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Abstract: A new algorithm to extract the velocity caused the external forces in
molecular dynamic simulation of nanoscale flow peofis is proposed. The flow
velocity, an important component in these type rabpems, is usually obtained from the
average value in the time space because the acatiomubf the thermal velocity will
approach zero when the time period is large, bist tiethod is not always suitable,
especially when the flow velocity is much smallesrt the thermal velocity. Based on the
idea of the linear accumulation of the flow velggiin this study a new algorithm is
derived to extract the flow velocity. This algonthcan be used to calculate nanoscale
flow problem no matter whether the value of thevfleelocity is big or small. Using this
new algorithm, the 2-D liquid flow of argon in nam@nnels was simulated. The
numerical result demonstrates the effectivenesiseohew algorithm.

Keywords: Velocity extraction; molecular dynamic simulatiolow speed; nanoscale
flow.

Introduction

Nanoscale flow studies are important in physiolaggdicine and for design of nanoscale devices,
etc. Molecular dynamic simulation (MDS) is usedctdculate nanoscale flow problems because the
continuum model is no longer valid when the dimensiof flow systems approach the molecular size.
Good reviews regarding the models and solution adsthof nanoscale flow problems have been
published [1, 2]. In many paperg.byTraviset al. [3, 4], Thompson and Robbins [5], Heinbuch and
Fischer [6], MDS methods were applied to resolveosaale flow problems, particularly for the study
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of the boundary slip phenomena. 2-D and 3-D pressiniven channel flow problems were also
investigated using the MDS method. In most pageesfitid was liquid argon and the Lennard-Jones
potential was used to describe the intermolecul@ractions. Usually the Couette or Poiseuilledtea
flow was considered to illustrate the effectivenesthe MDS method. Travia al. [3, 4] found that if

the pore width was less than five molecular diansetine Navier-Stokes (NS) equations break down.
Traviset al. also reported [3] that when the channel widthaé®)6.1 molecular diameters, the solution
given by the molecular dynamics approach deviatgsifeantly from the NS equations solution,
whereas when the channel width equals 10.2 moledidaneters, the molecular dynamics’ solution is
similar to that of the Navier-Stokes equations.sTimeans that when the channel width is very small
the NS solution is meaningless and we should udeaular dynamics to simulate it. Zhasgal. [7]
calculated a confined fluid with a nonequilibriumD8 method and discussed the phenomena of
constant pore size and constant lodchompson and Robbins [5] simulated boundary slipth w
different solid wall density and interaction strdngparameters. They found that the boundary slip
could be observed only for very weak fluid-wallardactions. Similar problems were also studied by
Koplik et al. [8] and Koplik and Banavar [9]. Todd al. [10] introduced an effective viscosity method
to deal with the inhomogeneous viscosity distribmitiproblem. Instead of solving the difficult
inhomogeneous viscosity problem, the effectiveass#ty method adjusts the real viscosity to mateh th
molecular dynamic simulation result. Moseler anddmaan [11] and Eggers [12] have discussed nano
jet problems.

Although the MDS method has been used to model swanescale flow problems, as mentioned
above, there is a crucial problem associated wmithdpproach. In the MDS method, the flow velocity
of the molecules caused by the applied externakfts mixed with the thermal velocity. If the flow
velocity is much smaller than the thermal veloaitfich is usually more than 100 fi;st is difficult
to extract the flow velocity from the much biggaetmal velocity. As most nanoscale flow problems
relevant to real applications deal with low speleav§, the direct application of MDS method is not
workable. Until now, in all studies the minimumwloselocity used was several meters per second.

Certainly, MDS is correct for nanoscale flow. Threlgem is the method used to calculate the flow
velocity is not suitable. Thus, how to extract flev velocity is an important part in the MDS of
nanoscale flow. The traditional way to extract flmv velocity is using the idea of time average
because the accumulation of the thermal velocityapiproach to zero while the time period is large,
but this method is not always appropriate, esplgongien the flow velocity is less than several mete
per second. That is, numerically, the accumulabioiine thermal velocity will never reach zero ahd t
algorithm based on this idea is not valid for lopesd problems, regardless of the elegance of the
algorithm.

In this paper we propose a new algorithm to extfaetvelocity caused by the external forces. The
idea of this algorithm is as follows: in each tistep, we calculate an increment of the flow velgcit
and the total flow velocity is the accumulation tbe increments in all time steps. This idea is
reasonable because at any given time step, we eathg external force increment from the linear
development of the total force function. This aldon can be used to calculate nanoscale flow
problem even the value of the flow velocity is vemall. Furthermore, when using MDS method in
the surface problems [13-16], fracture mechani@s1d], heat transfer problenisprication problems
[20], material science [21dnd friction problems [22], we also need to caltaildae moving velocity
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caused by the external force, or other externaditioms, so the algorithm presented here is also
suitable for these kinds of problems. To demonstthe effectiveness of this new method, we
simulated several examples of 2-D flow in slit nata@annels with different channel heights.

Principle of the new method

Let us consider an isothermal pressure-driven gtstade 2-D Poiseuille flow in a straight channel.
Let x represent the direction of flow, whiterepresents the channel height in yrairection, that is the
direction perpendicular to the flow. Each channalliwi.e., the boundary perpendicular to the
direction, is modeled in terms of four rows of paes of solid wall material [5]. Initially, bothhe
fluid particles and the solid wall particles arespioned in fcc lattices [23]. In the direction we use
the periodic boundary conditions [24].

If v represents the total velocity vector of the fluidtan be expressed by

vVl +Ve, 1)

In a macrosopoic problem, if there is no exteroatd, the fluid will be in an equilibrium state,dan
the flow velocityv = 0, but when we simulate a nanoscale problem withMIES method, even if
there is no external force and it is an equilibricmlecular dynamics problem, the calculated flow
velocity will never be zero. Certainly, at this #nthe nonzero flow velocity is due to the modeamgl
numerical errors. We represent this part of theaigt byv'. When external forces are exerted, a real
flow velocity of the fluid will exist. We represettis part of velocity by®. Theoreticallyy’ should be
zero, but numerically it is not zero. In fact, inD8 v' is not only nonzero, but it is quite big and
usually equals several hundred meters per secontlee real flow velocity is small, it is diffiduto
know the exact value of according to equation (1).

In MDS methods [3-5], the flow velocitf’ can be calculated by

1 Nt 1 N

e H : T e

vi= lim — ) v = lim — ) (v +Vvg), 2
Nt—>00 Nt I;I. Nt—>00 Nt é— ( )

where N, is the number of time steps. The subscript k seferthe K time step. Equation (2) is based
on the concept that M, approaches infinity

1O
vi= lim —=—> v =0. (3)

This is the traditional method used in most MDSoathms. During the calculation we consider a
small volume with a specific point inside amdis the average velocity vector of all particleside
this volume at a particular moment [24]. Many s&sdverifying this method are available when the
scalar velocity® is not less than several meters per second, bem wtis much smaller than the scalar
velocity v', the above method does not work because, nurgrigal= 0 is not true even whex, is
sufficiently big. Therefore we have to devise a weay to calculate the velocity.

If , at the k-1" time step, we know the velocity of tH& particlevi.1, then, at the 'ktime step, the
velocity of the ' particlevi, can be expressed by
Vik =VI<_1 +vﬁ(_1+AvL +AV . (4)

Let F, represent the total force exerted on {hearticle at the end of the K time step;Fj and
Fx represent the force corresponding the equilibriud@SMproblem and the force caused by the
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external loads, respectively. If there is no exaerioad thenF; = 0 but F; is still nonzero. We
haver, =Ff +F¢ . In equation (4) the increment of velocifyr, +Av;; depends on the forée .
Here Av} is the velocity increment caused By at the K' time step;Av; is the velocity increment
caused by¢ at the K time step. So the flow velocity of th8 particle at the R time stepv§, can be
calculated by

Fik

Vi =V +AVE =V +—C AL, (5)
I
and we have the flow velocity
e < e Y F‘ﬁ
Vik = ZAVik = Z#At , (6)
k=1 k=11

where the initial value of the flow veloc'm‘?0 =0and m; is the mass of th& iparticle.

Figure 1 illustrates the positions of particlenidg at moment t and tAt, corresponding to the k-
1M and the K time steps, respectively. The vector distance &etwthese two particles at moment t
isrj. The vector velocity difference between these peaticles is\v;;. Because only the relative
positions is involved, without lose of generalitye can assume that the position of particle i is no
changed. At moment tat, because of the velocity differente;, the particle j moves from point j to
point p. The distance between these two particlag sAr;;, whereAr;; = Av;;At. The distance change
is Ary =Ar] +Ar$, where Arf =AviAt ; Arf =AvEAt ; Avi and Avf are the velocity increments
caused by the heat movement and the external foesgsectively.

Figure 1. Distance between particles i and j at momentlttamt .

T
Avij At

From Figure 1 we see thalr; =Ar] +Ar® =Av]At+AvEAt . It means the distance between
particles i and j is influenced by boﬂvﬂ and Av§; . Obviously, the distances between particles ijand
are different forAv; =0 and Av§ 20 . Also, the interaction forces are different fav; =0 and
Avi 20 because they are functions gf +Ar; . At moment t +At, the interaction force is
f(rij +Ar;) = f(rj +Ar] +Arg). The form of f (r; +Ar;) depends on the potential function. Thus, we
think the interaction force as consisting of twatpaThe first part corresponds 205 =0, that is
f(rj +Ari ), we represent it by . The second part is the additional force incremsetause
AvE 20, that is f (rjj +Ar] +Ar®) - f(r; +Ar;] ), we represent it bge'. If there is no external force,
we haveAvS =0 and thenFijeI =0. So FijeI is caused by external force. Ndw§ consists of two parts,
Fi = Fiﬁ' +Fiﬁ”, WhereFiﬁ' represents the interaction force due to the eatdoad caused additional
distance change between different particlE®: represents the external load exerted directly on
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particle i, usuallym;g;. F;" depends on the form of the external load. If tbeptial function between
the {" particle and thée'j particle isu(r;;) we have the following interaction force function

au(r--) i
FT +Fe| -0 ij i_
u(rj) = o T (7)

The interaction force increment between t anflttis

(FT +FE|)
AFT +oaRS = — LU A
! dt
ou(r;) ri;
__d (rj) Ty At
dt™ orj
__ %G dry vy oul) d ri
(arij)z dt rij arij dt rij
=_5ZU(m)N__ Ty ou(ry) 1(drIJr i ot (8)
@2 ' oy 2 dt ! dt?
]
a2u(r; ri ou(r
_ (IJZ)Arijl_ (Ij)i(A”—AU Ty
Gloy) o O T fj
a2u(r i Fii
=- (”)<Ar9+ArT)i 20) Zicare S+or ) - (arf+Arh)-2,

(arlj) j j rij 6r,j I’” 1) 1) 1) rij
where Ar? andAr are the change of the scalar and vector dlstq]naﬂdr caused by the external
cond|t|ons respectlvely, ArIJ andArIj are the change of the scalar and vector dISDEarE:HdI’
without external loads, respectively. From (8) weow that the increment of the interaction force
between the'l particle and thé'j particle caused by the external conditions is

AFIJEI a U(FU) r I’i aU( |]) 1(A e —Ar e I]) (9)
(ar ) ij I’U 6r,] rij ij ij I’U

Thus, at the R time step, the total interaction force of tifedarticle, caused by the external
conditions, can be expressed by

92 u(r;) M-, ou(ri) 1 Fiik -1
F_el Fel — Fel + AF — F ] AI‘ ijk -1 + ] Ar e _Are 1) ,
ik Z ijk ~ k-1 Z Ijk 1 |k 1 Zj:[ o 12 ik Ty o rijk—l( iK1 i —rijk—l)] (10)

Arf 1 and Arifk ,are the change of the scalar distar;jcand the vector distanmﬁ at the k-1' time
step caused by the external conditiog ; and Arijek 4 can be calculated according to the positions
of particle i and j. At the beginning of simulatidtuid particles are allowed to move without appty

the external force until a thermodynamic equilibrigtate is reached. At this stage, it is an equuilib
problem. Usually, this process needs thousandsv& steps or more. Then the external forces are
applied and the non-equilibrium simulation starts.
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According to the geometrical relation in Figure & lave the following scalar distance expressions:
(rj +A4r )2 = rijz +(Avj; At)? + 20tAVjj (11)
and
(5 + A5 )? = 1f + (Avi A)? + 2MMAV{ . (12)
Subtracting (12) from (11) and considerimgﬁ]e :Arij —ArijT , after some mathematical
manipulations, we obtain:
AP (25 + A +ArijT) = (5 +Afij)2 = (5 ’fNijT)2
= (Av; A% - (A AY? + 2AtAV Ty — 28V Iy
= (Avﬁ - (Avg)z)At2 + 20HAV 1
= AVE.(2Avjj — AVE)AL® + 2MAVE .

(13)

On the left hand side of (13) bomije and r are scalar lengths. Usually is small and bothr;
and ArijT are much smaller thar). We should notice here the smallej and ArijT are ensured by the
size of At, so we do not need to assume the flow velocigmall. Considering that all the variables in
(10) correspond to the K!Mtime step, we add a subscript k-1 to representghee at this time step
and then equation (13) can be simplified to

- 2
Aty 1= (Vi 5. (QAViK 1 — Ay AL+ 2MAVE 5 Tk 1) /(2 1) - (14)

The procedure of the algorithm is: at tH& tkime step, for any particle i, we calculalqek 4 by
formulae (14) andsrij‘?k _1:Avi‘J?k 44t then the force exerted on this particle at thismmantF§ and
Fx by (10). Finally, the flow velocity incrememtvi; and the flow velocity§, can be calculated by (5)
and (6), respectively. When using (14) to calcumﬁg_l the termAvﬁk 4 Is the velocity increment
corresponding to the KMtime step and it is already known.

The considered Poiseuille flow is a steady statdlpm. The system temperature should be fixed
throughout the flow process. To avoid increaseb®fsystem temperature during the simulation due to
external forces or other unphysical effects, a tamsemperature constraint is added. If the eslern
forces are included in the system, it becomes aegoilibrium molecular dynamics problem.
Reference [25] is a good review regarding nondguilim MDS in flow problems. In this case the
movement equation of particle i is

mV; =F +mg; —a(v; - Vi) . (15)

This is so called Gaussian thermostat method fareqoilibrium flow problems [25, 26]. For
equilibrium flow problems, botly; and vie are zero vectors in (15). Because the flow vejositould
not affect the temperature of the system, in tisetlrm of (15), we deduct it from the total vetgci
Here v;is the derivative vector of the velocity of th® particle with respect to the time variable.
m;g; is the external force vectBlF”.Fi is the total interaction force exerted on tfeparticle. It is
composed of two parts; =F' +F®'. F'is the interaction force without external loas$! is the
additional interaction force caused by the extefoate. We do not need to calculgteseparately.
This means that during the simulation, we do nedre use the sum &' andr®' to getF . We can

calculateF, according toF; :Z(FijT +Fije') :_Z Cu(rij) and the position of particles directly. is a
j#i j#i
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thermostat multiplier to keep the kinetic temperattonstant in the system. It can be obtained fieen
constant temperature condition [25, 26]. This i® @f the usually used methods in thermostat
molecular dynamics. When calculate the system tesye, for each particle, the flow velocity should
be subtracted from the total velocity.

Simulations of 2-D Poiseuille flow

In this Poiseuille flow we assume that the extefoede exerted on fluid particle i i19;g;, that is
Fii” =m;g; . Hereg; is the equivalent constant gravity acceleratioctve There are N particles within
a length L along the flow direction and a heigtdftihe flow channel. The initial velocity is givday
the original temperature. In these simulationsfllie material is liquid argon and the Lennard-J®one
potential is used. The cutoff radius is taken as &5. The interaction between the liquid and the
solid wall is considered by the interaction stréngiarameter of the wall particles to the liquid
particles. As mentioned before, in our simulatiothe solid wall particles are fixed. Certainly this
fixed boundary particle assumption will influent¢e taccuracy of the flow velocity a little but itnet
affect the examination of the effectiveness of oew velocity extraction method. During the
simulation we fix the positions of these four ros¥garticles on each side.

The values of the parameters used in the calcokgoe: the size of particles = o,, = 3.4x10"

m; the mass of the particles mm, = 6.69x10°° kg; the temperature T = 84K; the interaction sjten
parameter between argon molecules is 1.657x18kg-nmi*-s™. In the above, the subscript f represents
fluid and the subscript w represents solid wallolm simulations, the size of each time step isseho
asAt = 10'®s. In many paperat = 10™*s is recommended, but to ensure our linearizeditgo is
stableAt = 10"®s is necessary. In principle, we can use diffeiteraction strength parametessto
represent different solid wall materials [24, 28e usede,, = 3¢ in our simulations. The interaction
strength parameter for the interaction between lapeaticle and a fluid particle,s can be evaluated
[24, 27] byews = (erew)™ In all the simulations the density number is Q &&responding to the liquid
density of argon at T=84 K.

We calculated two different cases with differentichel heights. For the first case, L=13.61nm;
h=2.31 nm; N=243. For the second case, L=13.61 mm4.36 nm; N=459. The velocity profiles
calculated in our simulations for these two casegbotted in Figures 2-5.

Because in this new method the total flow veloaifyis the linear accumulation of velocity
increment of each time step we call it the LA meth®he traditional method is based on the idea of
time average, we call this the TA method. Figush@ws the simulation of case 1. In this simulation
the equivalent acceleration in the flow directien1id® m-s? and the simulated maximum velocity
which is calculated in the direction by the method of this paper (the LA noethis 39.9 m:& The
MDS result where the velocity is calculated by titaelitional method (TA method) is also shown in the
Figure. Because the velocity is big both the TA &Admethods can be used to calculate the flow
velocity. Figure 3 is another example of case lenehthe pressure difference is smaller. The
equivalent acceleration in the flow direction iS #®$*and the maximum velocity in thedirection is
3.92x10° m-s'.Because the flow velocity is much smaller than tiermal velocity, the traditional
method (TA method) is not available, but, as shawthe Figure, the LA method proposed in this
paper is still effective. Figure 4 shows the sintiola of case 2. In this simulation the equivalent
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acceleration in the flow direction is 0m-s? and the maximum velocity in thedirection is 13.92
m-s'. Figure 5 is another example of case 2, wherestjuivalent acceleration in the flow direction is
10°m-s? and the maximum velocity in thedirection is 1.37x18 m-s’. In Figure 3 and Figure 5 we
can only get results for the LA method becausénegsé simulation situations or for such small flow
velocities the TA method is not available. In faghen we simulated the same problems with the TA
method under the same conditions as in Figure 3Fagute 5, the maximal flow velocity is always
great than 2 m“s Certainly this is not the correct solution of f@blems. Up to now, we have not
found any algorithm which can be used to solve suébw velocity nanoscale flow problem. That is
why the LA method is important for low flow velogiproblems. However, we can compare the results
of TA and LA methods for high flow velocity cases shown in Figure 2 and Figure 4. Because, in
principle, the LA method can be used for both hagid low flow velocity problems the conclusions
obtained from the high flow velocity comparisons ¢ extended to low flow velocity problems.

Figure 2. Poiseuille flow simulations of case 1 (high flaxglocity simulations). The
vertical coordinate is the flow velocity and therikontal coordinate is the
height of the channe—— is the result of this paper (LA is the result of
the traditional (TA) method.
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Figure 4. Poiseuille flow simulations of case 2 (high fls®locity simulations)—— is
the result of this paper (LA ——is the result of the traditional (TA) method.

velocity(m/s)

0
23 2.3
y(nm)

Figure 5. Poiseuille flow simulations of case 2 (low flowleeity simulations)—— is
the result of this paper (LA ).
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These numerical examples demonstrate that theityekdraction method proposed in this paper
Is a suitable approach for both low and high sféed problems. When the flow velocity is big the
result of LA method is the same as the result of Méthod. When the flow velocity is small TA
method is not available we have to use LA methaoektoact V.

Convergence and Efficiency analysis

In this new algorithm, we only used the linear terof the development of the force function with
respect toArije to approximate the force increment caused by ttiermal conditions. What is the
influence of the truncate errors of this approxior? Is it convergent and what are the conditions o
convergence? These are the questions which sheulmh®wered for a reliable algorithm. We do a
series of simulations with different size of timesfromAt = 10™*s toAt = 10*®s. We find that when
At = 10™s the simulation of our new velocity extraction et is not good. This means for the linear
approximation the size of time step should be smalf the time step is big the smai} assumption
will be broken. Whemt = 10*®s the result is almost the same with the resulitof 10*’s. So we
have reason to believe that whan = 10" s the simulation is already convergent. We show the
simulation results with time step size fraxh= 10*°s toAt = 10%’s in Figure 6. From this figure we
see that whent = 10"°s the simulation result is far from convergence wheénAt = 10*°s we obtain
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a quite satisfactory result. If we lat = 10%’ s the result is only improved a little, so for pieal
applications, the recommended time step siz¢ is10%°s.

Figure 6. Comparison of simulation results with differan{LA Method). Low flow
velocity simulations of case 2. The vertical conade is the flow velocity and
the horizontal coordinate is the height of the cien

l4r . —a— LA
p‘,dr""ﬁ.%‘ At=10-158
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A=107%s
@ 1.0f s N |25
g i At=10""7s
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0 0.4F p L
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Figure 7 is the analysis of the error of the maxifitav velocity when the size of the time step is
changed (LA Method). The simulation conditions #re same as the simulations in Figure 4. The
vertical coordinate is the error of the maximamfleelocity |(Vmaxia = VmaxTa)/Vmaxta| 100% and
the horizontal coordinate is size of the time séefs), where Max La IS the maximal velocity of this
paper and Max ta IS the maximal velocity of TA method.

Figure 7. lllustration of the relationship between the emwbthe maximal flow velocity
and the size of the time step (LA Method).
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Although the purpose of this new method is to esttthe low flow velocity caused by the external
conditions, which the conventional MDS method cah do, the efficiency of an algorithm is always
an important part to be considered. In our new pethe useit = 10%°s. For the similar problems, in
conventional MDS methodat = 10™s is usually used. Because in this new method weatlmeed
extra iterations to calculate the flow velocityeavl00 times smaller time step size is used, tta to
number of time steps is still less than that of dgbaventional MDS method. The simulation software
was executed on a Pentium 2.8GHz PC. We compaee@RU time and the number of time steps as
follows. In Figure 2, we used 89800 time steps Iffitutes CPU time) for LA method and 3.2%10
time steps (108 minutes CPU time) for the TA method~igure 4, we used 288400 time steps (565
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minutes CPU time) for the LA method and 7.8 Xfifhe steps (1022 minutes CPU time) for the TA
method. The efficiency of the new method is evident

Conclusions

Using this method we can separate very safdliom the total velocity. It is very useful becalise
many cases we are more interested in the real menteai the medium. The new algorithm is also
efficient compared to the traditional way. Becauwse do not need so many extra iterations as we
usually do the new algorithm can reach a stabletisol faster. This is important because usually the
MDS use so much computation time that the numbeadicles is limited.

In this paper only the steady Poiseuille flow imglated. Because, in this method, we do not use
the time average algorithm the velocity computat®totally coincidence with the real transienteta
so the dynamic effective can be exhibited exatilypefully this method will be suitable to simulate
transient phenomena. It will be our later work.sTimethod is also valid in other MDS problems where
v®is important. In fact, in many MDS problems we wemknow the small change of velocity caused
by the exerted external conditions. The method pfilvide us a good way to solve this kind of
problems.
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