Supporting Information

N,N',N''-Tris[(5-methoxy-1H-indol-3-yl)ethyl]benzene-1,3,5-tricarboxamide

1 H and ¹³C-NMR spectra of compound 3.

Figure S1. ¹H-NMR spectrum of 3 in THF-*d*₈ (400 MHz).

Figure S2. ¹H-NMR spectrum of 3 in CD₃CN (500 MHz).

Molbank **2015** M850 (S2)

Figure S3. 13 C-NMR spectrum of **3** in THF- d_8 (400 MHz).

Figure S4. DEPT 135 spectrum of 3 in THF- d_8 (400 MHz).

Molbank **2015** M850 (S3)

2 Description of the ¹H-NMR titrations

¹H-NMR titrations were carried out in CD₃CN at 25 °C (dilution experiments show that compound **3** do not self-aggregate in the used concentration range).

Stock solutions in CD₃CN were prepared for compound **3** and NH₄PF₆. These solutions and the corresponding solvent were combined in a manner so that the concentration of compound **3** was kept constant and that of NH₄PF₆ varied (three titrations were carried out). For each titration 16–20 samples were prepared and the ¹H-NMR spectra were recorded (for an example, see Table S1). The titration data were analyzed by non-linear regression analysis, using the program WinEQNMR (see [1]).

Table S1. ¹H-NMR titration of compound **3** with NH₄PF₆ in CD₃CN.

	[Receptor]	[NH ₄ PF ₆]	Ratio	
	mol/L	mol/L	[Receptor]	[NH ₄ PF ₆]
1	0.00100061	0.00000000	1	0.0000
2	0.00100061	0.00010587	1	0.1058
3	0.00100061	0.00021174	1	0.2116
4	0.00100061	0.00031762	1	0.3174
5	0.00100061	0.00042349	1	0.4232
6	0.00100061	0.00052936	1	0.5290
7	0.00100061	0.00063523	1	0.6348
8	0.00100061	0.00074110	1	0.7407
9	0.00100061	0.00084698	1	0.8465
10	0.00100061	0.00105872	1	1.0581
11	0.00100061	0.00127046	1	1.2697
12	0.00100061	0.00148221	1	1.4813
13	0.00100061	0.00190570	1	1.9045
14	0.00100061	0.00211744	1	2.1162
15	0.00100061	0.00232918	1	2.3278
16	0.00100061	0.00254093	1	2.5394
17	0.00100061	0.00296442	1	2.9626
18	0.00100061	0.00338791	1	3.3859
19	0.00100061	0.00423488	1	4.2323

Molbank **2015** M850 (S4)

3 Mole ratio plot for the ¹H-NMR titration of compound 3 with NH₄PF₆ in CD₃CN.

Figure S5. Mole ratio plot: Titration of compound **3** with NH₄PF₆ in CD₃CN; [**3**] = 1 mM (analysis of the complexation-induced upfield shift of the benzene CH of **3**).

Reference

1. Hynes, M.J. EQNMR: A computer program for the calculation of stability constants from nuclear magnetic resonance chemical shift data. *J. Chem. Soc. Dalton Trans.* **1993**, 311–312.