Supporting Information

$N, N^{\prime}, N^{\prime \prime}$-Tris[(5-methoxy-1H-indol-3-yl)ethyl]benzene-1,3,5-tricarboxamide
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of compound 3 .

Figure S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{3}$ in THF- $d_{8}(400 \mathrm{MHz})$.

Figure S2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{3}$ in $\mathrm{CD}_{3} \mathrm{CN}(500 \mathrm{MHz})$.

Figure S3. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathbf{3}$ in THF- $\mathrm{d}_{8}(400 \mathrm{MHz})$.

Figure S4. DEPT 135 spectrum of $\mathbf{3}$ in THF- $d_{8}(400 \mathrm{MHz})$.

2 Description of the ${ }^{1} \mathrm{H}$-NMR titrations
${ }^{1} \mathrm{H}-\mathrm{NMR}$ titrations were carried out in $\mathrm{CD}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$ (dilution experiments show that compound 3 do not self-aggregate in the used concentration range).

Stock solutions in $\mathrm{CD}_{3} \mathrm{CN}$ were prepared for compound 3 and $\mathrm{NH}_{4} \mathrm{PF}_{6}$. These solutions and the corresponding solvent were combined in a manner so that the concentration of compound $\mathbf{3}$ was kept constant and that of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ varied (three titrations were carried out). For each titration 16-20 samples were prepared and the ${ }^{1} \mathrm{H}$-NMR spectra were recorded (for an example, see Table S1). The titration data were analyzed by non-linear regression analysis, using the program WinEQNMR (see [1]).

Table S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ titration of compound $\mathbf{3}$ with $\mathrm{NH}_{4} \mathrm{PF}_{6}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

	$[$ Receptor $]$ $m o l / L$	$\left[\mathrm{NH}_{4} \mathrm{PF} 6\right]$ $\mathrm{mol} / \mathrm{L}$	Ratio	
		$[$ Receptor $]$	$\left[\mathrm{NH}_{4} \mathrm{PF}_{6}\right]$	
1	0.00100061	0.00000000	1	0.0000
2	0.00100061	0.00010587	1	0.1058
3	0.00100061	0.00021174	1	0.2116
4	0.00100061	0.00031762	1	0.3174
5	0.00100061	0.00042349	1	0.4232
6	0.00100061	0.00052936	1	0.5290
7	0.00100061	0.00063523	1	0.6348
8	0.00100061	0.00074110	1	0.7407
9	0.00100061	0.00084698	1	0.8465
10	0.00100061	0.00105872	1	1.0581
11	0.00100061	0.00127046	1	1.2697
12	0.00100061	0.00148221	1	1.4813
13	0.00100061	0.00190570	1	1.9045
14	0.00100061	0.00211744	1	2.1162
15	0.00100061	0.00232918	1	2.3278
16	0.00100061	0.00254093	0.00296442	1

3 Mole ratio plot for the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ titration of compound $\mathbf{3}$ with $\mathrm{NH}_{4} \mathrm{PF}_{6}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S5. Mole ratio plot: Titration of compound $\mathbf{3}$ with $\mathrm{NH}_{4} \mathrm{PF}_{6}$ in $\mathrm{CD}_{3} \mathrm{CN}$; [3] $=1 \mathrm{mM}$ (analysis of the complexation-induced upfield shift of the benzene CH of $\mathbf{3}$).

Reference

1. Hynes, M.J. EQNMR: A computer program for the calculation of stability constants from nuclear magnetic resonance chemical shift data. J. Chem. Soc. Dalton Trans. 1993, 311-312.
