## **Supporting Information**

Unless specified, reagents were obtained from commercial sources and used without further purification. Solvents were obtained from Fisher Scientific, and H<sub>2</sub>O was deionised before use.

NMR spectra were recorded on a Varian VNMRS-700 instrument and were calibrated to the residual solvent according to the literature [1]. Assignments are based on DEPT-135, COSY, NOESY, HSQC and HMBC spectra.

Liquid chromatography-mass spectrometry (LCMS) was performed on an Agilent HP 1100 series chromatograph (Mercury Luna  $3\mu$  C18 (2) column) attached to a Waters ZQ2000 mass spectrometer with ESCi ionisation source in ESI mode. Elution was carried out at a flow rate of 0.6 mL/min using a reverse phase gradient of MeCN–water containing 0.1% formic acid. Gradient = 0–1 min: hold MeCN 5%, 1–4 min: ramp MeCN 5–95%, 4–5 min: hold MeCN 95%, 5–7 min: ramp MeCN 95–5%, 7–8 min: hold MeCN 5%. Retention times are reported as Rt.

High resolution mass spectra (HRMS) were recorded on a Waters Micromass LCT Premier spectrometer using time of flight with positive electrospray ionisation (ESI+), an ABI/MDS Sciex Q-STAR Pulsar with ESI+ and an ASAP (atmospheric pressure solids analysis probe ionisation), or a Bruker BioApex II 4.7e FTICR utilising either ESI+ or a positive electron ionisation (EI+) source equipped with a direct insertion probe. The mass reported is that containing the most abundant isotopes ( $^{35}$ Cl and  $^{79}$ Br). Limit:  $\pm$  5 ppm.

IR spectra were recorded neat on a Perkin-Elmer Spectrum Two FT-IR spectrometer using Universal ATR sampling accessories. Letters in parentheses refer to the relative absorbency of the peak: w—weak (<40% of the most intense peak), m—medium (40–75% of the most intense peak), s—strong (>75% of the most intense peak) and br—broad.

Melting points were recorded on an Optimelt automated melting point system with a heating rate of 1 °C/min (70% onset point and 10% clear point) and are uncorrected.

The X-ray single crystal data for compound **3** have been collected at 120.0(2)K on an Agilent XCalibur 4-circle diffractometer (Sapphire-3 CCD detector, graphite monochromator,  $\lambda$ MoK $\alpha$ ,  $\lambda = 0.71073$ Å,  $\omega$ -scan, 1.0°/frame) equipped with a Cryostream (Oxford Cryosystems) open-flow nitrogen cryostat. The structures was solved by direct method and refined by full-matrix least squares on F<sup>2</sup> for all data using Olex2 [2] and SHELXTL [3] software. All non-hydrogen atoms were refined anisotropically, hydrogen atoms were found in the difference Fourier maps and refined isotropically. Crystallographic data for the structure have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC-1049429.

*Crystal data for compound* **3**: C<sub>13</sub>H<sub>13</sub>NO<sub>3</sub>S, M = 263.30, monoclinic, space group P2<sub>1</sub>/n (no. 14), a = 7.5217(2), b = 11.1445(3), c = 14.9519(4) Å,  $\beta$  = 91.003(3)°, V = 1253.16(6) Å<sup>3</sup>, Z = 4, T = 120.0 K,  $\mu$ (MoK $\alpha$ ) = 0.257 mm<sup>-1</sup>, D<sub>calc</sub> = 1.396 g/mm<sup>3</sup>, 12888 reflections measured, 3654 unique (R<sub>int</sub> = 0.0444) were used in all calculations. The final R<sub>1</sub> was 0.0419 (2878 refl. with I > 2 $\sigma$ (I)) and wR<sub>2</sub> was 0.0975 (all data), GOOF = 1.052.

Microwave heating was performed using a Biotage<sup>®</sup> Initiator or Initiator<sup>+</sup>.

### <sup>1</sup>H-NMR (700 MHz, CDCl<sub>3</sub>)



## gCOSY (700 MHz, CDCl<sub>3</sub>)



M857 (S3)

### gHSQCAD (700 MHz, CDCl3)



# Single crystal for X-ray for 3

# 14srv138 = 3 (CCDC-1049429)



| Table 1. Crystal data and structure refinement for 14srv138. |                                                               |  |  |  |  |  |
|--------------------------------------------------------------|---------------------------------------------------------------|--|--|--|--|--|
| Identification code                                          | 14srv138                                                      |  |  |  |  |  |
| Empirical formula                                            | C13H13NO3S                                                    |  |  |  |  |  |
| Formula weight                                               | 263.30                                                        |  |  |  |  |  |
| Temperature/K                                                | 120.0                                                         |  |  |  |  |  |
| Crystal system                                               | monoclinic                                                    |  |  |  |  |  |
| Space group                                                  | $P2_1/n$                                                      |  |  |  |  |  |
| a/Å                                                          | 7.5217(2)                                                     |  |  |  |  |  |
| b/Å                                                          | 11.1445(3)                                                    |  |  |  |  |  |
| c/Å                                                          | 14.9519(4)                                                    |  |  |  |  |  |
| α/°                                                          | 90.00                                                         |  |  |  |  |  |
| β/°                                                          | 91.003(3)                                                     |  |  |  |  |  |
| γ/°                                                          | 90.00                                                         |  |  |  |  |  |
| Volume/Å <sup>3</sup>                                        | 1253.16(6)                                                    |  |  |  |  |  |
| Ζ                                                            | 4                                                             |  |  |  |  |  |
| $\rho_{cale}mg/mm^3$                                         | 1.396                                                         |  |  |  |  |  |
| m/mm <sup>-1</sup>                                           | 0.257                                                         |  |  |  |  |  |
| F(000)                                                       | 552.0                                                         |  |  |  |  |  |
| Crystal size/mm <sup>3</sup>                                 | 0.22 	imes 0.2 	imes 0.12                                     |  |  |  |  |  |
| Radiation                                                    | MoK $\alpha$ ( $\lambda = 0.71073$ )                          |  |  |  |  |  |
| $2\Theta$ range for data collection                          | 4.56 to 60°                                                   |  |  |  |  |  |
| Index ranges                                                 | $-10 \le h \le 10, -11 \le k \le 15, -20 \le l \le 21$        |  |  |  |  |  |
| Reflections collected                                        | 12888                                                         |  |  |  |  |  |
| Independent reflections                                      | 3654 [R <sub>int</sub> = 0.0444, R <sub>sigma</sub> = 0.0470] |  |  |  |  |  |
| Data/restraints/parameters                                   | 3654/0/215                                                    |  |  |  |  |  |
| Goodness-of-fit on F <sup>2</sup>                            | 1.052                                                         |  |  |  |  |  |
| Final R indexes $[I > = 2\sigma (I)]$                        | $R_1 = 0.0419, wR_2 = 0.0873$                                 |  |  |  |  |  |
| Final R indexes [all data]                                   | $R_1 = 0.0588, wR_2 = 0.0975$                                 |  |  |  |  |  |
| Largest diff. peak/hole / e Å <sup><math>-3</math></sup>     | 0.38/-0.29                                                    |  |  |  |  |  |

Г

| Table 2. Fractional Atom         | mic Coordinate | es (×10 <sup>4</sup> ) and Equiv | valent Isotropic Dis | splacement |
|----------------------------------|----------------|----------------------------------|----------------------|------------|
| Parameters ( $Å^2 \times 10^3$ ) | for 14srv138.  | Ueq is defined as                | s 1/3 of of the tra  | ace of the |
| orthogonalised UIJ tensor        | -              |                                  |                      |            |
| Atom                             | x              | y                                | z                    | U(eq)      |
| S1                               | 5673.8(5)      | 3140.6(3)                        | 916.1(2)             | 19.66(11)  |
| 01                               | 7069.2(16)     | 4220.8(9)                        | 2389.3(8)            | 24.0(3)    |
| O2                               | 10473.4(16)    | 3572.6(11)                       | 2861.8(9)            | 30.5(3)    |
| 03                               | 9938.2(14)     | 1743.2(9)                        | 2284.0(7)            | 19.6(2)    |
| N1                               | 6235.1(17)     | 1177.7(10)                       | 1764.1(8)            | 16.5(3)    |
| C1                               | 6502.5(19)     | 2333.8(12)                       | 1817.3(9)            | 14.3(3)    |
| C2                               | 4945(2)        | 1834.9(13)                       | 435.6(10)            | 20.2(3)    |
| C3                               | 5349(2)        | 892.3(13)                        | 975.9(10)            | 18.3(3)    |
| C4                               | 7432(2)        | 3007.7(12)                       | 2572.3(9)            | 15.8(3)    |
| C5                               | 9468(2)        | 2815.3(13)                       | 2587.6(9)            | 17.8(3)    |
| C6                               | 11832(2)       | 1432.8(16)                       | 2354.0(12)           | 24.8(3)    |
| C7                               | 12292(3)       | 946.1(18)                        | 3259.9(13)           | 32.1(4)    |
| C8                               | 6748.4(19)     | 2621.0(13)                       | 3494.0(9)            | 16.2(3)    |
| С9                               | 5672(2)        | 3386.8(15)                       | 3980.3(12)           | 26.1(4)    |
| C10                              | 5059(3)        | 3039.6(18)                       | 4815.6(12)           | 33.2(4)    |
| C11                              | 5518(2)        | 1937.1(17)                       | 5167.3(11)           | 29.6(4)    |
| C12                              | 6593(2)        | 1170.8(15)                       | 4691.1(10)           | 22.7(3)    |
| C13                              | 7215(2)        | 1511.2(13)                       | 3858.5(10)           | 17.5(3)    |

-

| <b>Table 3.</b> Anisotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for 14srv138. The Anisotropic |                 |                 |           |                 |                 |                 |  |  |  |
|---------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------|-----------------|-----------------|-----------------|--|--|--|
| displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + 2hka^*b^*U_{12} +]$ .           |                 |                 |           |                 |                 |                 |  |  |  |
| Atom                                                                                                    | U <sub>11</sub> | U <sub>22</sub> | U33       | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |  |  |  |
| S1                                                                                                      | 27.2(2)         | 14.76(18)       | 16.79(18) | 2.23(13)        | -6.58(14)       | 1.44(14)        |  |  |  |
| 01                                                                                                      | 32.5(7)         | 9.5(5)          | 29.3(6)   | 1.0(4)          | -15.2(5)        | -1.5(4)         |  |  |  |
| O2                                                                                                      | 22.8(6)         | 25.5(6)         | 43.0(7)   | -5.1(5)         | -5.1(5)         | -7.0(5)         |  |  |  |
| O3                                                                                                      | 17.2(5)         | 20.7(5)         | 20.8(5)   | -1.5(4)         | -0.2(4)         | 0.9(4)          |  |  |  |
| N1                                                                                                      | 20.2(6)         | 13.7(6)         | 15.4(6)   | -0.9(4)         | -4.0(5)         | 0.1(5)          |  |  |  |
| C1                                                                                                      | 16.8(7)         | 13.9(6)         | 12.1(6)   | 1.7(5)          | -2.1(5)         | 0.7(5)          |  |  |  |
| C2                                                                                                      | 25.2(8)         | 20.2(7)         | 14.9(7)   | -3.0(5)         | -5.6(6)         | 1.9(6)          |  |  |  |
| C3                                                                                                      | 23.3(8)         | 15.1(7)         | 16.5(7)   | -3.8(5)         | -4.6(6)         | 0.4(6)          |  |  |  |
| C4                                                                                                      | 20.1(7)         | 10.9(6)         | 16.4(6)   | 0.7(5)          | -4.3(5)         | 0.2(5)          |  |  |  |
| C5                                                                                                      | 20.0(7)         | 18.3(7)         | 14.9(7)   | 3.0(5)          | -1.9(6)         | -2.6(6)         |  |  |  |
| C6                                                                                                      | 15.8(7)         | 30.7(9)         | 27.8(9)   | -0.6(7)         | 1.9(6)          | 2.1(7)          |  |  |  |
| C7                                                                                                      | 22.3(9)         | 35.9(10)        | 38.1(10)  | 10.6(8)         | -3.6(8)         | 1.1(8)          |  |  |  |
| C8                                                                                                      | 14.8(7)         | 18.0(7)         | 15.6(6)   | -4.7(5)         | -2.8(5)         | -2.3(5)         |  |  |  |
| С9                                                                                                      | 23.9(8)         | 25.1(8)         | 29.2(9)   | -7.8(7)         | -1.8(7)         | 5.2(7)          |  |  |  |
| C10                                                                                                     | 26.0(9)         | 44.2(11)        | 29.7(9)   | -15.0(8)        | 7.1(7)          | 3.7(8)          |  |  |  |
| C11                                                                                                     | 27.5(9)         | 43.6(10)        | 17.9(8)   | -5.5(7)         | 5.4(7)          | -9.8(8)         |  |  |  |
| C12                                                                                                     | 25.0(8)         | 27.2(8)         | 16.0(7)   | 0.0(6)          | -1.6(6)         | -8.0(7)         |  |  |  |
| C13                                                                                                     | 19.1(7)         | 19.1(7)         | 14.3(7)   | -2.4(5)         | -0.1(5)         | -2.9(6)         |  |  |  |

| Table 4. Bond Lengths for 14srv138. |      |            |      |     |      |          |  |
|-------------------------------------|------|------------|------|-----|------|----------|--|
| Atom                                | Atom | Length/Å   | Atom |     | Atom | Length/Å |  |
| <b>S</b> 1                          | C1   | 1.7272(14) |      | C4  | C5   | 1.546(2) |  |
| <b>S</b> 1                          | C2   | 1.7089(15) |      | C4  | C8   | 1.541(2) |  |
| 01                                  | C4   | 1.4052(16) |      | C6  | C7   | 1.494(2) |  |
| O2                                  | C5   | 1.2006(18) |      | C8  | С9   | 1.390(2) |  |
| O3                                  | C5   | 1.3282(17) |      | C8  | C13  | 1.394(2) |  |
| 03                                  | C6   | 1.4680(19) |      | C9  | C10  | 1.394(3) |  |
| N1                                  | C1   | 1.3062(17) |      | C10 | C11  | 1.378(3) |  |
| N1                                  | C3   | 1.3809(19) |      | C11 | C12  | 1.382(2) |  |
| C1                                  | C4   | 1.5165(19) |      | C12 | C13  | 1.391(2) |  |
| C2                                  | C3   | 1.356(2)   |      |     |      |          |  |

### Molbank 2015

| Table 5. Bond Angles for 14srv138. |      |            |            |  |      |      |      |            |
|------------------------------------|------|------------|------------|--|------|------|------|------------|
| Atom                               | Atom | Atom       | Angle/°    |  | Atom | Atom | Atom | Angle/°    |
| C2                                 | S1   | C1         | 89.62(7)   |  | C8   | C4   | C5   | 107.10(11) |
| C5                                 | O3   | C6         | 116.83(12) |  | O2   | C5   | 03   | 125.41(15) |
| C1                                 | N1   | C3         | 110.53(12) |  | O2   | C5   | C4   | 121.68(14) |
| N1                                 | C1   | S1         | 114.39(10) |  | O3   | C5   | C4   | 112.90(12) |
| N1                                 | C1   | C4         | 127.03(12) |  | O3   | C6   | C7   | 111.03(13) |
| C4                                 | C1   | S1         | 118.58(10) |  | C9   | C8   | C4   | 120.17(14) |
| C3                                 | C2   | <b>S</b> 1 | 110.02(12) |  | С9   | C8   | C13  | 119.03(14) |
| C2                                 | C3   | N1         | 115.44(13) |  | C13  | C8   | C4   | 120.80(12) |
| 01                                 | C4   | C1         | 104.24(11) |  | C8   | С9   | C10  | 120.20(16) |
| 01                                 | C4   | C5         | 108.98(12) |  | C11  | C10  | С9   | 120.32(16) |
| 01                                 | C4   | C8         | 112.12(12) |  | C10  | C11  | C12  | 119.96(16) |
| C1                                 | C4   | C5         | 112.70(11) |  | C11  | C12  | C13  | 120.13(16) |
| C1                                 | C4   | C8         | 111.75(11) |  | C12  | C13  | C8   | 120.36(14) |

|                                 | Table 6. Hydrogen Bonds for 14srv138. |        |          |          |            |         |  |  |
|---------------------------------|---------------------------------------|--------|----------|----------|------------|---------|--|--|
| D                               | Н                                     | Α      | d(D-H)/Å | d(H-A)/Å | d(D-A)/Å   | D-H-A/° |  |  |
| 01                              | H1                                    | $N1^1$ | 0.83(2)  | 2.02(2)  | 2.8159(16) | 161(2)  |  |  |
| <sup>1</sup> 3/2-X,1/2+Y,1/2-Z. |                                       |        |          |          |            |         |  |  |

| Table 7. Selected Torsion Angles for 14srv138. |    |    |            |             |  |     |    |    |            |             |
|------------------------------------------------|----|----|------------|-------------|--|-----|----|----|------------|-------------|
| Α                                              | B  | С  | D          | Angle/°     |  | Α   | B  | С  | D          | Angle/°     |
| 01                                             | C4 | C1 | <b>S</b> 1 | 10.58(15)   |  | C5  | C4 | C8 | C9         | 128.58(15)  |
| 01                                             | C4 | C5 | 02         | 34.68(19)   |  | C5  | C4 | C8 | C13        | -50.51(17)  |
| O1                                             | C4 | C5 | O3         | -146.25(12) |  | C6  | O3 | C5 | O2         | 4.8(2)      |
| N1                                             | C1 | C4 | 01         | -169.10(14) |  | C7  | C6 | O3 | C5         | 84.04(17)   |
| C1                                             | C4 | C5 | 02         | 149.89(14)  |  | C8  | C4 | C1 | <b>S</b> 1 | 131.88(11)  |
| C1                                             | C4 | C5 | 03         | -31.04(16)  |  | C8  | C4 | C1 | N1         | -47.80(19)  |
| C1                                             | C4 | C8 | C9         | -107.54(16) |  | C8  | C4 | C5 | 02         | -86.82(16)  |
| C1                                             | C4 | C8 | C13        | 73.37(17)   |  | C8  | C4 | C5 | O3         | 92.25(13)   |
| C4                                             | C5 | O3 | C6         | -174.23(12) |  | C9  | C8 | C4 | 01         | 9.1(2)      |
| C5                                             | C4 | C1 | <b>S</b> 1 | -107.45(12) |  | C13 | C8 | C4 | 01         | -170.01(13) |
| C5                                             | C4 | C1 | N1         | 72.87(18)   |  |     |    |    |            |             |

Г

| <b>Table 8.</b> Hydrogen Atom Coordinates (Å $\times$ 10 <sup>4</sup> ) and Isotropic Displacement Parameters (Å <sup>2</sup> $\times$ 10 <sup>3</sup> ) for 14 srul 28 |           |          |          |       |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|-------|--|--|--|--|
| Atom                                                                                                                                                                    | x         | y        | z        | U(eq) |  |  |  |  |
| H1                                                                                                                                                                      | 7760(30)  | 4680(20) | 2649(15) | 47(7) |  |  |  |  |
| H2                                                                                                                                                                      | 4330(30)  | 1828(16) | -118(14) | 34(5) |  |  |  |  |
| H3                                                                                                                                                                      | 5030(20)  | 70(17)   | 856(11)  | 26(5) |  |  |  |  |
| H6A                                                                                                                                                                     | 12520(20) | 2147(16) | 2213(12) | 24(5) |  |  |  |  |
| H6B                                                                                                                                                                     | 11980(30) | 826(18)  | 1882(13) | 37(5) |  |  |  |  |
| H7A                                                                                                                                                                     | 13550(30) | 644(17)  | 3265(13) | 35(5) |  |  |  |  |
| H7B                                                                                                                                                                     | 12120(30) | 1541(18) | 3737(14) | 38(6) |  |  |  |  |
| H7C                                                                                                                                                                     | 11570(30) | 250(20)  | 3380(15) | 51(7) |  |  |  |  |
| Н9                                                                                                                                                                      | 5400(20)  | 4119(16) | 3725(12) | 23(5) |  |  |  |  |
| H10                                                                                                                                                                     | 4290(30)  | 3571(19) | 5128(14) | 47(6) |  |  |  |  |
| H11                                                                                                                                                                     | 5090(30)  | 1696(17) | 5723(14) | 36(6) |  |  |  |  |
| H12                                                                                                                                                                     | 6900(20)  | 373(16)  | 4938(12) | 28(5) |  |  |  |  |

#### References

- 1. Gottlieb, H.E.; Kotlyar, V.; Nudelman, A. NMR chemical shifts of common laboratory solvents as trace impurities. *J. Org. Chem.* **1997**, *62*, 7512–7515.
- 2. Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. *OLEX2*: a complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* **2009**, *42*, 339–341.
- 3. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122.