iodo-2-isopropoxybenzene (1), o-bromoaniline (2), and norbornene, in the presence of a catalytic
amount of Pd(OAc)2 (5 mol %), PPh3 (12.5 mol %), and Cs2CO3 as a base in DMF at 105 ◦C for
24 h. Notably, the isopropoxy group, which can be easily converted to a hydroxyl group [26], is well
tolerated by this protocol.

A plausible reaction mechanism is shown in Scheme 2. At first, the oxidative addition of
1 to palladium(0) affords the palladium(II) complex I, which, after stereoselective norbornene
insertion, leads to intermediate II. The intramolecular C-H bond activation provides the arylnorbornyl
palladacycle III, which is able to react with 2-bromoaniline 2, giving intermediate IV. Finally,
an intramolecular C-N coupling affords compound 3 and palladium(0), which can start a new catalytic
cycle. Contrary to many other Catellani-type reactions, norbornene is a reagent here since it is
incorporated in the final product.

Scheme 2. Proposed reaction pathway.

Compound 3 was characterized by NMR (1H and 13C-NMR in Figures 1 and 2), FT-IR, and MS.
In addition, all proton and carbon signals were assigned by 2D and 13C-DEPT-NMR experiments
(Figures S1–S11, Supplementary Materials) and protons on the norbornene bridge were unequivocally
assigned by NOESY-2D-NMR (Figure S12, Supplementary Materials). As expected, diagnostic
NOE correlations appear between H13 and H13b (green circle, Figure S12), and H1′ and H6 (blue
circle, Figure S12). Furthermore, the proton marked as H14 anti has a strong NOE correlation
with H2/H3 protons (red circle in Figure S12), while no correlation signals are present between
H2/H3/H4a/H13b protons and H14 syn. In summary, the signal at 1.62 ppm, which accounts for
H2/H3 (both endo and exo) protons, presents typical NOE correlations with H4a, H13b (orange circle
in Figure S12), H4, H1 (grey circle in Figure S12), and H14 anti (red circle in Figure S12), as expected
for the presented stereochemistry.



Molbank 2018, 2018, M988 3 of 6

Figure 1. 1H-NMR spectrum of compound 3 (CDCl3, 400 MHz) and related assignment.

Figure 2. 13C-NMR spectrum of compound 3 (CDCl3, 400 MHz) and related assignment.
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3. Materials and Methods

Compound 3 was synthesized according to the procedure described in the literature [21]. Other
chemicals were obtained from commercial sources and were used without further purification.
Gas chromatography analyses were performed with an Agilent Technology 7820A instrument
(Agilent Technologies, Santa Clara, CA, USA) using a 30 m SE-30 capillary column. Column
chromatography was carried out on silica gel (Merck, Darmstadt, Germany, 0.063–0.200 mm) and
Thin-Layer Chromatography (TLC) on Merck 60F254 plates. Electron ionization (EI) mass spectra were
obtained with an Agilent Technology instrument (Agilent Technologies, Santa Clara, CA, USA) working
at 70 eV ionization energy. NMR spectra were recorded in CDCl3, using the solvent residual signals
as internal reference (7.26 and 77.00 ppm, respectively, for 1H and 13C) on a Bruker AVANCE 400
spectrometer (Bruker, Milan, Italy). Data for 1H-NMR and 13C-NMR are reported as follows: chemical
shifts (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, hept = heptet), integration
and coupling constant (Hz). IR spectrum was run on a Nicolet FT-IR 5700 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA) paired with a Diamond Smart Orbit accessory. Melting point
was determined with an electrothermal apparatus. Elemental analysis was performed with a Carlo
Erba EA 1108-Elemental Analyzer (Carlo Erba, Milan, Italy).

The reaction in Scheme 1 was carried out in a 20-mL Schlenk-type flask under a controlled
atmosphere. The Schlenk-type flask, equipped with a magnetic stirring bar, was charged under
nitrogen with Cs2CO3, dried at 110 ◦C for 2 h (326 mg, 1.0 mmol), PPh3 (14 mg, 0.055 mmol) and
Pd(OAc)2 (5 mg, 0.022 mmol) in DMF (5 mL). After 10 min stirring, a DMF solution (5 mL) of
1-iodo-2-isopropoxybenzene (1, 126 mg, 0.48 mmol), o-bromoaniline (2, 76 mg, 0.44 mmol) and
norbornene (50 mg, 0.53 mmol) was added. The resulting mixture was stirred in an oil bath at 105 ◦C
for 24 h. After cooling to room temperature, the mixture was diluted with EtOAc (30 mL) and washed
with a saturated solution of NaCl (3 × 25 mL). The organic layer was dried over anhydrous Na2SO4;
the solvent was removed under reduced pressure and the product was isolated by flash column
chromatography on silica gel using a hexane–EtOAc mixture (98:2) as eluent. Compound 3 was
obtained as a white solid in 83% of yield (116 mg, 0.36 mmol). Mp 158–159 ◦C. IR (KBr, cm−1): ν 3373,
2970, 2953, 2864, 1584, 1492, 1467, 1449, 1240, 1121, 1050, 743.

1H-NMR (400 MHz, CDCl3) δ 7.23 (dd, J = 7.7, 0.9 Hz, 1H, H13), 7.08 (td, J = 7.6, 1.5 Hz, 1H, H11), 7.00
(t, J = 8.0 Hz, 1H, H7), 6.93 (td, J = 7.4, 1.0 Hz, 1H, H12), 6.79 (dd, J = 7.7, 0.9 Hz, 1H, H10), 6.56 (d, J
= 8.1 Hz, 1H, H6), 6.43 (d, J = 7.9 Hz, 1H, H8), 5.13 (s, 1H, NH), 4.59 (hept, J = 5.9 Hz, 1H, H1′), 3.84
(d, J = 9.7 Hz, 1H, H4a), 3.15 (d, J = 9.7 Hz, 1H, H13b), 2.66 (d, J = 9.6 Hz, 1H, H14 syn), 2.34 (s, 1H,
H4), 2.26 (s, 1H, H1), 1.62 (s, 4H, H2 endo, H2 exo, H3 endo, H3 exo), 1.43 (d, J = 6.0 Hz, 3H, H2′), 1.40
(d, J = 6.0 Hz, 3H, H2′), 1.16 (d, J = 9.6 Hz, 1H, H14 anti). 13C-NMR (101 MHz, CDCl3) δ 156.92 (C5),
145.23 (C4b), 144.09 (C13a), 133.82 (C10a), 132.57 (C13), 126.40 (C11), 126.03 (C7), 123.89 (C8a), 121.63
(C12), 119.60 (C10), 112.27 (C8), 106.56 (C6), 70.14 (C1′), 52.79 (C13b), 49.81 (C4), 48.58 (C1), 42.42 (C4a),
37.93(C14), 31.18 (C3), 30.20 (C2), 22.32 (C2′), 22.31 (C2′). GC-MS (EI): m/z 319 (M+, 100), 276 (12), 252
(54), 238 (65), 210 (36), 196 (72), 180 (25), 167 (13). Anal. Calcd. for C22H25NO: C, 82.72; H, 7.89; N, 4.38.
Found: C, 82.49; H, 7.78; N, 4.31.

Supplementary Materials: 1D and 2D NMR are available online, Figure from S1 to S12.
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