2-[(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-yl)methylene]indane-1,3-dione

Abdullah M. Asiri 1,2,* and Salman A. Khan 1

1 Chemistry Department, Faculty of Science, King Abdul Aziz University, P.O. Box 80203, Jeddah, Saudi Arabia
2 The Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah, P.O. Box 80203, Saudi Arabia

* Author to whom correspondence should be addressed; E-Mail: aasiri2@kau.edu.sa; Fax: +966 2 6952292.

Received: 19 January 2011 / Accepted: 23 February 2011 / Published: 28 February 2011

Abstract: The title compound 2-[(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)methylene]-indane-1,3-dione (3) was synthesized in high yield by reaction of 3,5-dimethyl-1-phenyl-pyrazole-4-carbaldehyde and indane-1,3-dione in ethanol in the presence of pyridine. The structure of this new compound was confirmed by elemental analysis, IR, 1H NMR, 13C NMR and GC-MS spectral analysis.

Keywords: Knoevenagel condensation; indane-1,3-dione; pyridine

Naturally occurring as well as synthetic pyrazole-containing heterocyclic compounds have great importance for their biological activities such as anti-bacterial [1], anti-inflammatory [2], anti-hypertensive [3], anti-cancer [4], and anti-amoeboic activity [5]. Pyrazole-containing donor-acceptor chromophores are also applicable in materials fields for their properties such as non-linear optical (NLO), optical limiting [6], electrochemical sensing [7] and langmuir film [8]. Due to the wide application of pyrazoles we decided to synthesize a new pyrazole-containing donor-acceptor chromophore by Knoevenagel condensation in analogy to a previously published procedure [9].
Scheme 1. Synthesis of compound 3.

Experimental

Materials

3,5-Dimethyl-1-phenylpyrazole-4-carbaldehyde and indane-1,3-dione were purchased from Aldrich Chemicals. Melting points of the synthesized compounds were determined in open-glass capillaries on a Stuart-SMP10 melting point apparatus and are uncorrected. IR absorption spectra were recorded in the 4,000–400 cm⁻¹ range on a Shimadzu FTIR-8400s using KBr pellets, ¹H NMR and ¹³C NMR spectra were recorded on a Bruker-AVANCE-III 600 spectrometer at 600 MHz and 150 MHz, respectively, chemical shifts are reported as parts per million (ppm) downfield from TMS (Me₄Si) used as an internal standard.

A mixture of 3,5-dimethyl-1-phenylpyrazole-4-carbaldehyde (1) (1.0 g, 0.005 mol), indane-1,3-dione (2) (0.73 g, 0.005 mol) and a few drops of pyridine in ethanol (15 mL) was heated for 3 h. The progress of the reaction was monitored by TLC. The solid that separated from the cooled mixture was collected and recrystallized from a methanol-chloroform mixture to give the title compound (3) as a yellow solid.

Yield: 85%; m.p. 196–197 °C

GC-MS m/z (rel. int. %): 330 (72) [M+1]⁺

IR (KBr) νmax cm⁻¹: 3035 (Ar-H), 2859 (C-H), 1663 (C=O), 1578 (C=C)

¹H NMR (DMSO-d₆) (δ/ppm): 8.02 (d, J = 2.8 Hz), 7.97 (d, J = 2.8 Hz), 7.93 (s, C=CH), 7.82 (dd, J = 2.8, 2.8 Hz), 7.54 (m, 5H, Ar-H), 7.46 (dd, J = 6.6 Hz) 2.44 (s, CH₃), 2.36 (s, CH₃)

¹³C NMR (CDCl₃) δ: 190.33, 188.65, 152.11, 144.83, 142.56, 140.10, 138.84, 136.16, 135.02, 134.76, 129.26, 128.11, 126.71, 125.07, 123.11, 122.86, 123.11, 122.86, 116.14, 14.14, 13.04.

Anal. calc. for C₂₁H₁₆N₂O₂: C, 76.81, H, 4.91, N, 8.53. Found: C, 76.79, H, 4.88, N, 8.84.
Acknowledgements

The authors would like to thank the Chemistry Department, King Abdul Aziz University, Jeddah, Saudi Arabia for providing the research facilities.

References


© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).