Short Note

Synthesis and Characterization of N,N’-(propane-1,2 diydicarbamothioyl)dibenzamide

Gülşah Kurt * and Bedrettin Mercimek

Department of Chemistry, Faculty of Education, Selçuk University, Meram 42099 Konya, Turkey

* Author to whom correspondence should be addressed; E-Mail: g_kurt_81@hotmail.com

Tel. +90 332 8220; Fax: +90 332 323 82 25

Received: 9 September 2008 / Accepted: 3 November 2008 / Published: 7 November 2008

Keywords: Benzoylthiourea, benzoyl isothiocyanate, amine.

Benzoylthioureas have found some interest due to their biological activity [1], spectroscopic and structural properties [2,3], or as synthetic building blocks [4]. Here, we report the convenient
preparation of a new representative of this type of compounds. Benzoyl isothiocyanate (1) was prepared by known methods reported in the literature [5]. Benzoyl isothiocyanate (21 ml) was added to a solution of 1,2-diaminopropane (17 ml) in anhydrous acetone. The resulting mixture was refluxed for 6 h. Finally, the mixture was cooled in an ice bath and 1M HCl (250 ml) was added. The yellow precipitate was collected by filtration and it was washed with diethyl ether. The title compound 2 thus obtained was recrystallized from EtOH/\(\text{CH}_2\text{Cl}_2\).

Scheme 1. \(^1\text{H}\) NMR spectrum of 2.

Color: yellow.

\(\text{Mp} \ 162-163^\circ\text{C}.

Elemental analysis: Found: C, 57.5; H, 5.1; N, 13.9; S, 16.0. Calc. for C\(_{19}\)H\(_{20}\)N\(_4\)S\(_2\)O\(_2\): C, 57.0; H, 5.0; N, 14.0; S, 16.0.

\(^1\text{H}\) NMR: \(\delta\) (CDCl\(_3\), 400.1 MHz): 11.00 (s, 1H, NH-CO); 10.96 (d, 1H, NH-CO); 9.04 (s, 1H, NH); 8.99 (s, 1H, NH); 7.84–7.52 (m, 10H, PhH); 5.03–4.98 (m, 1H, CH); 4.19–3.99 (m, 2H, CH\(_2\)); 1.46–1.44 (d, 3H, CH\(_3\)).

\(^{13}\text{C}\) NMR: \(\delta\) (CDCl\(_3\), 100.0 MHz): 185.2 (C=S); 164.0 (C=O); 135.6–127.2 (C=C\(_{\text{arom}}\)); 47.5 (CH); 46.9 (CH\(_2\)); 18.7 (CH\(_3\)).

IR (KBr) \(\nu_{\text{max}}/\text{cm}^{-1}\): 3350–3300 (N-H), 3161 (C-H\(_{\text{aromatic}}\)), 3038 (CH\(_3\)), 2935–2859 (C-H\(_{\text{aliphatic}}\)), 1980–1835 (C=C), 1677 (C=O), 1540–1258 (C-N), 1189, 1162 (C=S).
UV-vis (CH$_2$Cl$_2$, abs): 240; 400.

Table 1. Thermal analysis of 2.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Stage</th>
<th>TG results temperature range (°C)</th>
<th>DTA results temperature peak (°C)</th>
<th>Weight loss (%) Found/Calculated</th>
<th>Evolved moiety</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>I</td>
<td>180–240</td>
<td>226.71</td>
<td>43.684/44.75</td>
<td>C$_6$H$_5$CONHCSNH</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>240–340</td>
<td>282.56</td>
<td>44.884/44.75</td>
<td>C$_6$H$_5$CONHCSNH</td>
</tr>
</tbody>
</table>

References

© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).