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Abstract:  The Electronegativity Equalization Method (EEM) is a fast approach for charge 

calculation. A challenging part of the EEM is the parameterization, which is performed 

using ab initio charges obtained for a set of molecules. The goal of our work was to perform 

the EEM parameterization for selected sets of organic, organohalogen and organometal 

molecules. We have performed the most robust parameterization published so far. The EEM 

parameterization was based on 12 training sets selected from a database of predicted 3D 

structures (NCI DIS) and from a database of crystallographic structures (CSD). Each set 

contained from 2000 to 6000 molecules.  We have shown that the number of molecules in 

the training set is very important for quality of the parameters. We have improved EEM 

parameters (STO-3G MPA charges) for elements that were already parameterized, 

specifically: C, O, N, H, S, F and Cl. The new parameters provide more accurate charges 

than those published previously. We have also developed new parameters for elements that 

were not parameterized yet, specifically for Br, I, Fe and Zn. We have also performed 

crossover validation of all obtained parameters using all training sets that included relevant 

elements and confirmed that calculated parameters provide accurate charges. 

Keywords: Charge distribution, Electronegativity Equalization Method, Parameterization, 

Organohalogenes, Organometals. 
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1. Introduction 

Electronegativity Equalization Method (EEM) [1,2,3] is a fast approach for charge calculation. The 

basic idea is based on the density functional theory (DFT) [4,5]. First, Parr et al. applied the DFT and 

formulated a new definition and explanation of electronegativity [6,7]. Later on, Mortier et al. applied 

Parr's definition of electronegativity and Sanderson's Electronegativity Equalization Principle (EEP) 

[8,9,10] and created the EEM. 

This method is able to calculate atomic charges markedly faster than common ab initio approaches. 

The ab initio charge calculations exhibit time complexity of O(B4), where B is greater or equal to the 

number of valence electrons. The EEM approach shows a time complexity of θ(N3), where N is the 

number of atoms. Nevertheless, accuracy of the EEM corresponds to the ab initio methods. 

A challenging part of the EEM is the parameterization that is performed using ab initio charges 

obtained for a set of molecules. The parameterization is very time-consuming with time complexity of 

O(S.B4), where S is a number of molecules in the set. The most common parameterization of the EEM 

is a parameterization for the HF method with the STO-3G basis set, where the charges are calculated 

by Mulliken population analysis (MPA) [11,12]. Principally, it is also possible to parameterize the 

EEM for other basis sets (i.e., 6-31G*) and methods for charge calculation (i.e., CHELPG, MK, NPA, 

ESP, Hirshfeld method) [13,14]. First attempts to calculate EEM parameters were published in eighties 

[1,2]. These publications contained only parameters for C, H, N and O, which were developed using 

training sets of about one hundred molecules. Further parameterizations were performed during the 

nineties and contained parameters for new elements (S, Si, P, F, Cl) and more complex bases 

[15,16,17]. The EEM parameterization still remains attractive to chemists' attention [18,19,20]. 

The goal of this work is to perform the EEM parameterization based on large sets of organic, 

organohalogen and organometal molecules (containing Zn and Fe) selected from databases NCI DIS 

[21] and CSD [22], and to validate the quality of calculated parameters on reference sets of molecules 

selected from these databases. The parameterization was performed for STO-3G MPA charges.  

2. Theoretical basis  

2.1. EEM 

Using DFT, the effective (charge-dependent) electronegativity of the atom i in a molecule can be 

calculated by eq. (1) [1,2 3]: 

∑
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where N is the number of atoms in the molecule, qi and qj are the charges distributed on the atoms i 

and j, respectively, Ri,j is the distance between atoms i and j, and κ is the adjusting factor. The 

coefficients Ai and Bi are defined by eqs. (2): 
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 where χi
0 is the electronegativity of an isolated neutral atom i, ηi

0 is the hardness, and ∆χi
0 and ∆ηi 

describe the molecular environment. The coefficients Ai, Bi and κ are empirical parameters, which must 

be obtained via EEM parameterization. Such a parameterization is a topic of this work. 

According to Sanderson's Electronegativity Equalization Principle [8, 9, 10], the effective 
electronegativity of each atom in the molecule is equal to the molecular electronegativity χ : 

χχχχ ==== N...21  (3) 

The total charge Q of the molecule is equal to the sum of all the atomic charges: 

∑
=

=
N
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(4) 

The atomic charges are described using the equation system (5), which contains N+1 equations with 
N+1 unknowns: q1, q2, … , qN and χ . This system was derived from equations (1), (3) and (4) [1]: 
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 The matrix of the equation system (5) is called EEM matrix.  

2.2. EEM Parameterization 

Empirical parameters Ai, Bi and κ (described by eqs. (1) and (2)) can be calculated in the following 

way [17]: 

From eq. (1) and (3), eq. (6) can be derived: 
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Eq. (6) can be rewritten as: 
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Meaning that eq. (7) is in the form: 
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Then, empirical parameters can be obtained using eq. (8) in the following way: 

1. Selection of a set of molecules used for the EEM parameterization.  

2. Ab initio calculation of atomic charges qi for all atoms within all selected molecules.  
3. Calculation of the molecular electronegativity χ as a harmonic average of atomic 

electronegativities χi
0 (for isolated atoms i): 
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4. Selection of κ values for which the parameterization will be performed. 
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5. For each of the above selected κ: 

• Calculation of xi and yi values for all atoms in all molecules using eq. (8). 

• Separation of xi and yi couples into subsets according to the chemical symbol and 

hybridization of the atom i (for example C in sp3, C in sp2 etc.). 

• Calculation of parameters Ai and Bi for each of these subsets using the least square 

minimization. 

6. Finding the optimal κ value. 

3. Methods  

In this work, two databases were used. The first one was the NCI DIS 3D database [21], created as a 

part of DTP NCI (Developmental Therapeutics Program of National Cancer Institute). This database 

contains organic molecules tested against cancer, specifically their topologies and also geometries, 

predicted by the program CHEM-X [23] and stored in SDF format [24]. The second database used was 

CSD (Cambridge Structural Database) [22], administered by CCDC (Cambridge Crystallographic Data 

Centre). Geometries of molecules are stored also in SDF format. However, in this case information is 

obtained experimentally using the X-ray and/or neutron diffraction. Both these databases are 

sufficiently large, containing more than two hundred thousand molecules. 

 
Table 1: Sets of molecules that were used as training and testing sets for the EEM parameterization. 

 

Database Denotation 

of the set 

Number of 

molecules 

Atoms 

included 

Position of the set 

in the database 

 

NCI DIS 

(predicted 

data) 

 

 

nbeg 2000 C, O, N, H, S beginning (ID between 1 and 3162) 

nmid 2000 C, O, N, H, S middle (ID between 300 000 and 314 026) 

nend 2000 C, O, N, H, S end (ID between 705 000 and 712 703) 

nall 6000 C, O, N, H, S nbeg, nmid and nend 

nhal 4000 C, O, N, H, S, 

Br, Cl, F, I 

beginning (ID between 

106498 and  114688) 

 

 

 

CSD 

(crystallo- 

graphic 

data) 

cbeg 2000 C, O, N, H, S beginning (ID starting by A and B) 

cmid 2000 C, O, N, H, S middle (ID starting by J, K and L) 

cend 2000 C, O, N, H, S end (ID starting by W and Y) 

call 6000 C, O, N, H, S cbeg, cmid and cend 

chal 4000 C, O, N, H, S, 

F, Cl, Br, I 

beginning (ID starting by A, B and C) 

cmet 2000 C, O, N, H, S, 

Fe, Zn 

beginning (ID starting by A and B) 

ch,m 6000 C, O, N, H, S, 

F, Cl, Br, I, Fe, 

Zn 

chal and cmet 

ID is a unique identification of a molecule in a database.  In the NSC DIS database, ID is a number between 1 and about 

720 000. Database CSD uses alphabetically sorted string IDs that contains six upper case characters. 
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From these two databases, several training sets of molecules were selected (see Table 1). Our goal 

was to generate training sets, which cover most of bonding situations and also conformational 

variability in real molecules. For that reason, we have chosen large sets containing randomly selected 

molecules. As molecules are unsorted in NCI DIS and CSD databases, the simplest random selection is 

to take a continuous part of the database. We selected three training sets, containing elements C, H, O, 

N and S from each database. To obtain the most versatile training sets, we selected first training set 

from the beginning, second from the middle and the third from the end of the databases. We have also 

used unions of these sets. For organohalogenes and organometals, we did not need so many training 

sets as the process of parameterization was already debugged on above mentioned six training sets and 

their unions. Therefore we used only one training set of organohalogenes from each database. Just one 

training set (from CSD database) was used for organometals, because the NCI DIS database does not 

contain enough organometal molecules. These organometal and organohalogene molecules were 

selected from the beginning of the databases. 

For the parameterization, ab initio charges were calculated using the HF method with the STO-3G 

basis set for all molecules in all sets. The charge calculation was performed by Gaussian 98 

program [25]. After that, the EEM parameterization was performed using calculated ab initio charges 

for all training sets. 

 
Table 2: Quality of parameters that were obtained by EEM parameterization using all training sets. 

 

Rmol
avg Training set 

Lit. nbeg nmid nend nall nhal cbeg cmid cend call chal cmet ch,m 

 

T 

e 

s 

t 

e 

d 

 

s 

e 

t 

nbeg 0.966 0.955 0.962 0.930 0.959 0.961 0.950 0.924 0.938 0.945 0.944 0.928 0.938    

nmid 0.957 0.939 0.951 0.910 0.947 0.951 0.941 0.902 0.932 0.936 0.930 0.918 0.929    

nend 0.960 0.944 0.958 0.922 0.944 0.956 0.956 0.894 0.942 0.945 0.932 0.929 0.942    

nall 0.961 0.946 0.957 0.921 0.953 0.956 0.949 0.907 0.937 0.942 0.935 0.925 0.936    

nhal -  -  - - - 0.928 - - - - 0.919 - 0.887   

cbeg 0.945 0.918 0.928 0.870 0.928 0.930 0.946 0.917 0.934 0.941 0.936 0.916 0.937   

cmid 0.934 0.912 0.922 0.867 0.921 0.920 0.932 0.902 0.921 0.928 0.922 0.898 0.921   

cend 0.936 0.913 0.925 0.870 0.922 0.922 0.936 0.902 0.923 0.930 0.927 0.903 0.927   

call 0.939 0.914 0.925 0.869 0.924 0.924 0.938 0.907 0.926 0.933 0.928 0.906 0.928   

chal -  -  - - - 0.903 - - - - 0.910 - 0.885   

cmet -  -  - - - - - - - - - 0.887 0.879   

ch,m -  -  - - - - - - - - - - 0.885 

Rmol
avg describes quality of parameters obtained via EEM parameterization using the training set. This value is between 0 

and 1. The closer it is to 1, the more accurate charges are provided employing the EEM method using the parameters. The 

Rmol
avg is an average of Rmol values for all molecules in the training set. Rmol is the R-squared value of the linear regression 

line, which was inserted into a set of points [qi(ab initio), qi(EEM)], where qi(ab initio) and qi(EEM) are ab initio and EEM 

charges (calculated using the parameters) of atom i, respectively. Lit. means parameters obtained from  

literature [17]. For our parameters, the best Rmol
avg for each tested set is bolded. 
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Parameters, calculated for all training sets presented in Table 1, and also parameters obtained from 

the literature were validated for all training sets that contained suitable atoms. Validation of parameters 

for a selected training set was done in such a way that ab initio charges and the EEM charges 

calculated for each molecule from the training set using the developed parameters were compared via 

the least square method. In other words, the linear regression line was fitted to a set of points [qi(ab 

initio), qi(EEM)], where qi(ab initio) and qi(EEM) are ab initio and EEM charges of the atom i, 

respectively. Correlation between ab initio and EEM charges was described by the R-squared value 

[26] of this line. This R-squared value is between 0 and 1. The closer it is to 1, the better the 

correlation is. The R-squared value (Rmol) was calculated for each molecule in the training set. An 

average value of (Rmol
avg) was calculated from all Rmol values in each set to express the quality of 

parameters for the set.  

 
Table 3: Information about numbers of molecules and atoms in newly created training sets cbeg2, chal2, 

cmet2 and ch,m2. For more details see the text. 

 

Element Bond 

order 

Number of molecules and atoms in training set 

cbeg2 chal2 cmet2 ch,m2 

molecules atoms molecules atoms molecules atoms molecules atoms 

H 1 530 11187 810 13214 1112 25894 3082 60873 

C 1 498 4113 729 5128 1070 10918 2847 24359 

N 1 325 605 378 689 641 1353 1598 3195 

O 1 400 1162 536 1258 830 2636 2185 6030 

S 1 58 116 87 160 168 416 358 756 

C 2 518 5871 843 10058 1078 12756 3086 37612 

N 2 172 350 289 561 374 825 1062 2163 

O 2 401 907 546 991 786 1943 2123 4449 

Cl 1 - - 455 1158 - - 929 2319 

Br 1 - - 211 324 - - 477 735 

F 1 - - 188 805 - - 411 1745 

I 1 - - 57 95 - - 134 202 

Zn 1 - - - - 103 178 155 268 

Fe 1 - - - - 186 317 203 335 

Total 544 24311 870 34441 1154 57236 3258 145041 
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4. Results  

Table 4: EEM parameters A, B and κ  (see eqs. (1) and (2)) obtained via parameterization using 
training sets cbeg2, chal2, cmet2 and ch,m2. 

 

 EEM parameters created using training sets 

cbeg2 chal2 cmet2 ch,m2 

κ 

0.44 

κ 

0.66 

κ 

0.42 

κ 

0.55 

Element Bond order A B A B A B A B 

H 1 2.396 0.959 2.404 1.461 2.386 0.937 2.394 1.212 

C 1 2.459 0.611 2.503 0.899 2.452 0.593 2.476 0.772 

N 1 2.597 0.790 2.653 1.017 2.550 0.663 2.597 0.835 

O 1 2.625 0.858 2.713 1.211 2.624 0.847 2.676 1.077 

S 1 2.407 0.491 2.465 0.705 2.424 0.400 2.440 0.665 

C 2 2.464 0.565 2.516 0.850 2.462 0.527 2.495 0.704 

N 2 2.554 0.611 2.633 0.869 2.547 0.639 2.600 0.790 

O 2 2.580 0.691 2.757 1.348 2.567 0.622 2.622 0.850 

Cl 1 - - 2.791 2.365 - - 2.759 2.092 

Br 1 - - 2.496 1.345 - - 2.494 1.315 

F 1 - - 2.789 1.494 - - 3.032 2.985 

I 1 - - 2.421 2.309 - - 2.454 1.387 

Zn 1 - - - - 2.378 0.259 2.422 0.301 

Fe 1 - - - - 2.557 0.061 2.575 0.087 

 

For each training set of molecules in Table 1, the parameters were found. As it was described in the 

Methods section, calculated parameters were validated for all training sets that contained suitable 

atoms and also compared with the parameters from literature [17]. As the literature does not show the κ 

value (see eq. (1)), we had to find the κ value via our methodology. The best fit for κ was found to 

equal 1.25. The results of this parameter quality validation expressed by Rmol
avg are summarized in 

Table 2. This table shows that the quality of parameters varies for different training sets. Moreover, the 

quality of parameters from literature is generally slightly better than the quality of our parameters. 

Therefore, our effort was to further improve our methodology and parameters.  The main idea of this 

improvement was based on results, obtained for training sets nall and its subsets nbeg, nmid and nend and 

also for training set call with subsets cbeg, cmid and cend. It is seen from Table 2 that Rmol
avg (nall) is better 

than the average value from Rmol
avg (nbeg), Rmol

avg (nmid) and Rmol
avg (nend), but the best results are 

obtained for the set nmid. Analogically, in the training set call, the subset cbeg provides the best 

parameters. Randomly sorted molecules that create the training sets imply the good accuracy of 

parameters from subsets nmid and cbeg. Therefore, the quality of parameters can be increased by 

selection of an appropriate subset of the input training set. We have tested two methods of appropriate 

subset selection: 

1. Select only molecules, which have Rmol greater than a defined limit (for example 0.8).   
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2. Sort molecules from the training set T randomly and create a sequence of them (1, 2, ..., |T|), 

where |T| is a cardinality of T. Calculate parameters for all subsets STi, where STi is obtained 

from T by removing the subset DSTi. The subset DSTi is composed of elements T(i-1).K+1, 

T(i-1).K+2, …, Ti.K; where K can be, for example, 100. Now create the selection in the 

following way: From the input training set, sorted into the above described sequence, delete 

every subset DSTi, for which Rmol
avg(T) < Rmol

avg(STi). 

 

By comparison, the second approach was found to be more successful. It is interesting that sets 

selected via the first method provide worse quality of parameters than the input training sets 

themselves (results not shown here). 

Using method 2, we have performed selections based on sets cbeg, chal, cmet and ch,m and created sets  

cbeg2, chal2, cmet2 and ch,m2 (see  Table 3).  

 
Table 5: Comparison of the quality of parameters obtained using original sets and their selected 

subsets. 

 

Rmol
avg Training set 

Lit. cbeg cbeg2 chal chal2 cmet cmet2 ch,m ch,m2 

 

T 

e 

s 

t 

e 

d 

 

s 

e 

t 

nbeg 0.966 0.950 0.968 0.944 0.958 0.928 0.959 0.938 0.950 

nmid 0.957 0.941 0.962 0.930 0.952 0.918 0.951 0.929 0.943 

nend 0.960 0.956 0.970 0.932 0.953 0.929 0.956 0.942 0.949 

nall 0.961 0.949 0.967 0.935 0.954 0.925 0.955 0.936 0.947 

nhal - - - 0.919 0.940 - - 0.887 0.927 

cbeg 0.945 0.946 0.960 0.936 0.954 0.916 0.954 0.937 0.947 

cmid 0.934 0.932 0.948 0.922 0.943 0.898 0.941 0.921 0.934 

cend 0.936 0.936 0.951 0.927 0.945 0.903 0.944 0.927 0.937 

call 0.939 0.938 0.953 0.928 0.947 0.906 0.946 0.928 0.939 

chal - - - 0.910 0.934 - - 0.885 0.921 

cmet - - - - - 0.887 0.927 0.879 0.917 

ch,m - - - - - - - 0.885 0.919 

 

For more details about Rmol
avg see Table 2. Rmol

avg values of our parameters that are better than the literature parameters 

(denoted as Lit., taken from reference [17]) are in italics. The best Rmol
avg value (our parameters) for each tested set is 

bolded. 

 

We have chosen the CSD database as this database contains high quality experimental data. The set 

cbeg was selected as it exhibits Rmol
avg higher than cmid, cend and call. The parameters were calculated for 

selected subsets cbeg2, chal2, cmet2 and ch,m2 (see Table 4). Then the parameters were validated for all 

training sets containing corresponding atoms (see Table 5 and graphs in supplementary materials).   
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It is seen that the selected subsets cbeg2, chal2, cmet2 and ch,m2 provide markedly better parameters than 

the input sets cbeg, chal, cmet and ch,m themselves. In all cases we have found parameters that are better 

than the literature parameters. 

The parameters cbeg2 are of better quality than parameters obtained from literature [17] for both used 

databases. The parameters chal2, cmet2 and ch,m2 are of a worse quality than published parameters for the 

NCI DIS database, but are better for the experimental database CSD. Moreover, these parameters 

contain new data for halogens or Fe and Zn.  

Generally, we can conclude, that it is possible to calculate parameters using both the predicted and 

experimental databases. However, parameters that are based on experimental structures exhibit better 

charge calculation results. It can be caused by the fact that the theoretical structures from NCI DIS 

database may include some less realistic geometries compared to the experimental structures from CSD 

database. These parameters are more useful as they are portable and can be used for an arbitrary 

molecule that contains atoms for which the parameters were developed. Our results also show that it is 

useful to work with large training sets and select the best subset that provides the highest quality 

parameters. It is also reasonable to test several training sets. 

We did a large validation of our parameters. For demonstration, tables with detailed results of EEM 

charge calculation method with our parameters for several different organohalogene and organometal 

molecules are attached in supplementary material. Also coordinates and charges on single atoms are 

available there. 

5. Conclusions  

In this work, we have improved the published EEM parameters to calculate the STO-3G MPA 

charges for C, O, N, H, S, F and Cl. The new parameters provide more accurate charges than those 

published previously [17]. We have developed parameters for elements not yet parameterized, 

specifically for Br, I, Fe and Zn.  

The EEM parameterization we have performed has been based on 12 training sets, which are also 

the largest published training sets used for the EEM parameterization ranging from 2000 to 6000 

molecules. We have shown that the number of molecules in the training set is very important for the 

quality of the parameters. 

We have performed crossover validation of all obtained parameters using all training sets that 

include relevant elements. To the best of our knowledge, we have performed the most accurate testing 

of EEM parameters quality published so far. 

This is the first work to compare EEM parameters calculated using two principally different training 

sets, one being a database of theoretically predicted 3D structures (NCI DIS) and the second being a 

database of crystallographic structures (CSD). Our results show that it is possible to use both 

databases, but parameters from the CSD database training sets give more accurate charges. Moreover, 

the parameters obtained from the NCI DIS database training sets are not very suitable to calculate 

charges for molecules from the CSD database. 

These improved and newly developed parameters can be used for charge calculation using the 

program EEM SOLVER [27], which we have developed and which is freely available via the internet 

on http://ncbr.chemi.muni.cz/~n19n/eem_abeem. 
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