9-(4-Hydroxybutyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione

Camilo A. Navarro, Cesar Sierra and Cristian Ochoa-Puentes *

Received: 16 December 2015; Accepted: 5 January 2016; Published: 12 January 2016

Abstract: The title compound 9-(4-hydroxybutyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione was synthesized in 72% yield through a simple, convenient and environmentally friendly one-pot reaction between dimedone and 3,4-dihydro-2H-pyran in aqueous citric acid. Additionally, a plausible reaction mechanism for the formation of the target xanthene is proposed.

Keywords: dimedone; Knoevenagel condensation; Michael addition; citric acid

1. Introduction

Xanthenes are a very interesting class of oxygen-containing heterocycles with a large number of synthetic and naturally occurring derivatives [1-3] that exhibit diverse applications in the field of medicinal chemistry [4,5] and materials science [6,7]. In particular, the hexahydro-1H-xanthene-1,8(2H)-diones have shown potential as antioxidant [8] anticancer [9,10] and leishmanicidal agents [11].

The synthesis of hexahydro-1H-xanthene-1,8(2H)-diones is commonly performed by the condensation of the appropriate aldehyde and dimedone or 1,3-cyclohexanedione under various conditions which include the use of alternative solvents [12-15], homogeneous [16,17], and heterogeneous [18-20] catalysts, and ultrasound- [21,22] or microwave-assisted [23] synthesis.

In this paper we describe the synthesis of 9-(4-hydroxybutyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione, a novel hexahydroxanthene, using an environment-mentally friendly one-pot reaction.

2. Results and Discussion

For the preparation of the target xanthene 3, one equivalent of 3,4-dihydro-2H-pyran 2 was reacted with two equivalents of dimedone 1 in 0.3 M citric acid in a closed vessel at 90 °C during 8 h (Scheme 1). After reaction completion (monitoring by thin layer chromatography) and purification by recrystallization, the desired title compound 3 was isolated in 72% yield.

The title compound was characterized by IR, 1H-NMR, 13C-NMR and elemental analysis. As expected, the IR spectrum shows the OH band at 3390 cm⁻¹ and a strong absorption band at 1664 and 1643 cm⁻¹ for the C=O stretching vibration. The proton NMR spectrum showed the following signals: singlet at 1.10 ppm assigned to the CH3 groups, three multiplets centered at 1.15, 1.48 and 1.55 ppm assigned to three CH2 groups of the alkyl chain, a broad singlet at 1.60 ppm assigned to the OH proton, two doublets at 2.24 and 2.30 ppm assigned to two CH2 groups of the xanthene core,
a singlet at 2.37 ppm assigned to two CH$_2$ groups of the xanthene core and two triplets at 3.55 and 3.78 ppm corresponding to CH$_2$OH and CH groups respectively.

![Scheme 1](image)

Scheme 1. Synthesis of 9-(4-hydroxybutyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione 3.

A plausible mechanism for the formation of compound 3 is given in Scheme 2. First, the hydrolysis in situ of the cyclic enol ether takes place yielding the cyclic hemiacetal 4 [24] which is in equilibrium with its ring-opened form 5-hydroxypentanal 5 [25]. This aldehyde 5 forms the Knoevenagel adduct 6 by the reaction of the enolic form of dimedone promoted by citric acid. Then 6 may further undergo Michael addition with another molecule of dimedone, in its enol form, to yield intermediate 7, which after an intramolecular cyclization and dehydration gives compound 3.

![Scheme 2](image)

Scheme 2. Plausible mechanism for the formation of the new hexahydro-1H-xanthene-1,8(2H)-dione 3.

3. Experimental Section

3.1. General Information

Melting points, reported without correction, were measured using a Stuart SMP10 apparatus (Stuart, Staffordshire, UK). The FT-IR spectra were obtained with a Shimadzu IR prestige 21 spectrophotometer (Columbia, MD, USA). 1H and 13C-NMR spectra were recorded with a Bruker
AVANCE III system (Billerica, MA, USA) operating at 400 MHz, using residual ($\delta^1_H 7.26$) and deuterated solvent ($\delta^1_C 77.0$) peaks of CDCl$_3$ as reference standards. The elemental analysis was performed on a Thermo Scientific Flash 2000 CHNS/O analyzer (Waltham, MA, USA). Reagents and solvents were obtained from commercial sources and used without further purification. 0.3 M citric acid was prepared using distilled and deionized water.

3.2. Synthesis of 9-(4-Hydroxybutyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione

A mixture of dimedone 1 (80.9 mg, 0.58 mmol) and dihydro-2H-pyran 2 (26.3 µL, 0.29 mmol) in 2 mL of 0.3 M citric acid was placed in a 10 mL glass vial. The vial was sealed and stirred at 90 °C for 8 h. After cooling the mixture the product was recovered by filtration. The solid was finally purified by recrystallization from a mixture ethanol/water (1/1). The target compound 3 (72.0 mg, 72%) was recovered as white crystals, m.p: 125–127 °C. FT-IR (ATR): 3514, 3390, 2958, 2933, 1664, 1643, 1616, 1348, 1192, 1136, 1064, 1001 cm$^{-1}$. 1H-NMR (400 MHz, CDCl$_3$) δ (ppm): 1.10 (s, 12H, 4CH$_3$), 1.12–1.18 (m, 2H, CH$_2$ alkyl), 1.46–1.51 (m, 2H, CH$_2$ alkyl), 1.51–1.57 (m, 2H, CH$_2$ alkyl), 1.60 (bs, 1H, OH), 2.24 (d, 2H, $J = 16.2$ Hz, CH$_2$ xanthene), 2.30 (d, 2H, $J = 16.2$ Hz, CH$_2$ xanthene), 2.37 (s, 4H, 2CH$_2$ xanthene), 3.55 (t, 2H, $J = 6.5$ Hz, CH$_2$OH), 3.78 (t, 1H, $J = 4.5$ Hz, CH).

13C-NMR (100 MHz, CDCl$_3$) δ (ppm): 21.5, 25.2, 27.3, 29.4, 32.0, 32.6, 33.6, 40.9, 50.9, 62.7, 114.9, 164.0, 197.2. Anal. calcd for C$_{21}$H$_{30}$O$_4$: C, 72.80; H, 8.73. Found: C, 72.53; H, 8.68.

Supplementary Materials: Copies of the IR, 1H, 13C-NMR spectra for compound 3 are available in the supplementary information. They and the molfiles can be found at http://www.mdpi.com/1422-8599/2016/1/M884.

Acknowledgments: Authors wish to thank the Universidad Nacional de Colombia for financial support.

Author Contributions: The authors C.A.N., C.S., C.O.-P. designed, accomplished research and wrote the paper together. Finally, all authors read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References