Short Note

8-[2-(1H-indol-3-yl)vinyl]-10,10-dimethyl-10H-pyrido[1,2-a]indolium Perchlorate

Peng Cao 1, Lin Jiang 1,*, Xue-Bin Zhang 1 and Shang-Zheng Ge 2

1 College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, 271018, China
2 Department of Chemistry and Chemical Engineering, Heze University, Heze, 274015, China

* Author to whom correspondence should be addressed; E-Mail: jiangl@sdau.edu.cn.

Received: 10 August 2010 / Accepted: 13 October 2010 / Published: 14 October 2010

Abstract: A novel compound, 8-[2-(1H-indol-3-yl)vinyl]-10,10-dimethyl-10H-pyrido[1,2-a]indolium perchlorate, was synthesized by the condensation of 8,10,10-trimethyl-10H-pyrido[1,2-a]indolium perchlorate and indole-3-carbaldehyde in the presence of piperidine. The structure of the target compound was characterized by IR, 1H NMR and elemental analysis, and its UV-visible absorption and emission spectra were also determined.

Keywords: 10H-pyrido[1,2-a]indolium perchlorate; indole-3-carbaldehyde; condensation

The substituted 10H-pyrido[1,2-a]indolium perchlorates can be used as photosensitive dyes, fluorescent whiteners and organic light-guide sensitizers [1,2]. Many of this kind of compounds have been synthesized, such as methyl, phenyl, styryl or furyl-substituted 10H-pyrido[1,2-a]indolium perchlorates [3-6]. In order to study the relationship between the structure and absorption maximum (λ_max), the crystal structures of some compounds in this series were determined [7,8], and found that the introduction of a conjugation group in the 8-position significantly increases the λ_max. To obtain a compound with a larger λ_max, herein, we introduced 2-(1H-indol-3-yl)vinyl (a group making up a conjugated system with the 10H-pyrido[1,2-a]indole moiety) onto 8-position and synthesized the target compound.
Experimental

A mixture of 8,10,10-trimethyl-10H-pyrido[1,2-α]indolium perchlorate (0.62 g, 0.002 mol), indole-3-carbaldehyde (0.29 g, 0.002 mol) and piperidine (6 drops) in ethanol (15 mL) was refluxed for 3 h with stirring to give a brown precipitate. The solid was filtered off and recrystallized from methanol/acetonitrile to yield the target compound as orange crystals.

Yield: 70%; Melting point: 271–273 °C.

IR (KBr) ν cm⁻¹: 3310 (N-H), 1600 (C=N+), 1365 {C(CH₃)₂}, (1090, 623 (ClO₄⁻), 965 {Η-C=Η (E)}).

UV-Vis (EtOH): λ_{max} = 480.5 nm; ε = 4.68 × 10⁴ cm⁻²•mol⁻¹.

¹H NMR (400 MHz, DMSO-d₆) δ ppm: 11.99 (s, 1H, N-H), 9.52 (d, 1H, J = 6.8 Hz, 6-H), 8.59 (s, 1H, 9-H), 8.39 (d, 1H, J = 16.1 Hz, 12-H), 8.29 (d, 1H, J = 7.4 Hz, 7-H), 8.00 (s, 1H, pyrrole-C-H), 7.42 (d, 1H, J = 16.1 Hz, 11-H), 7.27-8.22 (m, 8H, Ph-H), 1.72 (s, 6H, 2×CH₃).

Elemental analysis: Calcd for C₂₄H₂₁ClN₂O₄ C, 65.98%, H, 4.84%, N, 6.41%. Found: C, 65.75%, H, 4.93%, N, 6.75%.

Figure 1. UV-Visible absorption (left) and emission spectrum (right) of the target compound.

References and Notes


© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).