Short Note

N¹-Benzyliodene-N²-(2-((2-(benzylideneamino)ethyl)amino)ethyl)amino)ethyl)ethane-1,2-diamine

Javier Fernández-Lodeiro 1, Cristina Núñez 1,2,*, Emilia Bértolo 3,*, José Luis Capelo 1,2 and Carlos Lodeiro 1,2

1 Grupo BIOSCOPE, Departamento de Química Física, Facultad de Ciencias, Campus de Ourense, Universidad de Vigo, 32004, Ourense, Spain
2 REQUIMTE, Departamento de Química, FCT-UNL, 2829-516 Monte de Caparica, Portugal
3 Ecology Research Group, Department of Geographical and Life Sciences, Canterbury Christ Church University, Canterbury, Kent. CT1 1QU, UK

* Authors to whom correspondence should be addressed; E-Mails: cristina.nunez@fct.unl.pt (C.N.); emilia.bertolo@canterbury.ac.uk (E.B.)

Received: 20 June 2012 / Accepted: 26 September 2012 / Published: 27 September 2012

Abstract: A tetraethylene pentamine-diamine (L⁴), the biggest compound in the family of dibenzylated diimine-polyamines (L¹–L⁴) has been synthesized by classical Schiff-base reaction between benzaldehyde and the diamine tetraethylenepentamine, and the structure was confirmed by elemental analysis, ESI-MS spectrometry and by IR and ¹H-NMR spectroscopy.

Keywords: imine compounds; amine compounds; polyamines; dibenzylated

Improved understanding of the role of polyamines in metabolism [1,2], and the differences in polyamine biology between normal cells and tumor cells [3], have increased current interest in this type of compounds in the field of drug development [4,5]. The activity of polyamines is very much dependent on their charge and the charge density they display at physiological pH [6].

During the last ten years, some of us have been involved in the studies of many different water-soluble bis-chromophoric polyamines as fluorescent chemosensors [7–10]. However, more recently studies in new active MALDI-TOF-MS matrices reveals that the introduction of imine groups into the polyamine chain increases the energy absorbed in the UV region, and consequently, the potential application as a MALDI matrix increase [11,12].
Following the method previously reported by Bernardo et al. for polyamine systems [13], in this paper we describe the synthesis and characterization of the tetraethylene pentamine-diamine (L4), derived from benzaldehyde and the diamine tetraethylenepentamine. The broader applicability of this method was demonstrated by the synthesis of a few related compounds (L1–L3) [14] (See scheme 1).

Scheme 1. Schematic representation of compounds L1–L4.

![Scheme 1](image)

Experimental

A solution of benzaldehyde (0.129 g, 1.225 mmol) in absolute ethanol (20 mL) was added dropwise to a refluxing solution of tetraethylenepentamine (0.115 g, 0.612 mmol) in the same solvent (15 mL). The resulting solution was gently refluxed with magnetic stirring for 4 h. The colour changed from colourless to yellow. The solution was concentrated under vacuum to 1/3 of its volume. Diethyl ether was added to the solution and then cooled at 0 °C during 24 h. The yellow crystals formed were filtered off and dried under vacuum. At room temperature the crystals were not stable and a yellow oil was obtained.

L4: N1-Benzylidene-N2-(2-((2-((2-(benzylideneamino)ethyl)amino)ethyl)amino)ethyl)ethane-1,2-diamine

Yield: 125 mg (56%).

ESI-MS: m/z (rel.int%): 366.26 (100) ([M+H]+).

1H-NMR (CDCl3): δ = 8.3 (s, 2H, N=C–H); 7.5–7.7 (m, 4H, C-Har); 7.4–7.1 (m, 6H, C-Har); 3.8–3.2 (m, 4H, CH2); 2.9–2.1 (m, 12H, CH2) ppm.

IR (cm⁻¹): 1658 (C=N, Imine), 1589, 1492 (C=C, Ar).

Acknowledgements

We are grateful to Xunta de Galicia (Spain) for grant 09CSA043383PR (Biomedicine) and to the Scientific Association ProteoMass for financial support. C.N. thanks the Fundação para a Ciência e a Tecnologia/FEDER (Portugal/EU) program postdoctoral contract SFRH/BPD/65367/2009. J.F.L. thanks Xunta de Galicia (Spain) for a research contract by project 09CSA043383PR in Biomedicine. J.L.C. and C.L. thank Xunta de Galicia for the Isidro Parga Pondal Research program.

References and Notes

14. The smaller parent compounds derived from 1,2-ethanediamine (L₁), diethylenetriamine (L₂), and triethylenetetramine (L₃) were obtained by a similar methodology, using 0.038, 0.063 and 0.089 g of diamine, respectively. Compound L₁: *N₁,N₂*-Dibenzylideneethane-1,2-diamine; Yield: 121 mg (84%); ESI-MS: *m/z* (rel. int%): 237.13 (100) ([M+H]+); ¹H NMR (CDCl₃): δ = 8.1 (s, 2H, N=C–H); 7.8 (m, 4H, C-Har); 7.2 (m, 6H, C-Har); 3.8 (s, 4H, CH₂) ppm; IR (cm⁻¹): 1647 (C=N, Imine), 1599, 1498 (C=C, Ar); Elemental analysis: Calcd for C₁₆H₁₆N₂: C, 81.32; H, 6.82; N, 11.85. Found: C, 80.87; H, 7.02; N,12.05. Compound L₂: *N₁*-Benzylidene-*N₂*-(2-(benzylideneamino)-ethyl)ethane-1,2-diamine; Yield: 103 mg (71%); ESI-MS: *m/z* (rel. int%): 279.17 (100) ([M+H]+); ¹H-NMR (CDCl₃): δ = 8.2 (s, 2H, N=C–H); 7.8–7.6 (m, 4H, C-Har); 7.4–7.2 (m, 6H, C-Har); 3.8 (m, 4H, CH₂); 2.9 (m, 4H, CH₂) ppm; IR (cm⁻¹): 1649 (C=N, Imine), 1586, 1491 (C=C, Ar); Elemental analysis: Calcd for C₁₈H₂₁N₃: C, 77.38; H, 7.58; N, 15.04. Found: C, 77.16; H, 8.03; N, 15.34. Compound L₃: *N₁*,*N¹*’-(Ethane-1,2-diyl)bis(*N₂*-benzylideneethane-1,2-diamine); Yield: 132 mg (89%); ESI-MS: *m/z* (rel. int%): 323.22 (100) ([M+H]+); ¹H-NMR (CDCl₃): δ = 8.1 (s, 2H, N=C–H); 7.7–7.5 (m, 4H, C-Har); 7.4–7.1 (m, 6H, C-Har); 3.7–3.4 (m, 2H, CH₂); 2.9–2.1 (m, 8H, CH₂) ppm; IR (cm⁻¹): 1656 (C=N, Imine), 1576, 1499 (C=C, Ar); Elemental analysis: Calcd for C₂₀H₂₆N₄: C, 74.50; H, 8.13; N, 17.38. Found: C, 74.78; H, 8.16; N, 17.49.

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).