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Abstract

:

A new member of the gymnodimine class of spiroimine toxins has been isolated from a laboratory culture strain of Alexandrium ostenfeldii. Extensive one-dimensional (1D) and two-dimensional (2D) NMR data analysis was used to elucidate its structure as 12-methylgymnodimine B.
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1. Introduction


The threat from marine harmful algal blooms (HABs) to the world’s oceans and to the seafood industry is increasing as the rate of toxic bloom detection is on the rise. In HAB toxin research, the dinoflagellate species Alexandrium ostenfeldii is an important member because it has repeatedly been shown to produce members of both the saxitoxin family and the spiroimine toxin groups, gymnodimines and spirolides [1,2,3,4]. HAB spiroimine toxins exert their toxicity primarily through the inhibition of nicotinic acetylcholine receptors [5]. Although still relatively uncommon, the occurrence of both spirolides and gymnodimines in the same organism is not surprising as they appear to share a closely linked biosynthetic pathway [1,6]. There have been 13 members of the spirolide class of toxins fully characterized and several more suggested based on mass spectral data [7,8,9]. In contrast, only five gymnodimines are reported, the most recent being gymnodimine D, recorded last year [1,10,11,12,13]. While analyzing the extracts of cultured A. ostenfeldii cells originating from a re-occurring bloom off the coast of North Carolina for the continued production of 12-methylgymnodimine (2) and 13-desmethylspirolide C, we detected the presence of a minor component at m/z 538 (1) which appeared to be a new gymnodimine congener. Detailed NMR, and high resolution mass spectral analyses allowed us to assign the structure of this new analog as 12-methylgymnodimine B (1) (Figure 1).




2. Results


During the purification of 12-methylgymnodimine (2) and 13-desmethyl spirolide C from A. peruvianum [2], an additional congener (0.9 mg from 100 g wet weight cell pellet vs. 2.6 mg of (2)) of gymnodimine was tentatively identified by UV-LC-MS, displaying an M + H parent ion at m/z 538. This corresponds to the molecular formula of a gymnodimine analog containing an additional oxygen compared with 12-methylgymnodimine (2) [1] or, alternatively, the addition of an extra methyl to either gymnodimine B or C (3 or 4) [11,12]. The latter proposal was confirmed by the HR-ESIMS data (M + H = 538.3531; calculated = 538.3532; Δ = −0.2 ppm) which accounted for a molecular formula of C33H47NO5. Subsequent one-dimensional (1D) and two-dimensional (2D) NMR experiments further confirmed this as a new member of the gymnodimine class of spiroimines. The planar structure of this new compound was assembled using 1H, 13C, HSQC, COSY, TOCSY, and HMBC data (Table 1). Comparison with the known spectral data for 2 confirmed that it is a very closely related congener, also containing methylation at the C-12 position (Table 2). Analysis of the NMR data allowed us to determine that the region differentiating this new congener from 2 corresponded to additional oxygenation at C-18 in conjunction with double bond isomerization, resulting in an exomethylene group (C-17 and C-30) (Table 2). Specifically, the resonances at position 18 in 12-methylgymnodimine (2) δH 5.40 δX 126.8) now appeared much further upfield δH 4.35, δC 70.9) in the new compound. Additionally, the resonance for C-17 was shifted downfield from 134.5 ppm in 2 to 156.3 ppm in 1 and the C-30 methyl of 12-methylgymnodimine (2) is now present as an exomethylene (δH 5.55, 5.11; δX 112.5). This oxygenation and isomerization is also observed in gymnodimines B and C (3 and 4) which differ from each other only in the configuration of the C-18 stereocenter.



Extensive ROESY analysis allowed us to determine the relative configuration of all stereocenters in 12-methylgymnodimine B with the exception of C-4 (Table 1, Figure 2). Based on biosynthetic considerations, it is likely that this center retains the same configuration as was determined for gymnodimine by X-ray analysis [14]. However, sample limitations precluded us from definitively assigning this center. Importantly, ROESY correlations between H-12 and H-10 and H-15 allowed us to confirm that the relative configuration of 12-methylgymnodimine B (1) corresponds with that established for 12-methylgymnodimine (2) at position 12. Additional ROESY correlations from H-18 to H-12, H-14a, and H-15 correspond to the configuration assigned to gymnodimine B (3) at position 18 (Figure 2) [1,11,12]. While the optical rotations of gymnodimines B and C were not reported, the optical rotation for (1) was determined to be      [ α ]  D 26     = −30 (c. 0.2, MeOH) which is similar in value and sign to that reported for (2) [1].




3. Experimental Section


A clonal culture of Alexandrium ostenfeldii AP0411 (previously called A. peruvianum) was grown and harvested according to our previously reported protocol [2,6].



The A. peruvianum cells were filtered onto glass microfiber (VWR, 691-, Radnor, PA, USA) paper and the media was extracted with XAD resin to collect the remaining organics. The organics were then rinsed from the resins with 100% MeOH and 100% acetone washes. The cells were extracted with 2× 400 mL 80% MeOH and 1× 400 mL 100% MeOH. All organic extracts were combined and dried to HP20 resins for desalting and primary fractionation. The extract-bound resins were washed with 100% water and the remaining de-salted extract was eluted with increasing concentrations of acetone. The dried desalted extract was then fractionated on a 20 g C18 SPE cartridge with a stepwise elution of MeCN and H2O (0.1% TFA). LC-MS monitoring indicated that the spiroimines eluted in the 40% and 60% MeCN fractions. The spiroimine-containing fractions were then purified by reversed phase HPLC (semi-prep Gemini 5 µm C18 110A 250 × 10 mm column) under isocratic conditions (37% MeCN:63% H2O (0.05% formic acid)) 2 mL/min.



Optical rotations were measured with a Rudolph Research Analytical Autopol® III automatic polarimeter (Hackettstown, NJ, USA) in methanol. NMR analyses were performed using a Bruker® Avance 1 500 MHz system (Billerica, MA, USA) run by TopSpin version 2.0. HPLC isolation was performed using a Waters Breeze HPLC system (Waters, Manchester, UK) with a Waters dual wavelength detector. LC-MS monitoring was performed on a Waters Micromass ZQ mass spectrometer tandem to an Agilent 1600 high performance liquid chromatography (HPLC) instrument (Santa Clara, CA, USA). All solvents were of HPLC grade and were used without further purification. The HRMS spectrum was obtained on Waters UPLC i-Class system couples to a Waters Xevo-G2XS QToF-MS mass spectrometer. The system was operated in electrospray positive mode (ESI+) with the capillary voltage set at 2.5 kV, source and desolvation temperatures at 100 °C and 550 °C, respectively, and desolvation gas flow at 800 L/h. The MS-MS data was obtained with the same instrument under the same conditions with a set mass of 538.4 and a collision energy of 35 eV. All solvents were of mass spectrometry grade and were used without further purification.




4. Discussion


This new congener of the gymnodimine class of spiroimine toxins further expands the structural variety of this group and hence needs to be incorporated into any shellfish monitoring program. In addition to the fast acting toxicity profile for spiroimine toxins, recent literature indicates potential therapeutic value for these compounds in combating neurodegenerative diseases such as Alzheimer’s disease, including the closely related gymnodimine C [15,16] as well as the spirolides [17,18]. Increasing the library of structurally diverse spiroimines available for this research is important for enhancing drug discovery efforts.
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Figure 1. Structure of 12-methylgymnodimine B (1), 12-methylgymnodimine (2), gymnodimine B (3) and gymnodimine C (4). 
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Figure 2. Relative configuration 1 shown with key ROESY correlations. 






Figure 2. Relative configuration 1 shown with key ROESY correlations.
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Table 1. NMR data for 12-methylgymnodimine B in pyridine-d5.







Table 1. NMR data for 12-methylgymnodimine B in pyridine-d5.







	
Position

	
δH (mult, J in Hz)

	
δC (mult)

	
COSY

	
HMBC

	
ROESY






	
1

	

	
175.3 C(q)

	

	

	




	
2

	

	
130.2 C(q)

	

	

	




	
3

	
7.15 (br s)

	
148.8 CH

	
4,25

	
1,2,4,25

	
25




	
4

	
5.95 (br s)

	
81.3 CH

	
3,25

	
2, 3,5, 6, 24

	
26




	
5

	

	
125.0 C(q)

	

	

	




	
6

	

	
134.1 C(q)

	

	

	




	
7

	
3.66 (m)

	
46.1 CH

	
8

	
6,8,9,22

	
20a,26,27




	
8

	
5.34 (d, 11.0)

	
125.3CH

	
7

	
7,10, 27,22

	
10, 26, 27, 31a,32a




	
9

	

	
142.9 C(q)

	

	

	




	
10

	
4.52 (d, 10.5)

	
77.2 CH

	
11a,b

	
8,11, 27

	
8, 11b, 12, 28




	
11a

	
2.81 (t, 12.0)

	
39.9 CH2

	
10, 11b, 12

	
9, 10,12, 13, 26

	
27




	
11b

	
1.47 (m)

	

	
10, 11a, 12

	
9, 10,12, 26

	
10, 13




	
12

	
1.40 (m)

	
35.7 CH

	
11a,b, 28

	
11,13, 28

	
10, 15, 18




	
13

	
3.71 (m)

	
83.6 CH

	
12, 14a,b

	
11,15,16, 28

	
11b,14b, 16, 28




	
14a

	
2.15 (m)

	

	
13,15

	
15,16, 29

	
15,18




	
14b

	
1.58 (m)

	
38.4 CH2

	
13,15

	
15,16, 29

	
13, 16, 28, 29




	
15

	
2.94 (m)

	
36.8 CH

	
14 a,b, 16, 29

	
14,16,17, 29

	
12, 14a,18,19a




	
16

	
4.08 (d, 8.5)

	
92.1 CH

	
15

	
15,17, 18, 29, 30

	
13, 14b, 29




	
17

	

	
156.3 C(q)

	

	

	




	
18

	
4.35 (d, 10.0)

	
70.9 CH

	
19a,b

	
16, 17, 19,20,30

	
12,14a,15,19a




	
19a

	
2.58 (m)

	

	
18, 19b, 20a,b

	
18, 20,21

	
15, 18




	
19b

	
2.04 (m)

	
34.6 CH2

	
18, 19a, 20a,b

	
18, 20,21

	




	
20a

	
2.98 (m)

	
31.1 CH2

	
19a,b, 20b

	
18, 19,21

	
7




	
20b

	
2.37 (m)

	

	
19a,b, 20a

	
18, 19,21

	




	
21

	

	
174.3 C(q)

	

	

	




	
22

	

	
41.9 C(q)

	

	

	




	
23a

	
1.71 (m)

	
32.9 CH2

	
23b, 24 a,b

	
5,7,24,31

	




	
23b

	
1.27 (m)

	

	
23a

	
5,7,21,22,24,31

	




	
24a

	
2.04 (m)

	
19.8 CH2

	
23a, 24b

	

	




	
24b

	
1.59 (m)

	

	
23a, 24a

	
5,6,22

	




	
25

	
2.00 (s)

	
11.0 CH3

	
3,4

	
1, 2, 3, 4

	
3




	
26

	
1.66 (s)

	
17.0 CH3

	

	
6, 7, 8

	
4,7




	
27

	
2.14 (s)

	
12.0 CH3

	

	
7, 8, 9, 10

	
7,11a




	
28

	
0.96 (d; 6.5)

	
17.3 CH3

	
12

	
11,12,13

	
10,13,14b




	
29

	
1.06 (d; 6.5)

	
17.6 CH3

	
15

	
14,15,16

	
14b, 16




	
30a

	
5.55 (m)

	
112.5 CH2

	
30b

	
16,17,18

	




	
30b

	
5.11 (m)

	

	
30a

	
16,17,18

	




	
31a

	
1.83 (m)

	
26.4 CH2

	
31b, 32a,b

	
7, 21, 22,23

	
8




	
31b

	
1.35 (m)

	

	
31a, 32a,b

	
7, 21, 22,23

	




	
32a

	
1.58 (m)

	
21.3 CH2

	
31a, 32b, 33a,b

	
22,33

	




	
32b

	
1.44 (m)

	

	
31a, 32a, 33a,b

	
22,33

	




	
33a

	
3.64 (m)

	
49.5 CH2

	
32a,b, 33b

	
21, 31

	




	
33b

	
3.45 (m)

	

	
32a,b, 33a

	
21, 31
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Table 2. Proton and carbon assignments in pyridine-d5 for 12-methylgymnodimine B (1) and 12-methylgymnodimine (2).







Table 2. Proton and carbon assignments in pyridine-d5 for 12-methylgymnodimine B (1) and 12-methylgymnodimine (2).







	
Position

	
12-Methyl Gym B δH

	
12-Methyl Gym B δC

	
12-Methyl Gym δH

	
12-Methyl Gym δC






	
1

	

	
175.3

	

	
175.4




	
2

	

	
130.2

	

	
130.3




	
3

	
7.15

	
148.8

	
7.13

	
148.7




	
4

	
5.95

	
81.3

	
5.95

	
81.4




	
5

	

	
125.0

	

	
125.3




	
6

	

	
134.1

	

	
134.1




	
7

	
3.66

	
46.1

	
3.63

	
46.6




	
8

	
5.34

	
125.3

	
5.34

	
126.2




	
9

	

	
142.9

	

	
141.7




	
10

	
4.52

	
77.2

	
4.58

	
77.3




	
11a

	
2.81

	
39.9

	
2.92

	
40.3




	
11b

	
1.47

	

	
1.61

	




	
12

	
1.40

	
35.7

	
1.52

	
37.1




	
13

	
3.71

	
83.6

	
3.84

	
83.7




	
14a

	
2.15

	
38.4

	
1.78

	
36.0




	
14b

	
1.58

	

	
1.52

	




	
15

	
2.94

	
36.8

	
2.14

	
38.6




	
16

	
4.08

	
92.1

	
4.12

	
89.8




	
17

	

	
156.3

	

	
134.5




	
18

	
4.35

	
70.9

	
5.40

	
126.8




	
19a

	
2.58

	
34.6

	
2.77

	
22.8




	
19b

	
2.04

	

	
2.11

	




	
20a

	
2.98

	
31.1

	
2.65

	
31.4




	
20b

	
2.37

	

	
2.48

	




	
21

	

	
174.3

	

	
171.8




	
22

	

	
41.9

	

	
41.8




	
23a

	
1.71

	
32.9

	
1.71

	
34.4




	
23b

	
1.27

	

	
1.32

	




	
24a

	
2.04

	
19.8

	
2.06

	
20.0




	
24b

	
1.59

	

	
1.59

	




	
25

	
2.00

	
11.0

	
2.00

	
11.1




	
26

	
1.66

	
17.0

	
1.69

	
17.0




	
27

	
2.14

	
12.0

	
2.10

	
11.7




	
28

	
0.96

	
17.3

	
0.92

	
17.0




	
29

	
1.06

	
17.6

	
1.06

	
20.6




	
30a

	
5.55

	
112.5

	
1.54

	
14.9




	
30b

	
5.11

	

	

	




	
31a

	
1.83

	
26.4

	
1.89

	
27.4




	
31b

	
1.35

	

	
1.32

	




	
32a

	
1.58

	
21.3

	
1.54

	
21.4




	
32b

	
1.44

	

	
1.47

	




	
33a

	
3.64

	
49.5

	
3.75

	
50.6




	
33b

	
3.45

	

	
3.40

	










© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
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