
Molbank 2010, M689; doi:10.3390/M689 

 

molbank 
ISSN 1422-8599 

www.mdpi.com/journal/molbank 

Short Note 

N-Cyclohexyl-11-(octylthio)undecanamide  

Eva-Maria Schön 
1
 and David D. Díaz 

1,2,
* 

 

1
 Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, 

Germany 
2
 ICMA, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain 

* Author to whom correspondence should be addressed;  

E-Mail: David.Diaz@chemie.uni-regensburg.de. 

Received: 1 July 2010 / Accepted: 27 July 2010 / Published: 28 July 2010 

 

Abstract: A practical synthesis of N-cyclohexyl-11-(octylthio)undecanamide by thiol-ene 

click coupling reaction under UV light irradiation is reported. The title compound was 

characterized by elemental analysis, FT-IR, 
1
H NMR, 

13
C NMR and MS spectroscopic 

methods. This molecule was found to be an efficient gelator for fluid oils, and the main 

physical parameters of the formed gels were also examined. 
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In 2001, Sharpless and co-workers introduced the invasive concept of “click” chemistry to describe 

a modular approach towards a synthesis that uses only the most practical chemical transformations to 

make molecular connections with excellent fidelity [1]. Among others, the century-old addition of 

thiols to alkenes [2] (thiol-ene coupling, TEC) is emerging as an attractive click process mainly due to 

its highly efficient and orthogonal nature to a wide range of functional groups, robustness of the 

formed anti-Markovnikov-type thioether linkage, and the compatibility of the ligation process with 

water and oxygen [3]. As has occurred with other click-type reactions [4], the above-mentioned free-

radical photochemically/thermally-induced version of TEC has also found great applicability in the 

synthesis of functional soft materials such as organo- and hydrogels [56]. 

Herein, we report the practical preparation of the low-molecular-weight gelator N-cyclohexyl-11-

(octylthio)undecanamide (4) by thiol-ene click coupling reaction under UV light irradiation (Figure 1 

left). Alkene precursor 1 was easily prepared by DCC-coupling between cylohexylamine and the 

corresponding acid derivative in CH2Cl2. The title compound 4 was characterized by elemental 
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analysis, FT-IR, 
1
H NMR, 

13
C NMR and MS spectroscopic methods (see Experimental Section). 

Interestingly, 4 was found to act as an efficient gelator for fluid oils (Figure 1 right, vials AC) 

through molecular self-assembly driven by non-covalent interactions. The minimum gelation 

concentrations (MGC) were found to be lower than 1 wt.%, and the gel-to-sol transition temperatures 

(Tgel) in the range of 2739 ºC. As expected, Tgel values were found to increase with the concentration 

of the gelator probably due to the formation of more closely packed 3D-networks [7]. All gels were 

stable for several weeks below their Tgel, and showed a thermoreversible response that was 

reproducible over several heating/cooling cycles. A novel ionogel made of 4 in ionic liquid C10MIMCl 

was also successfully prepared (Figure 1 right, vial D). 

Figure 1. Synthesis of gelator N-cyclohexyl-11-(octylthio)undecanamide (4) and gels 

made in silicone oil (vial A, MGC = 0.5 wt.%, Tgel = 39 ± 3 °C), olive oil (vial B,  

MGC = 0.8 wt.%, Tgel = 27 ± 3 °C) [8], rapeseed oil (vial C, MGC = 0.8 wt.%,  

Tgel = 27 ± 3 °C) and ionic liquid C10MIMCl (vial D, MGC = 0.7 wt.%, Tgel = 44 ± 3 °C).  
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Table 1 outlines the outcome of the TEC reaction between 1 and 2 under different experimental 

conditions chosen for comparative studies. The use of a UV-lamp ( = 365 nm) as irradiation source, 

THF as solvent, and catalytic amounts of DMPA (3) as radical initiator, provided the best results  

(entry 6). In general, the use of an irradiation source of higher wavelength (i.e., near-UV LEDs,  

 = 400 nm) also afforded the desired product 4 albeit in lower yield (ca. 4765%). 
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Table 1. Thiol-ene coupling reaction between 1 and 2 under different conditions. 

Entry Solvent Initiator
a
 Time (min) T (ºC)

b 
Yield (%) 

1 THF  60 76 
c
 

2 Toluene  60 130
 


d
 

3 Toluene AIBN 5 130 
e 

4 Toluene AIBN 40 25 70
f 

5
 

Toluene DMPA 10 25 
f 

6 THF DMPA 10 25 96
f 

7 THF  10 25 
f,g 

8 CH2Cl2 DMPA 10 25 95
f 

9 DMSO DMPA 10 25 68
f 

10 Acetone DMPA 10 25 78
f 

11 MeOH DMPA 10 25 83
f 

a Abbreviations: DMPA = 2,2-dimethoxy-2-phenyl acetophenone, AIBN = 2,2'-azobisisobutyronitrile. 

The reactions were carried out using an optimized molar ratio 2:1 = 3:1. For comparison, the use of 

a ratio 2:1 = 1.2:1 provided ca. 15% lower yields; b Reaction temperature. For entries 12, the value 

corresponds to the temperature of the oil bath used. For entry 3, the value corresponds to the 

temperature caused by microwave irradiation; c Refluxing the mixture 1 + 2 gave no conversion; d 

Refluxing of the mixture 1 + 2 gave low conversion with a number of by-products that were not 

identified; e Formation of product 4 under microwave irradiation was only detected by comparative 

TLC analysis with the real compound. However, in spite of the quantitative conversion of the 

starting material, a number of by-products were also detected along with 4, making its isolation by 

column chromatography difficult; f Reaction procedure and purification for entries 411 as 

described below; g No conversion was observed. 

Experimental 

General 

1
H and 

13
C NMR spectra were recorded at 25 °C on a Bruker Avance 300 spectrometer in CDCl3 as 

solvent, and chemical shifts are reported relative to Me4Si ( = 0). Low-resolution mass spectra were 

obtained by using a Varian MAT 311A spectrometer. Elemental analyses were performed on a 

Heraeus Mikro-Rapid analyzer. Infrared spectra were recorded on a Bio-Rad Excalibur FTS 3000 MX 

spectrophotometer. Melting points (mp) were measured in an Opti Melt MPA 100 and are uncorrected. 

Thin-layer chromatography was carried out on Merck Aluminium sheets coated with silica gel 60 F254; 

visualization by use of phosphomolybdic acid in ethanol with heating. Chromatographic purifications 

were conducted by column chromatography using silica gel (0.0630.200 mm) obtained from Merck 

Compounds. A UV-Hand lamp (Spectroline ENB-280C, 8 W, 365/312 nm) was used for the 

experiments. All solvents were purified by standard techniques [8]. Rheological properties were 

determined by using a Bohlin CVO Rheometer. Microwave irradiation was performed in a single mode 

focused CEM Explorer Hybrid 12 reactor. Alkene precursor 1 is commercially available in milligram 

quantities from Aurora Fine Chemicals LLC and Princeton BioMolecular Research, Inc. The complete 

analytics for this compound can be found in the Supporting Files. 
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Synthesis of N-cyclohexyl-11-(octylthio)undecanamide (4): To a solution of N-cyclohexyl-10-

undecenamide (1) (50 mg, 0.188 mmol) in THF (2 mL), octane-1-thiol (2) (0.098 mL, 0.564 mmol) and 

DMPA (3) (2.5 mg, 0.01 mmol) were added. The reaction mixture was stirred under 365 nm-UV 

irradiation for 10 min. At that time, TLC analysis showed full conversion of the starting material. The 

solvent was evaporated and the crude product was purified by column chromatography (n-hexane/ethyl 

acetate = 80/20) affording 4 (74.4 mg, 96% yield) as a white solid. From a practical stand point it is 

worth to mention that product 4 was found to precipitate in the reaction mixture when acetone, MeOH or 

DMSO were used as solvents. Characterization data for 4: TLC Rf (n-hexane/ethyl acetate = 70/30) = 0.4; 

mp = 83 ± 1 °C; 
1
H NMR (300 MHz, CDCl3) /ppm = 0.88 (t, J = 6.8 Hz, 3H), 1.08–1.14 (m, 2H), 

1.26–1.40 (m, 24H), 1.52–1.62 (m, 8H), 1.69 (dt, J = 2.7 Hz, J = 3.0 Hz, 2H), 1.91 (dd,  

J = 3.6 Hz, J = 12.4 Hz, 2H), 2.12 (t, J = 6.0 Hz, 2H), 2.49 (t, J = 5.5 Hz, 4H), 3.77 (tdt, J = 3.9 Hz,  

J = 7.9 Hz, J = 11.9 Hz, 1H), 5.23 (brd, J = 8.3 Hz, 1H); 
13

C NMR (75 MHz, CDCl3) /ppm = 14.1, 

22.7, 24.9, 25.6, 25.9, 29.0, 29.2, 29.3, 29.4, 29.5, 29.7, 31.8, 32.2, 33.3, 37.1, 48.0, 172.1; FT-IR max 

(cm
-1

) 3296 (NH stretching), 1636 (C=O stretching, amide I band), 1546 (NH bending, amide II 

band), 1465, 1231, 623 (CSC stretching); MS (ESI) m/z 412 [MH
+
]. Elemental analysis calculated 

for C25H49NOS: C, 72.93; H, 12.00; N, 3.40; S. 7.79; found: C, 72.69; H, 12.02; N, 3.06; S. 7.51.  

Gelation experiments and gel characterization 

In a typical gelation experiment, a weighted amount of 4 and the appropriate oil (1 g) were placed 

in a screw-capped glass vial (4.5 cm length and 1.5 cm diameter) and heated with a heat gun until the 

solid was dissolved. The resulting isotropic solution was cooled down to room temperature affording 

gels within 15 minutes in silicone oil and ionic liquid (the other reported gels were formed by cooling 

down the solutions at 3 °C in the refrigerator). The soft materials were classified as gels if no 

gravitational flow was observed. Unless otherwise indicated, Tgel values were determined by the 

“dropping ball method” [9] (temperature rate = 1 ºC min
−1

; steel ball: weight = 110 mg, Ø = 2 mm) 

and reported as the average of three random measurements. Tgel was defined herein as the temperature 

at which the ball reached the bottom of the glass vial. For the gel made of 4 in olive oil, Tgel was 

estimated as the temperature at which the gel moved on tilting of the vial when it was immersed in a 

heating silicone oil bath. Standard oscillatory rheology experiments further confirmed the gel nature of 

the samples (storage modulus (G') > loss modulus (G'')) [7].  
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