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Abstract: Nicotine and a variety of other drugs and toxins mxetabolized by cytochrome
P450 (CYP) 2A6. The aim of the present study wasuitd a quantitative structure-activity
relationship (QSAR) model to predict the activitiek nicotine analogues on CYP2AG6.
Kernel partial least squares (K-PLS) regression gmaployed with the electro-topological
descriptors to build the computational models. Bbthinternal and external predictabilities
of the models were evaluated with test sets torentheir validity and reliability. As a
comparison to K-PLS, a standard PLS algorithm wss applied on the same training and
test sets. Our results show that the K-PLS produeasibonable results that outperformed the
PLS model on the datasets. The obtained K-PLS madebe helpful for the design of
novel nicotine-like selective CYP2AG6 inhibitors.
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1. Introduction

Cytochrome P450 2A6 (CYP2A6), the major coumarihydroxylase present in human liver
(Cashman, etc., 1992; Pearce, etc., 1992; Shineda,1996), is known to metabolize a variety of
compounds including quinoline (Reigh, etc., 1996)cotine (Nakajima, etc., 1996), cotinine
(Nakajima, etc., 1996), and various N-nitroso coomms present in cigarette smoke (Guengerich, etc.,
1994). Hepatic CYP2A6 catalyses the major routaiobtine metabolism via the intermediacy of the
aldehyde oxidase-catalyzed iminium ion that is erted to the metabolite, cotinine. (Cashman, etc.,
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1992; Tricker, 2003; Hukkanen, etc., 2005). Thaceficy of CYP2A6-mediated metabolism of
nicotine is closely related to the specific concatiin of nicotine in blood for keeping addiction
liability. Potent and specific inhibitors of the ©€2A6 enzyme might improve nicotine bioavailability
and thus make oral nicotine administration feasiblemoking cessation therapy. The inhibition of
CYP2A6 may decrease the number of cigarettes aperseds to smoke to obtain their desired blood
nicotine concentration. Nowadays, a number of camgs tested as CYP2A6 inhibitors possess
strong inhibitory effects (Draper, etc., 1997; Mpaa, etc., 1993; Fujita, etc., 2003). However,uo o
knowledge, no compounds have been characterizbdthgotent and selective CYP2A6 inhibitors. In
the present study QSAR models were establishedlb@se series of nicotine derivatives, with the
ultimate aim of aiding the prediction and developingf a potent and specific CYP2A6 inhibitor. The
in silico methods were built employing electrotapgital state descriptors by using kernel partiasie
squares (K-PLS), a relatively novel method in cherawmics compared to the partial least squares
(PLS) method.

The patrtial least squares method (Wold, 1975; Wetd., 1984) has been a popular modeling,
regression, discrimination and classification tegha in its domain of origin chemometrics. In its
general form PLS creates orthogonal score vectpissing the existing correlations between different
sets of variables while also keeping most of theamae of all sets. It is a statistical tool spieaily
designed to deal with multiple regression problewisere the number of observations is limited, the
missing data are numerous and the correlationsdegtwhe predictor variables are high.

PLS has proven to be useful in situations wherentireber of observed variables is much greater
than the number of observations and high multice#rity among the variables exists. This situaion
quite common in the case of kernel-based learnihgrev the original data are mapped to a high-
dimensional feature space corresponding to a repmg kernel Hilbert space. Too high dimensions
also cause problems like overfitting, thus leadinoghe decrease of the prediction accuracy of the
external data. As an alternative to PLS, a nontiids5 has been newly developed based on kernel
methods, i.e., kernel partial least squares. Inntie section, a detailed description of K-PLS was
offered.

The outline of the paper is as follows. The kepuaatial least squares analysis was introduced based
on an optimization-derived method. QSAR models virenié for nicotine analogues employing K-PLS
for a library of 58 nicotine analogues as CYP2Ag&#/e inhibitors (Denton, etc., 2005). Finally, ¥
and K-PLS were compared to determine which exhgufgerior performance.

2. Material and methods
2.1. Kernel partial least squares

As a generic kernel regression method, kernel glalgast squares has been proven to be more
competitive, and even more stable than other kemagilession algorithms such as support vector
machines (SVM) and kernel ridge regression, ansl iiethod is also much more easily implemented
(John and Nello, 2004).
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The idea of the kernel PLS is developed based emtapping of the originat-space data into a
high-dimensional feature space. A kernel is a cmioiis functiork: = x = — P for which there exists

an® inner product space as a representation spacermapd : = - & such that for all X,y =
KX, y) = (x)¢ (y) (1)

This definition allows us to perform calculatiomsthe® space in an implicit way, by substituting
the scalar product operation with its correspondiexgel version.

In the following part, a derivation of Direct Ketneartial Least Squares (DK-PLS) based on the
optimization algorithm (Bennett and Embrechts, 2008 nonlinear regression is introduced. The DK-
PLS is developed on the basis of a direct factbamaf the kernel matrix. DK-PLS has the advantage
that the kernel does not need to be square, whuatbrizes the kernel matrix directly and then ihalf
regression function is computed based on this faetiion. We provide here the simplified algorithm
for one response variable, which is more popul®$AR modeling.

Lets consider the data sampl¢, () where X OR™", YO R™; X and Y represent the variable

matrix and the response matrix (normally a one-dsmnal vector), respectively. First to define a
Gram matrix in feature spac’ = d(X)P(X", i.e., Ky =K(X, X;). Let K® be the centered form

of K° theY’ = y has been normalized to have mean 0 and stami@aidtion 1. LeiV be the desired
number of latent variables.

1. fromk=1taM

2. K, =K(X,X)

3. u"=K"K"y"

4. u™= um/Hu”ﬂ

5. K™=K"-u"u"K"

6. y™ =y"—umumy"

oy gy

8. The final regression coefficientare calculated by the following formula
r=K¥(U'K°KY)°U'y

where the mth columns dfandU arey™ andu™ respectively.

9. The final predictions are
() =) K (%, 0t
i=1

It should be noted that the test data should bealeaed before, according to the following formula

Ktrain - (l _%1D_|)Ktrain (I _71 ].DLI)

center

Ktest = (K test_%lﬂ-K train)(l _71 1|:ﬂ_')

center
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where 1 is the vector of elementllis the unit matrix. As we can see that this althomiis easy to

be complemented using C- or other languages. Tdnivation should make the PLS algorithm more

accessible to machine learning researchers andgrbpused for chemometrics applications.
Meanwhile, in order to compare the performancekK-8fLS and PLS methods on the data set, the

Partial Least Squares regression using the SIMRg@ithm is also proposed (Jong, 1993). The same

training and test sets are applied for both K-Ph& RLS models.

2.2. Data set

In the present study, we used a data set of 53imé&c@nalogues whose selective inhibition on
CYP2A6 was reported in the literature (Denton,,e2€05). All these compounds were shown in
Tables 1 and 2. The relative potency of the anasgexpressed ¢ values, on the functional activity
of cDNA-expressed human CYP2A6 were determined kgméning coumarin 7-hydroxylation
(Denton, etc., 2005). Several molecules (Table®) With un-deterministic chemical structure such as
molecule 38b in the original paper (Denton, etdQ%) were omitted in this work. In order to guaesnt
the linear distribution of the biological data, tevalues were transformed into -L&g

Table 1. -LogK; values and molecular descriptors for nicotine amads

name X sumdelsuml Qv nHBd nHBa nwHB8&HBd SHBa SwHB&lmax Gmax Hmin nrings
S1 0.68 6.783 315 0.969 0 3 9 0 17.28368 1.447 12.520.62 2
S2 -1.83 3.894 29 1.319 0 3 9 0 10.92B83461.424 5.009 0.614 2
S3 -0.18 2.921 26.25 1.396 0 2 9 0 5.892 14.83%4 4.141 0.605 2
S4 0.10 5.504 30.833.933 0 3 10 0 15.9384.8951.431 10.4461.237 2
S5 -0.15 629 325 105 O 3 10 0 16.6P62921.379 11.0850.686 2
S6 0.66 1.829 22.167.168 O 2 9 0 5.752 16.416328 4.045 1.186 2
S7 0.01 6.481 29.833.849 0 3 9 0 17.61 12.22B434 12.42 1.212 2
S8 -0.99 3.656 27.33B.188 O 3 9 0 10.7994.9171.411 4.978 0.723 2
S9 -0.65 2.701 24.588.251 O 2 9 0 5795 154 1.351 4.098 1.198 2
S10* 0.60 2.086 23.833.331 0 2 9 0 582 15.89 1.336 4.086 0.593 2
S11 -0.42 6.826 315 0.969 O 3 9 0 17.718685 1.442 1252 0.62 2
S12 -0.82 3.937 29 1.319 0 3 9 0 10.8973731.419 5.008 0.614 2
S13 -1.83 7.093 325 084 0 3 10 0 195 13 1.47934M1.255 2
S14 -0.89 2.833 25.33B074 O 2 10 0 8.23 17.10B364 4.209 1.187 2
S15* -1.65 3.2 27 1217 0 2 10 0 8.371 16.597872 4.309 0.63 2
S16* -0.71 3.23 27 1.217 O 2 10 0 8.321 16.8227 4.27 0.585 2
S17 -0.43 3.261 27 1217 0 2 10 0 8.352 16.62 1.36809 0.576 2
S18 -0.99 3.301 27 1.217 0 2 10 0 8.454 16.56 1.37403 0.621 2
S19 -0.26 3.659 26.333994 0 3 9 0 12.1774.1571.395 4.098 1.243 2
S20 -1.44 3.458 26.333994 0 3 9 0 11.85 14.48B384 4.006 1.235 2
S21 -0.80 4.537 29.111.047 O 3 10 0 13.6885.4231.407 5.672 1.234 2
S22* -0.04 2.732 25.333.074 0 2 10 0 8.067 17.26r.353 4.033 1.221 2
S23  -1.65 3.82 32.667.093 0 2 14 0 8.543 24.121429 4.43 1.206 3
S24 0.605 3.047 23.83B01 1 3 8 1.693 10.9672.8661.693 4.091 1.225 2
S25 -0.7953.55 255 1163 1 3 8 1.715 11.33 12.24 1.715 4.728631 2
S26 0.62 5.154 32.833955 1 4 10 2.629 16.9415.8862.629 8.363 1.244 2
S27 0.15 6.739 345 0.865 1 4 10 2.647 20.589912.647 8.297 1.262 2
S28 -0.14 6.739 345 0865 1 4 10 2.647 20.589912.647 8.297 1.262 2
S29 140 5323 29 1.055 1 3 9 149 14.8316791.49 5.454 0.792 2
S30 1.70 3.697 27.33B188 1 3 9 1.463 11.3295.3891.463 5.536 0.744 2
S31 055 4.736 295 1.182 1 3 9 154 12.6881671.54 5.608 0.556 2
S32 0.75 2931 27.83B328 1 3 9 1.513 9.059 15.877513 4.107 0.539 2
S33 -1.35 2594 29.33B473 0 3 9 0 8.14 16.016.359 4.128 0.561 2
S34* -1.67 4,515 31 1.319 0 3 9 0 11.8853051.386 5.699 0.579 2
S35 -0.75 5.053 29.33B031 1 3 9 2.463 14.52D4.6882.463 8.893 0.869 2
S36 -155 6.68 31 0.923 1 3 9 249 18.0219782.49 8.788 0.917 2
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(Table 1 continued)

S37 1.05 3.317 23.167.086 1 2 7 1.45 9.077 13.69245 5.182 0.74 1
S38* 0.05 2.731 23.661.247 1 2 7 1.5 6.884 141925 3.941 0527 1
S39 -1.36 2.643 25.167.415 0 2 7 0 5.997 14.387.335 3.966 0.549 1
S40 -0.15 3.839 295 1.182 1 2 11 145 9605 19B@s 5526 0.72 2
S41 -1.04 2419 255 1479 0 2 9 0 5.959 15339 4.188 0.589 2
S42* 077 2.215 23.838.331 0 2 9 0 5.857 15.91B336 4.145 0.583 2
S43* 0.23 3.516 25.833.133 1 3 9 1.569 11.2294.6051.569 5.614 1.22 2
S44* 0.89 2.833 25.338.178 0 3 8 0 10.1493.2331.367 4.209 0.641 2
S45 0.28 3.343 26.83B232 0 3 8 0 10.3713.4191.371 4.28 0.498 2
S46 0.64 4.042 365 1.127 0 3 14 0 10.882067 1.445 4.406 0.928 3
S47 077 4.042 365 1127 0 3 14 0 10.882067 1.445 4.406 0.928 3
S48 0.60 2.853 25.33B178 0 3 8 0 10.1523.2141.376 4.128 0.664 2
S49 021 2.329 23.66L.025 0 3 8 0 9.836 13.831387 3.992 1.227 2
S50* -1.81 3.285 25.838.86 1 5 6 1.936 17.196.637 1.936 3.925 1.256 2
S51* -1.83 2.978 25.660.871 0 5 6 0 16.189.485 1.498 3.924 1.261 2
S52 -0.08 1.787 22.167.168 0 2 9 0 5.783 16.38B333 4.047 1.159 2
S53 -0.51 2.773 23.16Z.069 0 3 8 0 9.797 13.36D.364 4.165 1.226 2
S54 1.00 2.044 23.83B331 0 2 9 0 5.851 15.85B341 4.088 0.593 2
S55* -0.64 4.94 37.661.058 0 3 15 0 12.6175.05 1.458 4.375 1.262 3
* Compounds used in test sets.
Table 2. All compounds used in this work
S S
S1 q \ S2 () S3
S4 \ S5 N\ S6
\\ \\
S7 Q/Q S8 /@/@ S9
S10 J S11 B S12 J 3
. 7 H 7 " 7
y CHy CH; oo CHy
S13 \ S14 7~ S15 N
o \ H \N H X
H N N
H " H
S16 S17 N | S18 =
=4 H x> H X
‘ N N CHy
H. \N
S19 v | S20 /NW S21 Z |
H A H. N H N
H H Cl
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(Table 2 continued)
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The molecular descriptors in Table 3 were computdg MolconnZ program. The model has been
trained by a training set (3/4 of the whole data) @alidated by an independent test set (1/4) @ apl

Table 3. The definition of the molecular descriptors usethis work

Descriptor Definition

sumdell Sum of delta-I values (Intrinsic State &a8tate values).

suml Sum of intrinsic state values (l).

Qv Qv is based on the E-State suml values. It isdkie of suml’'s for two

extremes of the structure, i.e., molecule’s positdong a line from Q
calculated for the iso-structural alkane on one and the most polar
iso-skeletal version of the structure.

nHBd, nHBa Hydrogen bond donor and acceptor counts (nwHBdravidBa are the

nwHBa,nwHBd weak hydrogen bonds).

Acceptor descriptor for molecule (sum of E-statdugs for all

SHBa hydrogen bond acceptors in the molecule). The volig groups are
classified as acceptors: -OH, =NH, -NH2, -NH-, >NgQ-, =0, -S-
along with -F and -CI.

Donor descriptor for molecule (sum of hydrogen Bt&tvalues for all

SHBd hydrogen bond donors in the molecule). The foll@yvigroups are
classified as donors: -OH, =NH, -NH2, -NH-, -SHd&CH.

SwHBa Descriptor for weak hydrogen bond acceptor (sura-&tate values for

all weak hydrogen bond acceptors). Aromatic and emtlse
unsaturated carbons are considered to be weaktacsep
Hmax, Gmax, Extreme atom level E-State values in molecule:
Hmin » Hmax—Largest hydrogen E-State value
» Gmax—Largest E-State value
* Hmin—Smallest hydrogen E-State value
nrings Number of rings.

3. Results and discussion
3.1. Molecular descriptors

In the past decade, electrotopological state (Eestadices have been used for correlating a wariet
of physicochemical and biological properties of miel compounds. The E-state indices are
computed for each atom in a molecule and encoaenrdtion about both the topological environment
of that atom and the electronic interactions dualtoother atoms in the molecule (Kier and Hall,
1990). E-state indices have been found to be veejuliin building QSAR models (Wang, etc., 2004;
Wang, etc., 2005a; Wang, etc., 2005b). In this wtrk E-state descriptors with detailed definitions
are indicated in Table 3. For the present datastime of intrinsic state (suml) and the sum of delta
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values (sum-dell), the extreme atom level E-Statleies (Hmax, Gmax and Hmin), as well as the
number of hydrogen bond (H-bond) donor and acceaterfound to be useful in construction of a

reliable K-PLS model. The intrinsic state encodes valence state electronegativity of the atom as
well as its local topology, which are particuladgeful for describing the chemical features of reese

of compounds. It has been found that the H-bonding aromatic-aromatic interactions are very
important for the binding of nicotine analogueshn@YP2A6 enzyme (Yano, etc, 2006). Our present
model, similarly, demonstrates that two descriptofsnHBa and nwHBa describing the hydrogen

bonding interaction, as well as another descripfddwHBa describing aromatic carbons, are crucial
for the functioning of nicotine inhibitors. All tke descriptors possibly revealed that the nicotine
derivatives play a main role of hydrogen-bond dowbien interacting with the P450 enzyme. The

importance of these descriptors also proved theique results obtained by Yano, etc. (Yano, etc,
2006).

3.2. K-PLSparameters

K-PLS performs as well as or better than suppoctoreregression for moderately-sized problems
with the advantages of simple implementation, tessing cost, and easier tuning of parameters. The
most critical and demanding phase of any K-PLS rhasdethe definition of kernels and the
determination of parameters.

From the functions available, three types of kesragke popularly used in both SVM and K-PLS,
i.e., linear, polynomial (a quadratic kernel funatiis normally applied) and radial basis function
(Gaussian kernel), or to obtain complex kernelctmbining simpler ones. The Gaussian kernel is
possibly the simplest and effective kernel fundiased in many cases. Therefore, in this work én th
case of the kernel transformations we used a Gaus#F kernel function, which has the form:

K(X, %) :exp(——”Xi % lf}

w

(2)

Before generating the kernel, all the data have liiestly Mahalanobis scaled to have mean 0 and
standard deviation 1. The value wf (width) for the Gaussian kernel should be tuned before the
calculations proceed. In this work, thevalues varying from 1 to 8 are assigned for the:SS&n
function. The number of components was randomlygassi as 3, as this value did not influence the
optimal choice ofv values. Correlation coefficients (R) of predictedsus measured -IKg, as well
as the mean squared errors (MSE) were determinezhfidir method to reflect their bias and precision,
respectively. Fig. 1 illustrates that the MSE anel Bhvary with thew value for the training and test
data.
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Figure 1. Modeling results for the training and test setthwlifferentw values of the Gaussian kernel.

As can be seen from Fig. 1, with the increase @itialue, the regression errors and coefficients of
both data sets come approaching to each othersmll fluctuations. Although their MSEs are not
identical there is no real difference in their penfiance. These experiments illustrated that K-PLS wa
less sensitive to the tuning procedure. From tigisré, we can find that the K-PLS model performs
best for the present case wher=4.5, with the coefficients of 0.95 and 0.70, amcbrs of 0.07 and
0.63 for the training and test sets, respectivEab(e 4).

Table 4. The statistical results for K-PLS and PLS optimudels

K-PLS PLS
R MSE R MSE
Training 0.95 0.07 0.62 0.47
Test 0.70 0.63 0.09 1.29

A second aspect for application of K-PLS regressinalysis is the optimal choice of the number of
latent componentsN). The optimal parameters could result in a bettd?IS performance. Fig. 2
illustrates what happens if a different choice e humber of the latent variables of K-PLS is made.
When the number of the latent variables ranges ftota 6, reliable number is detected, i.B53,
which is reasonable for both training and test.sEtem Fig. 2, one can find that the correlation
coefficients for the training sets increase witk thcrease of the number of latent variables, which
result in the decrease of regression errors. Horydoe test sets, R keeps almost constant, whereas
resulting in a continuous increase of MSE.
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Figure 2. The coefficients and residues for the training &t sets whew =4.5 for the K-PLS model.

3.3.Interpretationof the K-PLS model

The structure of the optimum K-PLS achieving thehksgf R coefficient was determined.
Meanwhile, a leave-one out cross-validatéd@41) was also obtained for the model. Fig. 3axshthe
performance of this model. As can be seen fromfifise, all compounds of training and test seés ar
equally distributed around the diagonal line y =Tke results indicate that the proposed K-PLS based
model can be used in virtual screening or optinoratf nicotine-like lead compounds for the

inhibition of CYP2AG6.

Predicted

Figure 3. The kernel partial least squares analysiskgfqr nicotine derivatives.
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From this figure, we can find that the most pothpounds like S29, S30 and S37 in the training
set, or like S10 and S44 in the test set are diymemdeled. However, we also find that the praditt
errors of the model for compounds S50 and S51 igcelme major reason is that the two compounds
are the ones with the weakest inhibitory effectsC¥P2A6. Thus, the chemical space of the model
might not be big enough to cover these two compsuraithough in the training sets several
compounds with the same biggéStvalues (S2 and S13) were deliberately included. él@n, even
for a series of synthesized compounds, it is ptesgiiat they are sparsely distributed through the
chemical space, thus making the model resulted fitmenstudy of these compounds inapplicable to
other molecules (Sun, 2006). Being renovated bytiaddof new data in the future, the model may
expand its coverage to a new applicability. Anothessible reason is that those compounds with the
same bigges(; values are structurally different. It is just thaselecules with different structures but
same activities in one data set that might causeudties for the derived-model to correctly predi
the activity using structure-based method. In aaidjtthe two compounds possess negative charges at
physiologic pH, which may also cause the predictieoapablility of the model, since the descriptors
applied in the present model do not work with negdy charged compounds.

Based on the obtained model, we have attemptegrddiction of lots of new virtual compounds
for their binding abilities. Two compounds (P1, R&}h their structures shown in Table 2 were
obtained with relatively potent binding affinitissth CYP2A6, and their predictedKpvalues are -1.35
and -0.80 respectively. The prediction attempt migituseful for advancing our work for synthetic
studies of this series of compounds.

3.4. Comparisons between K-PLS and PLS

A kernel version of PLS has some important advagaguch as the ability to find non-linear,
global solutions and to work with high dimensiongbut vectors. Different from the PLS involving
two orders of correlation for the latent compongKiPLS has three or more orders of correlation for
the nonlinear components. As a relatively new matkePLS has not gained the popularity as PLS in
the field of chemometrics and other relevant fiekts a comparison of performance of both PLS and
K-PLS, PLS approach was also applied to build Q3#drlels using the same training and test tests in
the present work. The number of latent componentsasaigned 4 based on the optimum R and MSE
obtained for both training and test sets (datashatwn). Finally, the structure of the optimum PLS
achieving the highest R coefficient was determiridgdon inspecting the results the first thing one
notices is that the nonlinear K-PLS outperformdiritsar conversion.

Fig. 4 depicts the optimum PLS modeling resultd ah of the statistical results were shown in
Table 4. PLS has been widely used in the modelingarhemical databases, but the technique is often
unsuitable for predicting very complex phenomerzhsas the ADME/T properties of drugs. Basically,
partial least squares regression is an extensidheofmultiple linear regression method. Howevee, th
present case is quite complex, where many compoarelstructurally different, but with identical
activities, such as thi€; valuesfor S2, S13 and S51 are all 67, for S5 and S4®aite 1.4, for S10,
S24 and S48 are all 0.25, and for S42 and S47ahe17. This fact indicates that the relationship
between the structure and activity of nicotine agaés may be nonlinear. And a linear technique is
usually inapplicable for the study of data setshwibnlinear relationships. This might be the reason
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why the K-PLS model is successful but PLS failptoduce reasonable results on the data sets. For
these data sets, and even for the training set,ifh@| performs badly. Based on the results degpicte
in Figures 3 and 4, one might conclude that K-P$ @ ipreferable method to PLS on these datasets,
where K-PLS exhibits obvious advantages over PLS.

2
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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Figure 4. The partial least squares analysis Kf for nicotine derivatives.
4. Conclusion

The main goal of this paper was to build a QSAR rhdde nicotine derivatives as selective
CYP2AG6 inhibitors. Another goal was also to compidwe performances of kernel partial least squares
and partial least squares analysis methods whewg lagiplied to QSAR modeling. Due to the non-
linearity of the data, K-PLS outperforms PLS in firesent work. The above successful application of
K-PLS method on nicotine derivatives will be helpfior quantitative design of nicotine analogues as
selective CYP2AG6 inhibitors.

This work also proposes a derivation of K-PLSeldlasn optimization algorithms, which makes
the K-PLS approach more easily applied for chemdosefield, and also more accessible to machine
learning researchers. All these will promote thenkepartial least squares algorithm, a relativedyel
method, to gain popularities in chemometrics ajpilons and other fields.
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