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Abstract: Inspired by the concept of ionic liquids (ILs), this study modified the original 
Mukaiyama’s reagent, 2-chloro-1-methylpyridinium iodide (m.p. 200-dec), from ionic solid 
into liquids by changing its anion. The esterification of N-acetyl-L-phenylalanine was 
investigated as a model reaction. The microwave irradiation was more effective in 
esterifying N-acetyl-L-phenylalanine than the conventional reflux method. The original 
Mukaiyama’s reagent was modified into ILs through manipulating its anion. However, only 
non-nucleophilic anions (such as EtSO4

- and Tf2N-) were favorable since nucleophilic ones 
(such as CF3COO- and CH3COO-) could exchange with chlorine resulting in non-reactive 
coupling reagents. Two modified Mukaiyama’s compounds (i.e. hydrophilic [2-
ClMePy][EtSO4] and hydrophobic [2-ClMePy][Tf2N]) have been identified as the best IL-
type coupling reagents. The esterification reaction was greatly enhanced by using 1-
methylimidazole as the base instead of conventional toxic tertiary amines, and by using 
excess amount of alcohols as solvents instead of dichloromethane. Overall, the method 
reported is effective and ‘greener’. 

Keywords: amino acid, ionic liquid, Mukaiyama’s reagent, microwave, esterification. 
 

1. Introduction 

Amino acid esters are versatile intermediates for many synthetic reactions including peptide 
synthesis [1-2]. Thus, they are of particular interests to chemical and pharmaceutical industry [3]. 
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However, the esterification of amino acids is much more difficult than ordinary carboxylic acids 
mainly because of the zwitterionic structures. Conventional methods of esterifying amino acids 
include: (1) Acid-catalyzed reactions using concentrated acids (such as HCl or H2SO4) or solid acids 
(such as p-toulenesulfonic acid [4-5] or benzenesulfonic acid [6]). These reactions are equilibrium-
driven and generate huge amounts of salts such as NaCl or Na2SO4 during large-scale productions [7]. 
An improvement made by Wegman et al. [7] was the utilization of acid form of ultrastable zeolite Y 
(H-USY) as a solid catalyst at 100-130 °C (15-20 bar). This process does not require the N-protection 
of amino acids. (2) Formation of acyl halides by reacting amino acids with thionyl chloride first [8-9], 
followed by the addition of  alcohols. However, thionyl chloride is not environmentally friendly and is 
difficult to handle. (3) Esterification using cesium salts (Cs2CO3 or CsHCO3) [10], cesium fluoride 
(CsF) or potassium fluoride (KF) [11-13]. 

Another effective esterification method is the use of coupling reagents, many of which have been 
summarized by Mukaiyama et al [14]. In particular, onium salts (such as 2-halogenated pyridinium, 
benzoxazolium, benzothiazolium and pyridinium salts), have been extensively studied as activating 
agents for carboxylic acids and alcohols, enabling a whole regime of synthetic reactions [15]. A simple 
onium salt, 2-chloro-1-methylpyridinium iodide ([2-ClMePy]I) 1a (Scheme 1), and its derivatives 
(often referred as Mukaiyama’s reagents) are effective coupling reagents in the synthesis of carboxylic 
esters [16-17]. In order to simplify the product purification, a recent trend in enhancing Mukaiyama’s 
reagents is to immobilize them on the polymer support (such as Wang resin), and to conduct the 
heterogeneous reactions [18-21]. 

N Cl
CH3

X+

 

1a X = I,  
1b X = CH3COO,  
1c X = CF3COO,  
1d X = BF4,  
1e X = EtSO4,  
1f X = Tf2N [i.e. (CF3SO2)2N] 

 
Scheme 1. Structures of original Mukaiyama’s reagent (1a) and its derivatives (1b-1f). 

 
This paper was inspired by the resemblance of the original Mukaiyama’s reagent 1a with ionic 

liquids (ILs). As a brief background, ILs are ionic salts that are liquids at low temperatures  
(< 100 °C), many of which are room-temperature ionic liquids (RTILs). Typical ILs produce little 
vapor pressure; by this means, they are ‘greener’ solvents in contrast to traditional volatile organic 
compounds (VOCs). During the past ten years, ILs have attracted tremendous attention as solvents or 
co-catalysts in a variety of synthetic reactions [22-28]. The salt 1a is not an IL because of its high 
melting point (200 °C-dec). However, if its anion (I-) can be substituted by other anions (such as 
anions in 1b-1f of Scheme 1, which appear in common RTILs), the melting point of this salt may be 
considerably lowered. Another advantage of such a modification is that the halogen exchange  
(Scheme 2) within the Mukaiyama’s reagent 1a results in a non-reactive form (N-methyl-2-
iodopyridinium chloride, 2); this non-reactive form is unable to activate the carboxylic acids [29]. 
Therefore, the use of non-nucleophilic anions may suppress such exchange [30]. 
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Another improvement to be made is the heating method. Conventional esterification is usually 
achieved through several hours of conductive heating (such as reflux using hot-plates or heating 
mantles). As an alternate energy source, microwave irradiation (0.3–300 GHz) has become a routine 
and efficient heating method for chemical reactions [31]. Microwaves can increase the reaction rates 
through the thermal effect. Although many studies have realized the non-thermal (or specific 
microwave) effect of microwaves [32], it is still controversial whether such non-thermal effect exists. 
It was reported that microwave irradiation can shorten the esterification reaction time, and increase the 
conversions [33-34]. 

 

N Cl
CH3

I
N I
CH3

Cl+ +

1a 2
 

Scheme 2. Inactivation of Mukaiyama’s reagent 1a. 

In this study, we carried out the esterification of N-acetyl-L-phenylalanine (L-3) as a model reaction 
in achieving the following objectives: (1) substituting conventional heating with microwave 
irradiation; (2) making the process ‘greener’ (such as using excess alcohol as solvent instead of 
dichloromethane, and using 1-methylimidazole as the base instead of toxic triethylamine or 
tributylamine); (3) modifying the original Mukaiyama’s reagent into ILs. 

2. Results and Discussion 

The esterification through Mukaiyama’s reagent usually begins with N-protection of amino acids. 
Amino acids without N-protection are not soluble in organic solvents and are difficult to be esterified. 
In addition, amides may be produced in the absence of N-protection [15]. Therefore, in this study, we 
used N-acetyl-L-phenylalanine (L-3) as a model compound. As illustrated in Scheme 3, the 
Mukaiyama’s reaction is generally considered as a two-step strategy [16-17]: (1) a nucleophilic 
aromatic substitution of halogen atom (Cl) in Mukaiyama’s reagent by the carboxylate in L-3 under a 
basic condition, resulting in pyridinium salt 4; this is a fast step due to a facial displacement. (2) 
nucleophilic attack of methanol to give the key intermediate 5, which is further converted into N-acetyl 
phenylalanine methyl ester (6) and N-methyl-2-pyridone (7). Since all reactant molecules are gathered 
in the vicinity of a central pyridinium salt, the condensation reaction is entropically driven [16]. 

2.1. Effect of solvents and bases 

The commonly used bases in Mukaiyama’s reaction are triethylamine (TEA) and tributylamine 
(TBA) [16-19], although other bases (such as 2,6-lutidine, α-picoline, pyridine and N,N-diethylaniline) 
have been considered (they usually produced lower yields than TEA or TBA) [17]. However, both 
TEA and TBA are quite toxic and corrosive; TEA is very flammable; and TBA is hydrophobic 
(difficult for work-up). On the other hand, 1-methylimidazole (MIM, 8, in Scheme 3), is less toxic than 
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TEA and TBA, less flammable than TEA, and soluble in water (easy for work-up). In fact, MIM (8) 
has been used in the commercial process to scavenge acid by BASF AG (Ludwigshafen, Germany) 
since 2003; and the end product is 1-methylimidazolium chloride, a nonflammable, nonvolatile and 
stable IL (m.p. 75 °C) [35-36]. Inspired by these facts, we compared the esterification reaction using 
these bases (Table 1), and concluded that in addition to the ‘green’ features, MIM (8) also produced 
the highest yield (77%, entry 3 in Table 1) when compared to TEA (32%, entry 2) and TBA (14%,  
entry 1).  
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Scheme 3. Esterification of N-acetyl phenylalanine using Mukaiyama’s reagents  
(where X- = I-, EtSO4

-, BF4
-, Tf2N-, CF3COO- or CH3COO-). 

 
To explain the base effect on the esterification, the basicity is an important factor to be considered. 

The bascities of these bases (pKa of their conjugate acids) are: TEA (10.71 in MeOH at 25 °C [37], 
and 10.75 in H2O at 25 °C [38]), TBA (9.12 in MeOH at 25 °C as determined by Atofina Chemicals, 
and 10.0 in H2O at 25 °C based on Advanced Chemistry Development [ACD/Labs] calculations [39]), 
and MIM (7.20 in H2O at 25 °C [40]). Therefore, the order of basicity (TEA > TBA > MIM) is not 
consistent with the order of corresponding ester yields (TBA < TEA < MIM). The strongest base TEA 
did not produce the highest yield. Two other factors are quite important in this case: (1) the 
accessibility of lone-pair electrons on the nitrogen atoms of bases by amino acid 3 (Scheme 3) is in a 
decreasing order of MIM > TEA > TBA due to the increasing bulkiness of groups associated with 
nitrogen atoms, especially in the case of three bulky butyl groups in TBA; (2) strong bases (such as 
TEA and TBA) act as nucleophiles [41] to perform aminolysis of ester, resulting in low ester yields. 
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Table 1. Esterification of N-acetyl-L-phenylalanine under various conditions1 

Entry Mukaiyama’s 
reagent (2.4 mmol) 

Solvent  
(5.0 mL) 

Alcohol 
(excess) 

Base  
(4.8 mmol) 

Yield 
(%) 3 

1 [2-ClMePy]I 2 MeOH MeOH TBA 4 14 
2 [2-ClMePy]I MeOH MeOH TEA 5 32 
3 [2-ClMePy]I MeOH MeOH MIM 6 77 
4 [2-ClMePy]I DCM 7 MeOH  

(4.0 mmol) 
MIM 12 

5 [2-ClMePy]I EtOH EtOH MIM 37 
6 [2-ClMePy]I  

(3.6 mmol) 
MeOH MeOH MIM 25 

Note: 1 all reactions were carried out with 2.0 mmol amino acid, under microwave for 15 
min at 80 °C; 2 [2-ClMePy]I = 2-chloro-1-methylpyridinium iodide; 3 yield was based on 
the isolated ester; 4 TBA = tributylamine; 5 TEA = triethylamine; 6 MIM = 1-
methylimidazole; 7 DCM = dichloromethane (extra care should be practiced when 
performing microwave experiments in DCM!). 

 
Many organic solvents have been investigated in the Mukaiyama’s esterification, which include 

dichloromethane (DCM), toluene, tetrahydrofuran (THF), ethyl ether, 1,2-dimethoxyethane, 
acetonitrile, and pyridine [16-19]. The obvious disadvantages of using these solvents are their 
volatility and toxicity. Because many amino acid esters are usually the methyl- or ethyl- esters, we 
added an excess amount of methanol or ethanol as both the solvent and reagent. The advantage of this 
approach is the elimination of another organic solvent, and to increase the reactant (alcohol) 
concentration. Comparing entry 3 and 4 in Table 1, the ester yield was considerably improved when 
replacing DCM (12% yield) by methanol (77%). However, the use of ethanol only gave 37% yield 
although it is still higher than that in DCM (12%). The higher yield in methanol than in ethanol is 
likely due to methanol (smaller size) being a better nucleophile than ethanol. 

In an attempt to further enhance the ester yield, we increased the amount of Mukaiyama’s reagent 
(2.4 mmol → 3.6 mmol for 2 mmol amino acid) (entries 3 and 6 in Table 1). However, we observed a 
decreasing yield (77% → 25%). The adverse effect of excess Mukaiyama’s reagent on the 
esterification could be caused by a pronounced halide exchange (Scheme 2) at a higher concentration. 

 
2.2 Comparison of microwave and conventional heating 

 
We conducted the esterification reactions under reflux or microwave heating at the same 

temperature (66 °C). As shown in Figure 1, when the reaction time was short (15 min), ester yields 
were comparable under both heating modes. There was no indication of non-thermal effect. However, 
with an extended reaction time (30 and 60 min), the difference between reflux and microwave heating 
became obvious. The microwave irradiation is more effective than the conventional heating. 

In addition, the reflux method has a limitation on the reaction temperature. It can not go beyond the 
boiling point of the reaction mixture, which is a main reason of low yields (< 40%) at 66 °C even 
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under microwave irradiation (Figure 1). However, when we conducted the reaction at 80 °C in the 
microwave oven at about 2 atms (Figure 2), the ester yield considerably increased in the case of [2-
ClMePy]I. The optimum reaction times for the two Mukaiyama’s reagents [2-ClMePy]I and [2-
ClMePy][EtSO4] were 15 min (77% yield) and 20 min (56%) respectively. 
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Figure 1. Comparison of reflux and microwave on the esterification of  
N-acetyl-L-phenylalanine (2.0 mmol amino acid, 5.0 mL methanol, 2.4 mmol [2-ClMePy]I,  

4.8 mmol 1-methylimidazole, and all reactions at 66 °C). 
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Figure 2. Effect of microwave irradiation time on the yield of N-acetyl-L-phenylalanine  
methyl ester (2.0 mmol amino acid, 5.0 mL methanol, 2.4 mmol [2-ClMePy]I,  

4.8 mmol 1-methylimidazole, and all reactions at 80 °C). 
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2.3 Modification of Mukaiyama’s reagent 

Another objective of this study is to make the Mukaiyama’s reagent [2-ClMePy]I (m.p. 200 °C -
decomposition) ILs. We exchanged the anion (I-) with five popular IL anions (Scheme 1). All modified 
Mukaiyama’s reagents have m.p. below 100 °C, and three of them are room-temperature ILs (see 
Experimental and Table 2). Among these new ionic reagents, [2-ClMePy][EtSO4] and [2-
ClMePy][Tf2N] gave the best yields (52% and 53%, respectively), while three others (based on BF4

-, 
CF3COO- and CH3COO-) are relatively poor coupling reagents. The 1H NMR data (see Experimental) 
suggested the exchange of chlorides with stronger nucleophiles CF3COO- and CH3COO- in [2-
ClMePy][CF3COO] and [2-ClMePy][CH3COO] respectively, resulting in non-reactive salts towards 
carboxylate activation. On the other hand, no such exchange was observed in [2-ClMePy][EtSO4], [2-
ClMePy][Tf2N] and [2-ClMePy][BF4] because their anions are non-nucleophilic. The lower yield in  
[2-ClMePy][BF4] might be related to the unstable and basic nature of BF4

-   anions. 
 

Table 2. Esterification of N-acetyl-L-phenylalanine through different Mukaiyama’s reagents 1 

Entry Mukaiyama’s reagent m.p. (°C) Yield (%)2 
3 [2-ClMePy]I 200 (dec.) 77 
7 [2-ClMePy][EtSO4] Liquid 52 
8 [2-ClMePy][BF4] 70-75 38 
9 [2-ClMePy][CF3COO] Liquid 37 
10 [2-ClMePy][CH3COO] Liquid 37 
11 [2-ClMePy][Tf2N] 74-76 53 
12 [2-BrEtPy][BF4] 102-104 60 
13 [2-FMePy][OTs] 130-134 30 

Note: 1 all reactions were carried out with 2.0 mmol amino acid, 2.4 mmol Mukaiyama’s 
reagent, 5.0 mL MeOH, 4.8 mmol 1-methylimidazole, under microwave for 15 min at  
80 °C;  2 yield was based on the isolated ester. 

 
We also examined two other commercially available Mukaiyama’s reagents ([2-BrEtPy][BF4] and 

[2-FMePy][OTs]). Both of them have m.p. above 100 °C, and are not considered as ILs. The former 
coupling reagent produced a yield of 60% (Table 2) because bromide is a better leaving group than 
chloride. However, the latter coupling reagent ([2-FMePy][OTs]) gave a rather poor yield of 30% 
because 2-fluoro-onium is too reactive and is known to react with the alcohol directly (since it is also 
in excess) [42-43]. 

The fact that [2-ClMePy]I produced a higher yield (entry 3 in Table 1) than other IL-type coupling 
reagents, is probably due to its smaller anion size (I-) than others (such as EtSO4

- and Tf2N-). Large 
anions may create a steric hindrance for substitutions on C-2 position of pyridinium in both steps of 
reactions (Scheme 3). However, in addition to having basic advantages of ILs, these modified reagents 
are more stable (non-nucleophilic anions) than [2-ClMePy]I (which is unstable in moisture), and can 
be designed as either hydrophilic or hydrophobic ones based on the needs of individual applications. 
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2.4 Racemization of amino acid ester 

We examined the optical rotation of the N-acetyl phenylalanine methyl ester (entry 8 in Table 2), 
and calculated the specific rotation as ][ 25α D = + 11° (c=2, MeOH). The literature values of specific 

rotation ][ 25α D of N-acetyl-L-phenylalanine methyl ester are varied: +19.5° (c = 2, MeOH) [44], 17.8 ± 

1.2° (c = 2, MeOH) [9], and 15.5° (c = 2.1, MeOH, at 24 °C) § [45]. Therefore, the enantiomeric excess 
of the product (eep) is in the range of 56-71% depending on the literature values used in the 
calculation. In either case, our measurement suggested a partial racemization of the amino acid ester. 
This is not surprising since amino acid esters can be racemized under heat [46]. 

3. Experimental Section 

3.1 Materials 
 

The following chemicals were purchased from Sigma-Aldrich (St Louis, MO, USA): 2-chloro-1-
methylpyridinium iodide ([2-ClMePy]I, m.p. 200 °C-dec.), 2-fluoro-1-methylpyridinium  
p-toluenesulfonate ([2-FMePy][OTs], m.p. 130-134 °C), 2-bromo-1-ethyl-pyridinium tetrafluoroborate 
([2-BrEtPy][BF4], m.p. 102-104 °C), silver acetate, silver trifluoroacetate, silver tetrafluoroborate, 
bis(trifluoromethane)sulfonimide lithium salt (Li[Tf2N]), anhydrous methanol, anhydrous ethanol,  
1-methylimidazole (MIM), triethylamine (TEA), tributylamine (TBA), and N-acetyl-L-phenylalanine. 
Ethylsulfuric acid sodium salt was purchased from TCI America (Portland, OR, USA). 

 
3.2 Synthesis of modified Mukaiyama’s reagents (2-Chloro-1-methylpyridinium acetate ([2-
ClMePy][CH3COO]), 2-Chloro-1-methylpyridinium trifluoroacetate ([2-ClMePy][CF3COO]), and 2-
Chloro-1-methylpyridinium tetrafluoroborate ([2-ClMePy][BF4])) 
 

A solution of 15.0 g [2-ClMPy]I in 80 mL H2O  was added drop-wise into an equal molar amount 
of silver acetate (or silver trifluoroacetate, or silver tetrafluoroborate) suspended in 100 mL distilled 
water. The reaction container was wrapped by the aluminum film to prevent the photo-degradation of 
silver salts. The reaction mixture was stirred at room-temperature for 2 hrs. A small sample of the 
reaction solution was examined by 0.1 N AgNO3 and 0.1 N HCl respectively to ensure the absence of 
I- and Ag+ ions. Once the reaction was completed, charcoal was added to the solution to remove color 
and other impurities. After filtering off the charcoal, water was removed from the solution by a rotary 
evaporator under vacuum at 60 °C. 

 
[2-ClMePy][CH3COO] weighs 5.40g, yield 49%, yellow liquid at room temperature, 1H NMR 

(CD3OD) δ: 2.05 (s, 3H, OAc-), 3.73 (s, 3H, OAc on the ring), 4.48 (s, 3H, -NCH3), 6.78 (d and t, 2H), 
7.81 (t, 1H, J = 7.3), 7.91 (d, 1H, J = 7.3), 8.08 (t, 1H, J = 7.3), 8.30 (d, 1H, J = 8.0 Hz), 8.62 (t, 1H, J 
= 8.0 Hz), and 9.09 (d, 1H, J= 6.0 Hz). 

 

                                                 
§ Calculated from the specific rotation of 15.4 with 99.1% ee at the same condition. 
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[2-ClMePy][CF3COO] weighs 8.69g, yield 62%, yellow liquid at room temperature, 1H NMR 
(CD3OD) δ: 2.81 (s, 3H), 6.64 (s, 3H), 7.46 (s, 3H), 9.69 (t, 1H), 10.06 (d, 1H), 10.73 (t, 1H), 10.98 (t, 
1H), 11.24 (d, 1H), 11.57 (t, 1H), 11.76 (d, 1H), and 12.29 (d, 1H). 

[2-ClMePy][BF4] weighs 7.24 g, yield 57%, white powder, m.p. 70-75 °C, and 1H NMR (D2O) δ: 
4.41 (s, 3H, -NCH3), 7.99 (t, 1H, J = 8.0 Hz), 8.21 (d, 1H, J = 8.0 Hz), 8.52 (t, 1H, 8.0 Hz), 8.90 (d, 
1H, J = 8.0 Hz). 

 
3.3 Synthesis of 2-Chloro-1-methylpyridinium ethyl sulfate ([2-ClMePy][EtSO4]) 

 
[2-ClMePy][EtSO4] was synthesized through an anion exchange method. About 100 mL of anion 

exchange resin (Amberlite® IRA-400 Cl) packed in a glass column was washed with methanol and 
distilled water thoroughly until no yellow color was observed in the eluting water, and no precipitate 
could be detected by 0.1 M AgNO3 solution. After washing the resin with distilled water, a solution of 
50 g sodium ethylsulfate (NaEtSO4) in 200 mL H2O was dripping through the column to replace Cl- 
ions with EtSO4

- anions. The eluting solution was monitored by 0.1 M AgNO3 solution until no white 
precipitate could be detected, which indicated the completeness of the anion exchange. A solution of 
15.0 g [2-ClMPy]I in 100 mL H2O was then dripping through the column. The eluting solution was 
collected and purified by charcoal. Water was further removed through a rotary evaporator under 
vacuum at 60 °C to give a slightly yellow liquid (12.07 g and yield 81%). 1H NMR (D2O) δ: 1.28 (t, 
3H, -CH3, J = 6.9 Hz), 4.07 (q, 2H, -CH2-, J = 6.9 Hz), 4.42 (s, 3H, -NCH3), 8.00 (t, 1H, Ar-H, J = 7.6 
Hz), 8.21 (d, 1H, Ar-H, J = 7.6 Hz), 8.53 (t, 1H, Ar-H, J = 7.6 Hz) and 8.91 (d, 1H, Ar-H, J = 6.0 Hz). 

 
3.4 Synthesis of 2-Chloro-1-methylpyridinium bis(trifluoromethane)sulfonimide ([2-ClMePy][Tf2N]) 

 
A 80 mL solution of 15.0 g [2-ClMPy]I in H2O was added drop wise into 1.2 molar equivalent 

bis(trifluoromethane)sulfonimide lithium salt (Li[Tf2N]) in 100 mL H2O. A precipitate was formed 
immediately. The reaction mixture was stirred at room temperature for 2 hrs. The precipitate was 
collected by filtration and washed with distilled water. The wet product was dried in an oven overnight 
at 100 °C. The slightly yellow product weighs 18.9 g, yield 79%, m.p. 74-76 °C, and 1H NMR 
(CD3OD) δ: 4.42 (s, 3H, -NCH3), 8.02 (t, 1H, J = 7.6 Hz), 8.20 (d, 1H, J = 7.6 Hz), 8.53 (t, 1H, 7.6 
Hz), 8.90 (d, 1H, J = 8.0 Hz). 

 
3.5 General procedure for esterification of amino acid 

 
The procedure is a modification of the Mukaiyama’s method [16-17]: 2-chloro-1-methylpyridinium 

ethyl sulfate (0.609 g, 2.4 mmol) (or other molar-equivalent Mukaiyama’s reagents) was fully 
dissolved in 5 mL anhydrous methanol (or dichloromethane) after a gentle stirring. Into the reaction 
mixture, N-acetyl-L-phenylalanine (0.414 g, 2.0 mmol) and 1-methylimidazole (0.394 g, 4.8 mmol) 
were added. A homogeneous solution was formed after a gentle stirring. The reaction mixture was 
sealed in a microwave glass reactor and then irradiated by a CEM Discover® LabMate single-mode 
microwave oven (CEM Corporation in Matthews, NC) at a constant temperature of 80 °C (monitored 
by a vertically-focused IR temperature sensor, and controlled by automated power adjustment based on 
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temperature feedback and air cooling) with continuous stirring (1 min ramp, 15 min reaction time). 
After the reaction was completed, the solvent was removed through a rotary evaporator, and the 
resulting residue was extracted by a biphasic system of 45 mL diethyl ether and 45 mL water (1-
methyl-2-pyridone, 2-alkoxypyridinium salt, base and other salts are soluble in water [15, 42]; if 
tributylamine is used, vigorously washing the organic layer with 5% HCl to dissolve the base). After 
the layer separation, the ether layer was dried by anhydrous sodium sulfate, followed by an 
evaporation of ether. The resulting oil-like ester formed white crystals overnight with ][ 25α D = + 11° 

(c=2, MeOH) as determined by a Rudolph Autopol III polarimeter. The ester structure was confirmed 
by a Shimadzu 8300 FT-IR (sample in NuJol, CaF2 window) (C=O: 1720 cm-1, C(O)-O-C: 1152 cm-1, 
C-O-C: 1071 cm-1), and 1H NMR (CD3OD) δ: 3.10 (1H, CH), 4.52 (2H, -CH2-), 4.88 (1H, -NH-), 6.05 
(6H, -OCH3), 8.43 (5H, -Ar). 

Acknowledgements 

The authors are very thankful to the research support from NSF funded HBCU-UP 2006 summer 
research program, and NSF funded PSLSAMP program (Peach State Louis Stokes Alliance for 
Minority Participations), and the SSU CASTME Undergraduate Research Program funded by the 
Department of Education Title III grant. 

References and Notes 

1. Bodanszky, M.; Klausner, Y. S.; Ondetti, M. A. In Peptide Synthesis, 2nd ed.; Wiley: New 
York, 1976; p. 51. 

2. Greenstein, J. P.; Winitz, M. Chemistry of the Amino Acids; Krieger Publishing Co.: Malabar, 
1984; Vol. 2, Chapter 10. 

3. Sheldon, R. A. Chiral Technology: Industrial Synthesis of Optically Active Compounds; 
Marcel Dekker: New York, 1993. 

4. Kita, H.; Sasaki, S.; Tanaka, K.; Okamoto, K.; Yamamoto, M. Esterification of carboxylic acid 
with ethanol accompanied by pervaporation. Chem. Lett. 1988, 2025-2028. 

5. Arai, I.; Muramatsu, I. A simple and convenient method for esterification of tryptophan and 
other amino acids. J. Org. Chem. 1983, 48, 121-123. 

6. Miller, H. K.; Waelsch, H. Benzyl esters of amino acids. J. Am. Chem. Soc. 1952, 74, 1092-
1093. 

7. Wegman, M. A.; Elzinga, J. M.; Neeleman, E.; van Rantwijk, F.; Sheldon, R. A. Salt-free 
esterification of α-amino acids catalysed by zeolite H-USY. Green Chem. 2001, 3, 61-64. 

8. Bodanszky, M.; Bodanszky, A. The practice of peptide synthesis; Springer-Verlag: Berlin, 
1984. 

9. Jones, J. B.; Niemann, C. A further comparison of the behavior of analogous aromatic and 
hydroaromatic substrates of α-chymotrypsin. Biochemistry 1963, 2, 498-500. 

10. Wang, S.-S.; Gisin, B. F.; Winter, D. P.; Makofske, R.; Kulesha, I. D.; Tzougraki, C.; 
Meienhofer, J. Facile synthesis of amino acid and peptide esters under mild conditions via 
cesium salts. J. Org. Chem. 1977, 42, 1286-1290. 

11. Shoda, S.; Mukaiyama, T. Cesium fluoride-promoted synthesis of carboxylic acid derivatives 
using 2-fluoropyridinium salt. Chem. Lett. 1980, 391-392. 



Int. J. Mol. Sci. 2008, 9                  
          

 

43

12. Sato, T.; Otera, J.; Nozaki, H. Cesium fluoride-promoted esterification of carboxylic acids. A 
practical alternative to the diazomethane method and direct conversion of organotin 
carboxylates. J. Org. Chem. 1992, 57, 2166-2169. 

13. Biondini, D.; Brinchi, L.; Germani, R.; Savelli, G. An effective chemoselective esterification of 
hydroxybenzoic acids in ionic liquid promoted by KF. Lett. Org. Chem. 2006, 3, 207-211. 

14. Mukaiyama, T.; Oohashi, Y.; Fukumo, K. A new method for the esterification of carboxylic 
acids with various alcohols by using di-2-thienyl carbonate, a new coupling reagent. Chem. 
Lett. 2004, 33, 552-553. 

15. Mukaiyama, T. New synthetic reactions based on the onium salts of aza-arenes. Angew. Chem. 
Int. Ed. Engl. 1979, 18, 707-721. 

16. Mukaiyama, T.; Usui, M.; Shimada, E.; Saigo, K. A convenient method for the synthesis of 
carboxylic esters. Chem. Lett. 1975, 1045-1048. 

17. Saigo, K.; Usui, M.; Kikuchi, K.; Shimada, E.; Mukaiyama, T. New method for the preparation 
of carboxylic esters. Bull. Chem. Soc. Jpn. 1977, 50, 1863-1866. 

18. Crosignani, S.; Gonzalez, J.; Swinnen, D. Polymer-supported mukaiyama reagent: A useful 
coupling reagent for the synthesis of esters and amides. Org. Lett. 2004, 6, 4579 -4582. 

19. Donati, D.; Morelli, C.; Taddei, M. A rapid microwave-assisted esterification utilizing the 
Mukaiyama supported reagent. Tetrahedron Lett. 2005, 46, 2817-2819. 

20. Convers, E.; Tye, H.; Whittaker, M. Preparation and evaluation of a polymer-supported 
Mukaiyama reagent. Tetrahedron Lett. 2004, 45, 3401-3404. 

21. Donati, D.; Morelli, C.; Porcheddu, A.; Taddei, M. A new polymer-supported reagent for the 
synthesis of β-lactams in solution. J. Org. Chem. 2004, 69, 9316-9318. 

22. Gordon, C. M. New developments in catalysis using ionic liquids. Appl. Cat. A: General. 2001, 
222, 101–117. 

23. Houlton, S. Ionic liquids: the route to cleaner and more efficient fine chemical synthesis? 
Chem. Week. 2004, Feb 25, s10-s11. 

24. Seddon, K. R. Ionic liquids for clean technology. J. Chem. Technol. Biotechnol. 1997, 68, 351-
356. 

25. Welton, T. Room-temperature ionic liquids - solvents for synthesis and catalysis. Chem. Rev. 
1999, 99, 2071-2083. 

26. Zhao, H.; Malhotra, S. V. Applications of ionic liquids in organic synthesis. Aldrichimica Acta. 
2002, 35, 75-83. 

27. Earle, M.; Forestier, A.; Olivier-Bourbigou, H.; Wasserscheid, P. In Ionic Liquids in Synthesis; 
Wasserscheid, P., Welton, T., Eds.; Wiley-VCH Verlag: Weinheim, 2003; pp. 174-288. 

28. Jain, N.; Kumar, A.; Chauhan, S.; Chauhan, S. M. S. Chemical and biochemical 
transformations in ionic liquids. Tetrahedron. 2005, 61, 1015-1060. 

29. Bradlow, H. L.; Vanderwerf, C. A. Exchange reactions of α-halogenated pyridines. J. Org. 
Chem. 1951, 16, 1143-1152. 

30. Oh, S. H.; Cortez, G. S.; Romo, D. Asymmetric synthesis of bicyclic β-lactones via the 
intramolecular, nucleophile-catalyzed aldol lactonization: Improved efficiency and expanded 
scope. J. Org. Chem. 2005, 70, 2835-2838. 

31. Adam, D. Out of the kitchen. Nature 2003, 421, 571-572. 
32. Caddick, S. Microwave assisted organic reactions. Tetrahedron 1995, 51, 10403-10432. 



Int. J. Mol. Sci. 2008, 9                  
          

 

44

33. Mazzocchia, C.; Modica, G.; Kaddouri, A.; Nannicini, R. Fatty acid methyl esters synthesis 
from triglycerides over heterogeneous catalysts in the presence of microwaves. Comptes 
Rendus Chimie 2004, 7, 601-605. 

34. Shieh, W.-C.; Dell, S.; Repic, O. Large scale microwave-accelerated esterification of 
carboxylic acids with dimethyl carbonate. Tetrahedron Lett. 2002, 43, 5607-5609. 

35. Freemantle, M. BASF's smart ionic liquid. C&EN. 2003, 81, 9. 
36. Weyershausen, B.; Hell, K.; Hesse, U. In Ionic Liquids IIIB: Fundamentals, Progress, 

Challenges, and Opportunities (Transformations and Processes); Rogers, R. D., Seddon, K. R., 
Eds.; American Chemical Society: Washington, DC, 2005; pp. 133-143. 

37. Schaefgen, J. R.; Newman, M. S.; Verhoek, F. H. Ionization constants of butylamine, 
piperidine and triethylamine in methanol. J. Am. Chem. Soc. 1944, 66, 1847-1849. 

38. Lide, D. R. CRC Handbook of Chemistry and Physics. 84th ed.; CRC Press Inc.: New York, 
2003; 6-3. 

39. Dahlen, A.; Hilmersson, G. Mechanistic study of the SmI2/H2O/amine-mediated reduction of 
alkyl halides: Amine base strength (pKBH+) dependent rate. J. Am. Chem. Soc. 2005, 127, 
8340-8347. 

40. Morishima, I.; Fujii, H.; Shiro, Y.; Sano, S. Studies on the iron(II) meso-oxyporphyrin π-
neutral radical as a reaction intermediate in heme catabolism. Inorg. Chem. 1995, 34, 1528-
1535. 

41. Underwood, G. R.; Dietze, P. E. Nucleophilic substitution at centers other than carbon: reaction 
at the chlorine of N-chloroacetanilides with triethylamine as the nucleophile. J. Org. Chem. 
1984, 49, 5225-5229. 

42. Kobayashi, S.; Tsutsui, M.; Mukaiyama, T. A convenient method for the transformation of 
alcohols to alkyl iodides using 2-fluoropyridinium salt. Chem. Lett. 1976, 373-374. 

43. Mukaiyama, T.; Hojo, K. Optical interconversion of enantiomeric secondary alcohols using 2-
fluorobenzothiazolium salt. Chem. Lett. 1976, 893-896. 

44. Huang, H. T.; Foster, R. J.; Niemann, C. The kinetics of the α-chymotrypsin-catalyzed 
hydrolysis of acetyl- and nicotinyl-L-phenylalaninamide in aqueous solutions at 25° and pH 
7.91. J. Am. Chem. Soc. 1952, 74, 105-109. 

45. Boaz, N. W.; Mackenzie, E. B.; Debenham, S. D.; Large, S. E.; Ponasik, J. A. Synthesis and 
application of phosphinoferrocenylaminophosphine ligands for asymmetric catalysis. J. Org. 
Chem. 2005, 70, 1872-1880. 

46. Ebbersa, E. J.; Ariaansa, G. J. A.; Houbiersa, J. P. M.; Bruggink, A.; Zwanenburg, B. 
Controlled racemization of optically active organic compounds: Prospects for asymmetric 
transformation. Tetrahedron 1997, 53, 9417-9476. 

© 2008 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes. 

 


	Abstract
	Introduction
	Results and Discussion
	Effect of solvents and bases
	Comparison of microwave and conventional heating
	Modification of Mukaiyama’s reagent
	Racemization of amino acid ester

	Experimental Section
	Materials
	Synthesis of modified Mukaiyama’s reagents (2-Chloro-1-methylpyridinium acetate ([2-ClMePy][CH3COO]), 2-Chloro-1-methylpyridinium trifluoroacetate ([2-ClMePy][CF3COO]), and 2-Chloro-1-methylpyridinium tetrafluoroborate ([2-ClMePy][BF4]))
	Synthesis of 2-Chloro-1-methylpyridinium ethyl sulfate ([2-ClMePy][EtSO4])
	Synthesis of 2-Chloro-1-methylpyridinium bis(trifluoromethane)sulfonimide ([2-ClMePy][Tf2N])
	General procedure for esterification of amino acid

	Acknowledgements
	References and Notes

