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Abstract: The title compound has been prepared from 1,5-dibromonaphthalene (obtained 

from 1,5-diaminonaphthalene) using Suzuki-Miyaura cross-coupling to 4-pyridylboronic 

acid. The crystal and molecular structure was determined by single-crystal X-ray diffraction. 
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Introduction 

There is currently strong interest in using (4,4'-dipyridyl)naphthalenes for diverse applications in 

supramolecular chemistry, including the synthesis of flexible pillared metal organic frameworks 

(MOFs) [1–4], hydrogen-bonded templates for supramolecular structures prepared by 

mechanochemistry used for solid-state photodimerization reactions [5–9] and the stabilization of 

porphyrinic catenanes [10,11]. To date, only four isomers of the parent (4,4'-dipyridyl)naphthalenes 

(Scheme 1, molecular formula C22H16N2) have been reported in the literature: 1,4-, 1 [1], 1,8-, 2 [5–9] 

2,7-, 3 [10,11] and 2,6-, 4 [2–4]. Herein we report the preparation, characterization and structure 

determination by single-crystal X-ray diffraction of the new 1,5- isomer, 5. 

Results and Discussion 

The synthesis (Scheme 2) started from commercially available 1,5-diaminonaphthalene, 6, to afford 

1,5-dibromonaphthalene, 7, in 14% yield [12]. Suzuki-Miyaura cross-coupling was employed using 

conditions previously reported for coupling of 4-pyridylboronic acid with aryl bromides [13,14]. The 

OPEN ACCESS



Molbank 2015  M845 (Page 2)

 

 

same catalyst, [Pd(PPh3)4], was used (10 mol % catalyst loading) but K2CO3 was used in place of 

K3PO4 because the former was on hand and is also often employed for such reactions. We employed 

1,4-dioxane as solvent and refluxed the mixture for 3 days under an inert gas, which afforded 5 as 

colorless crystals (CHCl3/CH3OH), in 44% yield. A fitting mass spectrum as well as 1H and 13C NMR 

spectroscopic data, which could be fully assigned, were obtained (see Experimental Section and 

Supplementary Information). 

 

Scheme 1. Known isomers (1–4) of (4,4'-dipyridyl)naphthalenes. 

 

Scheme 2. Synthetic route to 1,5-(4,4'-dipyridyl)naphthalene, 5. 

 

Figure 1. Displacement ellipsoids plot (40% probability) of the structure of 5 as found in 

the crystal; the crystallographic centre of symmetry is indicated as a red dot. Selected bond 

lengths [Å] and bond angles [°]: N11–C12 1.340(2); N11–C16 1.3365(19); C1–C2 

1.372(2); C1–C8A' 1.4298(19); C1–C14 1.4952(17); C2–C3 1.4104(18); C3–C8' 

1.3670(19); C12–N11–C16 116.06(11); C2–C1–C8A' 119.84(11); C2–C1–C14 

118.74(12); C8A'–C1–C14 121.41(11); C1–C2–C3 121.13(12). 
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The molecular structure of 5 as found in the crystal lattice is depicted in Figure 1. The molecule 

crystallizes at a crystallographic centre of symmetry (as indicated) so that the asymmetric unit consists 

of half a molecule. The pyridyl rings are twisted because of the steric hindrance between the pyridyl 

and naphthyl hydrogen atoms, resulting in a dihedral angle between the 4-pyridyl and naphthalene ring 

least-squares planes of 59.10(6)°. Bond distance and angle data for 5 are not remarkable and are very 

close to those found in three independent crystallographic structure determinations of 2 [6]. The  

inter-planar dihedral angles in 5 are also quite similar to those determined for 2 (range: 51.3–69.2°; 

mean of six = 63°). The shortest intermolecular contacts in the crystal structure of 5 are C12–C13' 

(3.468(2) Å) from offset π–π stacking and N11–H2 (2.54 Å). In contrast, all three structure 

determinations of 2 show C–H to π “T” interactions between the rings, in addition to the expected 

short contacts to nitrogen [6]. 

Experimental Section 

Reagents and solvents were commercial products and used as received (except 1,4-dioxane, distilled 

under nitrogen from Na). A Bruker Alpha FTIR with diamond ATR was used for IR data; an 

Elementar Americas Vario MicroCube instrument for EA (Mount Laurel, NJ, USA); EI-MS spectra 

measured on a Varian 4000 GC-MS (direct sample insertion) (Palo Alto, CA, USA). 1H (300.14 MHz) 

and 13C (62.9 MHz) NMR spectra were obtained on a Bruker Avance II instrument using the residual 

solvent signals for referencing (Bruker BioSpin GmbH, Rheinstetten, Germany). 

1,5-diaminonaphthalene (6, 2 g, 12.6 mmol) was diazotized with H2SO4/NaNO2 and slowly added 

to a solution of CuBr (5 g, 34.9 mmol) in 48% HBr (75 mL) and H2O (75 mL). Extraction with CHCl3 

followed by drying (anhyd. MgSO4) and evaporation afforded 1,5-dibromonaphthalene, 7, which was 

crystallized from chloroform (0.5 g, 14%). A mixture of 7 (0.37 g, 1.3 mmol), Pd(PPh3)4 (0.15 g,  

0.13 mmol), K2CO3 (1.073 g, 7.8 mmol) and 4-pyridylboronic acid (0.48 g, 3.9 mmol) in 1,4-dioxane 

(40 mL) was refluxed under N2 for 3 days. After removal of 1,4-dioxane, the resulting mass was 

dissolved in 30 mL of CHCl3 giving a dark, slightly cloudy, liquid which was treated twice with 20 mL 

of brine. The CHCl3 layer was dried and evaporated; recrystallization from 1.0 mL chloroform layered 

with 1.0 mL methanol afforded 1,5-(4,4'-dipyridyl)naphthalene, 5. 

Yield 0.160 g (44%), colourless crystals, Mp: 110–112 °C. Calcd for C20H14N2: C, 85.08; H, 4.99; 

N, 9.92. Found: C, 84.71; H, 4.76; N, 9.90%. IR (diamond ATR): 1589 s, 1542 m, 1585 m, 1437 s, 

1409 s, 1312 m, 1261 s, 1183 vs, 1119 vs, 1070 vs, 992 s 799 vs cm−1. 1H NMR (CDCl3): δ 8.77 (d,  

J = 6.0 Hz, 4H, pyridyl H3,5), 7.91 (d, J = 8.7 Hz, 2H, naphthyl H4,8), 7.54 (t, J = 7.2 Hz, 2H, 

naphthyl H3,7), 7.46 (d, J = 6.3 Hz, 6H, naphthyl H2,6; pyridyl H2,6). 13C NMR (CDCl3): δ 149.9 

(pyridyl C3,5), 148.6 (pyridyl C1), 138.0 (naphthyl C1,5), 131.1 (naphthyl C1',4'), 127.2 (naphthyl 

C4,8), 126.1 (naphthyl C3,7), 126.0 (naphthyl C2,6), 125.0 (pyridyl C2,6). Assignment of resonances 

determined from HSQC and HMBC 2D-NMR experiments. MS: m/z 282 [M]+. 

Mo Kα radiation (λ = 0.71073 Å) diffraction data collected on a colourless prism (0.31 × 0.18 × 

0.09 mm3) with a Bruker APPEX-II diffractometer at 173(2) K. After multi-scan absorption (max 

0.798; min 0.767), the structure was solved by direct methods and refined using SHELXL-2013. H 

atoms were observed but were treated as riding on their attached aromatic carbon atoms with C–H = 

0.95 Å and Uiso = 1.2Ueq(C) for model refinement. Monoclinic, P21/n, a = 9.096(6), b = 5.954(4), c = 
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13.447(9) Å; β = 103.849(7)°; V = 707.0(8) Å3. Dc = 1.326 Mg/m3; θ-range: 2.456 to 28.616°, −12 ≤ h 

≤ 11, −8 ≤ k ≤7, −17 ≤ l ≤ 17, 9908 reflections; 1740 indep. data (Rint = 0.030); 99.9% complete;  

100 parameters. R1 = 0.0425; wR2 = 0.1075. Largest diff. peak and hole: 0.279 and −0.230 e/Å3. 

CCDC 1041753 contains the supplementary crystallographic data for this paper. These data can be 

obtained free of charge at http://www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge 

Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0)1223-

336033 or e-mail: deposit@ccdc.cam.ac.uk. 
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