Short Note ## 2-(4-Pyridyl)-1,3-di(4-picolyl)imidazolidine Beyhan Yiğit ¹, Murat Yiğit ^{1,*}, İsmail Özdemir ², Bekir Çetinkaya ³ and Engin Çetinkaya ³ - Department of Chemistry, Faculty of Science and Art, Adıyaman University, 02040 Adıyaman, Turkey - Department of Chemistry, Faculty of Science and Art, In ön ü University, 44260 Malatya, Turkey - Department of Chemistry, Faculty of Science, Ege University, 35100 Bornova-İzmir, Turkey - * Author to whom correspondence should be addressed; E-Mail: myigit@adiyaman.edu.tr. Received: 5 January 2010 / Accepted: 13 January 2010 / Published: 22 January 2010 **Abstract:** The title compound was prepared by treatment of N,N'-di(4-picolylamino)ethane with N,N-dimethylformamide dimethylacetal in toluene and it was characterized by elemental analysis, 1 H NMR and 13 C NMR. Keywords: electron-rich olefins; tetraaminoalkene; carbene ## Introduction Olefins with four electron-donating substituents react as nucleophiles and are referred to as electron-rich olefins [1,2]. These compounds have been used as strong reducing agents, precursors to carbene complexes, effective formylating agents for proton-active compounds, catalysts for benzoin-type C-C coupling reactions and chemoluminescent materials [3–7]. Carbene complexes, formed by treatment of an electron-rich olefin with metal, are air-stable and have been used for several catalytic applications including olefin metathesis, hydrogenation and hydrosilylation reactions [8–10]. Symmetric electron-rich olefins are generally prepared from an *N*,*N*'-disubstituted 1,2-diaminoethane with *N*,*N*-dimethylformamide dimethylacetal in an inert atmosphere [11]. Unsymmetric and bridged electron-rich olefins are prepared by a convenient salt elimination procedure [12]. The compound 1 was not obtained using the acetal procedure, and if formed, it would spontaneously rearrange to the compound 2. This thermal amino-Claisen rearrangement was believed to be [3,3]-sigmatropic [13,14]. We report here on the synthesis and characterization of 2-(4-pyridyl)-1,3-di(4-picolyl)imidazolidine. Molbank **2010** M649 (Page 2) **Scheme 1**. Synthesis of 2-(4-pyridyl)-1,3-di(4-picolyl)imidazolidine. Reagents and conditions: Toluene, 4 h, 90 ℃. ## **Experimental** Reaction for the preparation of 2-(4-pyridyl)-1,3-di(4-picolyl)imidazolidine was carried out under argon using standard Schlenk-type flasks. Solvents were dried using standard procedures and were distilled prior to use. 1 H and 13 C NMR spectra were recorded in DMSO- d_6 using a Bruker AC300P FT spectrometer operating at 300.13 MHz (1 H) and 75.47 MHz (13 C). Chemical shifts (δ) are given in ppm relative to TMS and coupling constants (J) in Hertz. The melting point was measured in open capillary tubes with an Electrothermal-9200 melting point apparatus and it is uncorrected. Elemental analyses was performed at TUBITAK Microlab (Ankara, Turkey). Synthesis of 2-(4-pyridyl)-1, 3-di(4-picolyl) imidazolidine (2) A solution of N,N'-di(4-picolylamino)ethane (1.87 g; 8.5 mmol) and N,N-dimethylformamide dimethyl acetal (1.10 g; 9.27 mmol) in toluene (15 mL) was heated under reflux for 4 h at 90 °C. The reaction mixture was then heated at 110 °C under distillation conditions, allowing the produced dimethylamine and methanol to escape. Hexane (10 mL) was added and a white solid precipitaded. The crude product was filtered off and washed with hexane (2 × 10 mL). The precipitate was then crystallized from toluene/hexane (10:10 mL). Yield: 0.93 g, 73%, m.p.: 125 °C. ¹H NMR (CDCl₃) δ : 3.3 (s, 1H, 2-C*H*), 1.71 and 2.52 (m, 4H, NC*H*₂C*H*₂N), 2.53 and 3.03 (m, 4H, C*H*₂C₅H₄N), 6.55 and 8.26 (d, 4H, J = 5.6 Hz, CH₂C₅H₄N and m, 4H, CH₂C₅H₄N), 6.88 and 8.25 (m, 4H, C₅H₄N). ¹³C NMR(CDCI₃) δ : 87.3 (2-*C*H), 50.8 (N*C*H₂*C*H₂N), 55.7 (*C*H₂C₅H₄N), 123.2, 147.2 and 150.2 (CH₂C₅H₄N), 124.1, 148.9 and 150.5 (*C*₅H₄N). Anal. Calcd. for C₂₀H₂₁N₅: C, 72.50; H, 6.34; N, 21.14. Found C, 72.87; H, 6.12; N, 21.38. Molbank **2010** M649 (Page 3) ## References - 1. Hoffman, R.W. Reactions of electron-rich olefins. *Angew. Chem. Int. Ed.* **1968**, 7, 754–765. - 2. Wiberg, N. Tetraaminoethylenes as strong electron donors. *Angew. Chem. Int. Ed.* **1968**, 7, 766–779. - 3. Bock, H.; Borrmann, H.; Havlas, Z.; Oberhammer, H.; Ruppert, K.; Simon, A. Structures of sterically overcrowded and chargeperturbed molecules. 12. tetrakis(dimethylamino) ethene an extremely electron-rich molecule with unusual structure both in the crystal and in the gas-phase. *Angew. Chem. Int. Ed. Engl.* **1991**, *30*, 1678–1681. - 4. Cardin, D.J.; Çetinkaya, B.; Lappert, M.F.; Muir, L.J.M.; Muir, K.W. An electron-rich olefin as a source of co-ordinated carbene; Synthesis of trans-PtCl₂[C(NPhCH₂)₂]PEt₃. *Chem. Commun.* **1971**, 400–401. - 5. Cardin, D.J.; Çetinkaya, B.; Çetinkaya, E.; Lappert, M.F.; Muir, L.J.M.; Muir, K.W. *Trans-/cis*-Isomerism and isomerisation of Pd(II) and Pt(II) carben complexes. *J. Organomet. Chem.* **1972**, 44, C59–62. - 6. Wanzlick, H.; Schikora, E. Ein nucleophiles Carben. Chem. Ber. 1961, 94, 2389–2393. - 7. Lappert, M.F.; Maskell, R.K. A new class of benzoin condensation catalyst, the bis-(1,3-dialkylimidazolidin-2-ylidenes). *J. Chem. Soc.*, *Chem. Commun.* **1982**, 580–581. - 8. Çetinkaya, B.; Demir, S; Özdemir, İ.; Toupet, L.; Semeril, D.; Bruneau, C.; Dixneuf, P.H. First rutnenium complexes with a chelating arene carbene ligand as catalytic precursors for alkene metathesis and cycloisomerisation. *New J. Chem.* **2001**, *25*, 519–521. - 9. Yiğit, M.; Yiğit, B.; Özdemir, İ.; Çetinkaya, E.; Çetinkaya, B. Active ruthenium-(N-Heterocyclic Carbene) complexes for hydrogenation of ketones. *Appl. Organometal. Chem.* **2006**, *20*, 322–327. - 10. Lappert, M.F.; Maskell, R.K. Carbene-transition-metal complexes as hydrosilylation catalysts. *J. Organomet. Chem.* **1984**, *264*, 217–228. - 11. Winberg, H.E.; Carnahan, J.E.; Coffman, D.D.; Brown, M. Tetraaminoethylenes. *J. Am. Chem. Soc.* **1965**, 87, 2055–2056. - 12. Çetinkaya, E.; Hitchcock, P.B.; Jasim, H.A.; Lappert, M.F.; Sypropoulos, K. Synthesis and characterisation of unusual tetraaminoalkenes (Enetetramines). *J. Chem. Soc., Perkin Trans. 1* **1992**, 561. - 13. Boldwin, J.E.; Walker, J.A. Competing [1,3]- and [3,3]-sigmatropic rearrangements of electron-rich olefins. *J. Am. Chem. Soc.* **1974**, *96*, 596–597. - 14. Chamizo, J.A.; Lappert, M.F. [3,3]- and [1,3]-Sigmatropic amino-Claisen rearrangements of electron-rich alkenes. *J. Org. Chem.* **1989**, *54*, 4684–4686. - © 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).