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Abstract: Due to their widespread use in bactericides, insecticides, herbicides, and 

fungicides, chlorophenols represent an important source of soil contaminants. The 

environmental fate of these chemicals depends on their physico-chemical properties. In the 

absence of experimental values for these physico-chemical properties, one can use predicted 

values computed with quantitative structure-property relationships (QSPR). As an 

alternative to correlations to molecular structure we have studied the super-structure of a 

reaction network, thereby developing three new QSSPR models (poset-average, cluster-

expansion, and splinoid poset) that can be applied to chemical compounds which can be 

hierarchically ordered into a reaction network. In the present work we illustrate these poset 

QSSPR models for the correlation of the octanol/water partition coefficient (log Kow) and the 

soil sorption coefficient (log KOC) of chlorophenols. Excellent results are obtained for all 

QSSPR poset models to yield: log Kow, r = 0.991, s = 0.107, with the cluster-expansion 

QSSPR; and log KOC, r = 0.938, s = 0.259, with the spline QSSPR. Thus, the poset QSSPR 

models predict environmentally important properties of chlorophenols. 

Keywords: chlorophenols (CPs), reaction network; Hasse diagram; partially ordered set; 

poset; poset-average; cluster-expansion; splinoid poset; quantitative structure-property 

relationships; QSPR; quantitative structure-activity relationships (QSAR); octanol/water 

partition coefficient (log Kow); soil sorption coefficient (log KOC). 
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1. Introduction 

The widespread use of synthetic organic compounds in industry, agriculture, health care, and 

household is an important source of soil and water contamination. Other sources of contamination are 

accidental spills, hazardous waste disposal sites, storage tanks, or municipal landfills. To minimize the 

environmental impact of organic pollutants, the remediation of contaminated soil usually starts with the 

extraction of the pollutants into an aqueous phase, followed, if necessary, by other chemical or 

biological treatments. Knowledge of various physico-chemical properties of the organic pollutants is 

necessary for the design of these remediation processes [1,2]. Whenever the values for these physico-

chemical properties are not experimentally available, various quantitative structure-property 

relationships (QSPR) have often been used to predict these properties. 

The success of the soil remediation process for a particular organic compound depends on the 

distribution of that chemical in soil/water or soil/solvent systems. The partition of an organic pollutant 

between the water (hydrophobic) and organic (hydrophobic) phases is generally correlated with various 

properties, such as the water solubility S and the octanol/water partition coefficient Kow. The 

environmental fate of organic compounds is also correlated with the soil adsorption partition 

coefficient KOC. The modeling of these properties from structural parameters, with various QSPR 

models, has been investigated in many papers [3-12]. 

Phenol and its derivatives are common environmental contaminants [13-18], and most of them are 

known or suspected to be human carcinogens. Besides the fact that phenols give an unpleasant taste 

and odor to drinking water, they are powerful toxics for various biological processes. Due to their 

widespread use in industry, household, forest industries, and as disinfectants, chlorophenols represent 

an important source of soil contaminants [13,19-21]. The environmental fate (soil adsorption, water 

solubility, partition between soil and water, reaction rates) of these chemicals depends on their physico-

chemical properties. 

Many chemical compounds, derived from a common molecular skeleton, can be organized in formal 

reaction networks, such as substitution–reaction networks, having the mathematical structure of a 

partially ordered set (or poset) [22-31]. Thus poset substitution–reaction networks are a type of super-

structure which then might be utilized in property modeling [26]. Using this reaction poset, we have 

recently developed highly predictive quantitative super-structural QSSPR models (poset-average, 

cluster-expansion, and splinoid poset), and applied these models for chlorobenzenes [26,32], 

methylbenzenes [26], methylcyclobutanes [31], and polychlorinated biphenyls [33]. 

Unlike the classical QSPR & QSAR (quantitative structure-property & -activity relationships), the 

reaction poset super-structure QSSPR and QSSAR models do not use conventional molecular 

descriptors to correlate physical, chemical, or biological properties. In the reaction poset approach, the 

molecular properties are predicted from a response framework generated by the super-structure of the 

substitution–reaction network. In the present work we apply these poset QSSPR models to predict the 

octanol/water partition coefficient (log Kow) and the soil sorption coefficient (log KOC) of 

chlorophenols.  These fittings are here (favorably) validated via a leave-one-out procedure. 
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2. The Reaction Poset Diagram for Phenol Substitution 

The poset super-structural QSSPR and QSSAR models make special use of the mathematical 

structure of a partially ordered set induced from a substitution–reaction network, when a molecular 

skeleton is subjected to successive steps of substitution. Starting from an unsubstituted compound, 

substituents are progressively introduced one after another, with earlier substituents fixed at their 

different possible positions. 

The special super-structure considered here is the substitution–reaction network that starts with 

phenol and continues with consecutive formal substitution reactions in which a H atom from the 

phenyl ring is replaced with a Cl atom (Figure 1). The poset reaction diagram starts with phenol at the 

top and ends with pentachlorophenol at the bottom, while all the remaining different patterns of 

substitution occur in between. The arrows indicate the hierarchic generation of the different patterns of 

more substituted compounds from the different patterns of less substituted ones. 

As we present in detail in the following sections, the poset reaction diagram from Figure 1 is 

subjected to various mathematical treatments to generate poset super-structural QSSPR and QSSAR 

models to predict the octanol/water partition coefficient and the soil sorption coefficient of 

chlorophenols. The topology of the chlorophenol reaction poset is the basis for all these models, which 

is a notable departure from the classical QSAR and QSPR models that use various structural 

descriptors. 

3. Experimental Data 

As can be seen from Figure 1, chlorinated phenols constitute a series of 19 substituted compounds, 

which can be further classified as three monochlorophenols, six dichlorophenols, six trichlorophenols, 

three tetrachlorophenols, and one pentachlorophenol. The parent phenol is included in the poset as a 

20th member. The United States Environmental Protection Agency (EPA) has classified chlorophenols 

as priority pollutants owing to their environmental toxicity. Due to their wide use in industry and the 

household (as bactericides, insecticides, herbicides, fungicides, and wood preservatives) [13-21], 

chlorophenols are easily released in the environment, either from direct use or accidental spillage. As a 

consequence, they cause severe environmental problems, being frequently detected in surface water, 

wastewater, soil, and sediments [17,34,35]. Exposure to chlorophenols can result in irritations of the 

respiratory tract and of the eyes. Higher doses can induce convulsions, shortness of breath, coma, or 

even death. The toxicity of chlorophenols is determined by the number and position of the Cl atoms, 

and by the concentration in a particular environmental compartment. 

Due to their importance as environmental pollutants which can produce serious risks for human 

health, we have developed reaction poset super-structural QSSPR and QSSAR models for 

octanol/water partition coefficients (log Kow) and soil sorption partition coefficients (log KOC) of 

chlorophenols. All experimental data were collected from the literature: log Kow [36,37]; log KOC [38]. 
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Figure 1. The posetic phenol super-structural substitution–reaction network. The black enlarged dots 

indicate the sites on which an aromatic H atom of phenol has been replaced by a Cl atom. 
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4. Posetic Methodology 

4.1 Posetic Applications in General 

Partially ordered sets (or posets) have been advocated as of very general utility in chemistry [22,23], 

having numerous chemical applications [24]. Brüggemann and co-workers [39-44] have proposed their 

use as an attractive way of handling complex information within the environmental area. Poset models 

in ranking or prioritizing chemical pollutants have been proposed [45-48]. A book on the chemical and 

environmental science applications has appearred [49], and beyond this they are advocated [50] as of 

rather general utility in science, with there then also being numerous mathematical developments. 

Formally a poset consists of a set P with a relation f  which satisfies two conditions: first, for α,     

β ∈ P, α  f β  ⇒  β ⊁ α; and second for α, β, γ ∈ P, α  f β and β  f γ ⇒  α  f γ. In the particular 

case of chlorophenols (Figure 1) the set P consists of chemical compounds derived from phenol by 

substituting aromatic H atoms with Cl atoms, and the ordering α f β means that β is obtainable from α 

after some (non-zero) number of chlorinations. The relation which allows either α f β or α = β is 

denoted α ≽ β, and the relation where α f β without any intervening members of P is denoted α →β, 

in which case one says α covers β. The Hasse diagram H(P) of P displays these covering relations, 

chosen to be oriented downward. 

4.2 Reaction Poset Super-Structures 

As presented in Figure 1, the chemical basis of our reaction-poset super-structural models is 

represented by the mathematical structure of a partially ordered set induced from a substitution–

reaction network when a molecular skeleton is subjected to successive steps of substitution. The 

mathematical poset focused on here is represented just by the bare super-structural reaction network (or 

Hasse diagram), without explicit reference to the molecular structures shown at the different nodes of 

the network in Figure 1. 

These reaction-network posets are of a special type. They always have a unique maximum and a 

unique minimum, and moreover each is self-dual, mapping into itself under the interchange of 

substituted and unsubsituted sites. Yet further these posets are ranked (according to the number of 

substituents), those members at the same rank being isomers. In general these posets are not 

mathematical lattices (defined as posets for which every pair of elements has a unique least upper 

bound and a unique greatest lower bound). In particular, our phenol substitution poset is not a lattice – 

e.g., because member 5 and 7 do not have a unique least upper bound (but rather two: 2 and 3). But 

still they have an interesting structure, reminiscent of a “finite geometry” on a space of skeletal 

substitution positions, with the geometric structure mediated by the skeletal group, here C6H5OH for 

our phenol example. 

4.3 Posetic QSSPR and QSSAR Modelling 

The reaction poset super-structure QSPR models considered here are based on the substitution–

reaction network that starts with phenol and continues with consecutive formal substitution reactions in 

which a H atom from the phenyl ring is replaced with a Cl atom. After five steps of successive 
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substitution, all reaction branches converge to pentachlorophenol, which concludes the reaction 

network (Figure 1). Each vertex in the Hasse diagram may be identified to the property value for the 

corresponding compound. 

The topology of the chlorophenol reaction poset is the basis for all models investigated in the 

present paper, namely poset-average, cluster-expansion, and splinoid poset. Otherwise information 

about the molecular structures is foregone – though it may be seen that the poset has embedded in it 

much information about molecular structure, and especially about interrelations between molecular 

structures. Following our previous procedure tested for a number of chemical classes (chlorobenzenes 

[26,32], methylbenzenes [26], methylcyclobutanes [31], and polychlorinated biphenyls [33]), we 

evaluate the models by comparing their leave-one-out (LOO) cross-validation statistics giving them the 

correlation coefficient r and standard deviation s. We next briefly describe the three reaction poset 

super-structural QSSPR models to be utilized here. 

4.4 Average-Poset Model 

Starting from the Hasse diagram (Figure 1) our poset-average method [26] computes a predicted 

value X(β)pred for a property X of a compound β as the average of two averages, namely the average of 

experimental values X(α)exp for all compounds α from the previous level that connect by incoming 

arrows to B, and the average of experimental values X(γ)exp for all compounds γ from the next level 

that that receive outgoing arrows from B. To apply this the experimental property values must be 

available for all diagram positions adjacent to B. For example, in Figure 2 we present the reaction poset 

diagram for chlorophenols, in which each vertex (compound) has attached the experimental value for 

log Kow [36,37]. The poset-average log Kow predicted value for 4-chlorophenol (4-ClP) is computed 

with the formula: 

{ [ ]

[ ]

ow ow ow 2 ow 2

1 1
log (4 ClP) log ( P) log (2,4 Cl P) log (3,4 Cl P)

2 2

1 1
           1.46 3.22 3.17 2.33

2 2

K K K K
− = + − + − 


 = + + = 
 

 

As one can see from this example, the properties computed with the poset-average method are 

parameter-free predictions, and the statistical indices are obtained via LOO statistics. 

4.5 Splinoid Poset Model 

The chloro-substitution network of phenol is represented here as a Hasse diagram H(P) (Figure 1) 

which mathematically represents a finite poset P. An oriented edge in the Hasse diagram here 

represents the transition α→β from a chemical compound α with n chlorine atoms to one β with n+1 

chlorine atoms, and we attach a real variable xα→β ranging from 0 to 1, that represents the 

transformation of α into β. When formulating the splinoid QSSPR model for a property X, one 

considers cubic spline polynomials (in xα→β) on the oriented edges α→β of the Hasse diagram H(P). 

Further each vertex α of H(P) or P is identified by a value aα and a slope bα for the spline polynomials 

incident at α. The splinoid poset QSSPR model is generated based on known values of the property X 

for a subset K⊆P of the chemical compounds. Briefly, the splinoid fit consists of the following steps: 

first, the cubic splines match values aα at the nodes α ∈K to the known property values; second, the 
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incoming and outgoing slopes through each node match to the corresponding bα value; and third, a 

relevant total “curvature” of the overall spline fit is minimized (subject to the constraints of the first 

two conditions). With the splinoid QSSPR determined for the vertices from K, one can predict the 

property values for the remaining chemical compounds that do not have an experimental value for the 

property X these being the compounds that form the “unknown” set U of vertices α ∉K.  

A mathematical derivation [27] leads to a closed formula predicting the values of X for the set U of 

chemical compounds. Let A denote the adjacency matrix of the Hasse diagram H(P), and let S denote 

the oriented adjacency matrix of H(P), where: 

1  ,if 

1  ,if 

0  ,otherwise

Sαβ

β α
α β

→
= − →



 

The in-degree on vertex α ∈P is denoted by d→α, and the out-degree on vertex α ∈P is denoted by dα→. 

Then, we introduce two diagonal matrices: 

][diag αα →→ −= ddD  

][diag αα →→ += dd∆  

Further define the matrices U (the |U|×|P| submatrix of the unity matrix I, with rows indexed by the 

elements of U), and K (the |K|×|P| submatrix of the unity matrix I, with rows indexed by the elements 

of K), and the derived matrix: 

)()2)((3)(2 1 SD∆ASDA∆M ++−−−= −  

The (column) vector of known property values is denoted by k
r

. Then, the vector u
r

 that contains the 

predictions for the unknown property values aα is computed from: 

( ) ( )ku
rr t1t UMKUMU

−−=  

For a few different reaction networks we have studied the matrix UMUt which appears in practice to be 

invertible regardless of how sparse the “known” data is in the network up to the point that very few 

( ≤ 2) known data are available. The coefficients appearing in the spline polynomials do not explicitly 

appear in our splinoid formula for u
r

, but they are complicit in the derivation of this formula for u
r

. 

The present formula gives u
r

 in terms of the poset structure, and thence completes the splinoid QSSPR 

algorithm, which turns out to give a robust model in accommodating a diversity of missing values for 

several compounds (which may possibly even be adjacent). This is a significant advantage of the 

splinoid model, which uses the topology of the Hasse diagram to generate a response network for the 

investigated property. To achieve comparison with the results from the other poset QSSPR models, we 

have used the splinoid model in the leave-one-out cross-validation procedure. 



Int. J. Mol. Sci. 2006, 7                           

 

 

365

OH

OHOH OH

OHOH OH OHOH OH

OH OHOHOH OH

OHOH OH

OH

OH

1

2 3 4

5 6 7 8 9 10

11 12 13 14 15 16

17 18 19

20

1.46

2.17 2.50 2.40

2.94 3.22 3.09 2.74 3.17 3.20

3.80 3.69 3.46 3.89 3.85 3.99

4.49 4.36 4.36

5.03

 

Figure 2. The reaction poset diagram of chlorophenols with the experimental values of the 

octanol/water partition coefficients (log Kow) [36,37]. 
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4.6 Cluster-Expansion Model 

Formal cluster-expansion in general re-expresses a scalar function (or property) for the different 

members of a poset in terms of related functions focusing more strongly on earlier members of the 

poset. Much of the formal theory is described by Rota [51] for general posets, and its chemical 

application in the case that the partial ordering is the subgraph partial ordering is described in [28-31]. 

Generally, for a scalar property X defined on the members of a poset P (with partial ordering f ) one 

may expand X for α ∈ P, as 

∑
≥

=
α

β
βαβα )(),()( fXfX  

where the sum goes over all β ≽ α, f(β,α) is a cluster function that maps pairs of members of P onto 

real numbers with f(β,α) = 0 whenever β ⋡ α, and is such that f(α,α) ≠ 0. Further, Xf(β) is an f 

transform property depending on X and the cluster function f. Conveniently, this cluster-expansion may 

be truncated to a limited sequence of non-zero cluster approximants, and so applied whenever the 

earlier terms offer a good approximation of the property X. 

For our reaction-network posets, we choose [31-33] that f(β,α) be the number of ways in which 

substitution pattern α occurs as a subset of substitution pattern β. For the poset diagram of 

chlorophenols, we have truncated the cluster-expansion model to Xf contributions from the chlorine 

atoms situated through the second and third rows of the poset (Figure 1). The number of parameters 

(i.e., the Xf(β)) from the third row is reduced from 5 to 3 through the approximation of making them 

depend solely on the relative positions of the two chlorine atoms (as ortho, meta, and para): 

Xf(2,3-Cl2P) = Xf(3,4-Cl2P) ≡ d 

Xf(2,4-Cl2P) = Xf(3,5-Cl2P) ≡ e 

Xf(2,5-Cl2P) ≡ f 

where P indicates phenol. The parameters associated to the second row of the poset are abbreviated to 

Xf(2-ClP) ≡ a, Xf(3-ClP) ≡ b, Xf(4-ClP) ≡ c. 

This truncated cluster-expansion model proves to be able to model the properties of chlorophenols. 

In each series of QSSPR models, phenol was considered as a reference structure, namely, the property 

values are shifted so that X(phenol) = 0. The set of Xf(β) parameters (a, b, c, d, e, f) can be computed by 

a least-squares procedure based on a subset of molecules, or by “inversion” from small systems - and 

here we use the former choice. All models were tested in a leave-one-out cross-validation procedure, in 

order to obtain results comparable with those from the other poset QSSPR models. 

5. Results and Discussions 

The first group of poset QSSPR models is developed for the octanol/water partition coefficient Kow 

of chlorophenols. All 20 values, including that for phenol, were collected from the literature [36,37]. 

The predictions obtained with the reaction poset super-structure QSSPR models are of very good 

quality: poset-average, r = 0.987, s = 0.115; cluster-expansion, r = 0.991, s = 0.107; splinoid poset, r = 



Int. J. Mol. Sci. 2006, 7                           

 

 

367

0.990, s = 0.122. As can be seen from the plots of experimental vs. predicted Kow values (Figure 3), 

there are no significant outliers or deviations from linearity. 
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Figure 3. Plot of experimental vs. predicted octanol/water partition coefficient for chlorophenols with 

the poset-average, cluster-expansion, and splinoid poset QSSPR models. 

The second application for log KOC considers the situation when not all 20 experimental values of 

the chlorophenols are known. We found in the literature only 12 values for the soil sorption coefficient 

KOC for chlorophenols and phenol [38]. Due to the absence of a significant number of experimental 
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values, the poset-average method cannot be used. On the other hand, we obtained good statistics for the 

cluster-expansion (r = 0.912, s = 0.287) and splinoid poset (r = 0.938, s = 0.259). The predictive values 

by these two different methods are identified in Table 1. The splinoid scheme reproduces exactly the 

12 known experimental values, which then in the Table 1 are entered in bold-face. Comparision of 

predictions for the 12 known ones when one-by-one they are left out are shown in Figure 4. 

Table 1. Experimental and predicted values for cluster-expansion and splinoid QSSPR models for soil 

sorption coefficient, log KOC. The experimental values are presented in bold. 

No. Compound Splinoid model Cluster-expansion 

1 P 1.72 1.72 

2 2-ClP 2.60 2.23 

3 3-ClP 2.54 2.78 

4 4-ClP 2.42 2.81 

5 2,3-Cl2P 2.65 3.25 

6 2,4-Cl2P 2.74 2.95 

7 2,5-Cl2P 2.87 2.68 

8 2,6-Cl2P 2.78 2.51 

9 3,4-Cl2P 3.09 3.14 

10 3,5-Cl2P 2.92 2.71 

11 2,3,4-Cl3P 3.32 3.43 

12 2,3,5-Cl3P 3.35 3.09 

13 2,3,6-Cl3P 3.24 2.99 

14 2,4,5-Cl3P 3.36 3.12 

15 2,4,6-Cl3P 3.03 2.95 

16 3,4,5-Cl3P 3.56 3.48 

17 2,3,4,5-Cl4P 4.12 3.97 

18 2,3,4,6-Cl4P 3.82 3.74 

19 2,3,5,6-Cl4P 3.92 3.58 

20 Cl5P 4.52 4.96 

Overall the correlation coefficients are very good for such complex property correlations, whence a 

subsequent natural question concerns the relation to molecular structure and a comparison to more 

conventional QSPR fittings.  There are many hundreds of possible choices of molecular-structure 

descriptors, so that a definitive comparison to QSPR is elusive, even for the limited case of 

chlorophenols, though the more fundamental question concerns a more general range.  But obviously 

QSPR schemes focus on molecular structure as the fundamental object of study, whereas our posetic 

approach focuses on the super-structural reaction network as the fundamental object of study (so that 

we have used the abbreviation QSSPR).  Questions of what QSSPR tells us about molecular structure, 

though rather incompletely answered, might be compared to the incompletely answered converse 

question of what ordinary QSPR approaches tell one about the reaction network.  Our splinoid QSSPR 

approach clearly tends to assign similar values for structures which are similar in the sense that they 

have a large common graphical substructure (since then the two molecular structures are close together 
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in the reaction poset), while the splinoid fit interpolates as smoothly as possible between the nearby 

known values.  Likewise with two molecular structures sharing a large common substructure and so 

being nearby in the posetic diagram, the cluster expansion we make gives a similar set of predecessors 

for two such nearby structures, and thence similar numerical values for the fitted property.  Both QSPR 

& QSSPR schemes, then tend to assign similar property values to "similar" structures.  We believe that 

there is an even tighter formal relationship between our reaction-network cluster expansion and 

common (QSPR-based) substructural cluster expansions – as is seen in the examples where we have 

indicated a molecular substructural interpretation of our retained reaction-network-cluster terms.  We 

believe there is a general correspondence between the two types of cluster expansions, though in the 

structural & super-structural circumstances the terms are ordered differently, and thence different later 

terms are generally omitted in the two schemes.  This surely warrants more formal study, only the 

beginning of which is described in [31], and is not pursued here. 
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Figure 4. Plot of experimental vs. predicted soil sorption coefficient for chlorophenols with the cluster-

expansion and splinoid poset QSSPR models. 

Overall it seems that one might frequently anticipate similar fittings from QSPR & QSSPR schemes 

– so long as the QSPR is limited to structures occurring within the reaction-network superstructure.  As 

an example comparison, we consider QSPR fittings to two structural indexes: #Cl(ξ) the number of 
chlorine atoms in the chlorophenol ξ ; and ( )χ ξ  the Randic connectivity index for the H-deleted graph 

(not distinguishing C, O, or Cl atoms).  That is, one considers a fitting of a molecular property X to 

Cl( ) # ( ) ( )X A B Cξ ξ χ ξ= + ⋅ + ⋅  
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We make two least-squares fittings, for our two presently studied properties.  The results for logKow 

are: 

39.484, 5.3414, 11.207   with   0.993, 0.109, 0.991LOOA B C r s r= = = − = = =  

the statistics here being excellent.  For log KOC the results are: 

3.325, 0.1135, 1.530   with   0.966, 0.221, 0.943LOOA B C r s r= − = − = = = =  

which also are very good statistics.  As expected from the excellence of our earlier cluster-expansion 

fit, and its close relationship to typical invariants for QSPR fittings, the results for either type of 

approach are very good, and very similar as to error statistics.   Though the results are comparable, 

what we have done is to show that an alternative novel sort of (QSSPR) approach is also available, and 

that for the example here along with a few elsewhere, rather high quality fits are achievable. 

3. Conclusions 

Chlorophenols are widely used as bactericides, insecticides, herbicides, fungicides and wood 

preservatives [13-21], which makes them frequent environmental pollutants, either from direct use or 

accidental spillage. Exposure to chlorophenols can result in irritations of the respiratory tract and of the 

eyes. Commonly detected in surface water, wastewater, soil, and sediments [17,34,35], chlorophenols 

were classified by the EPA as priority pollutants.  The investigation of their sorption behavior is 

fundamental to simulate and eventually predict their environmental fate. Because the octanol/water 

partition coefficient Kow and the soil sorption partition coefficient KOC are useful to estimate the 

mobility of an organic compound in soil, both are important to understand the distribution of chemical 

compounds in soil, sediments, and water.  Because the laboratory methods for the determination of Kow 

and KOC are time consuming, the reaction poset super-structure QSSPR models demonstrated here can 

be applied to obtain reliable predictions for these properties. 

To predict the octanol/water partition coefficient log Kow and the soil sorption coefficient log KOC of 

chlorophenols we have compared the predictive power of three reaction poset super-structural QSSPR 

models developed in our group [22-33], namely poset-average, cluster-expansion, and splinoid poset. 

The poset super-structural QSSPR models make special use of the mathematical structure of a partially 

ordered set induced in a substitution–reaction network when a molecular skeleton (such as benzene, 

naphthalene, or biphenyl) is subjected to successive steps of substitution. Starting from an 

unsubstituted compound, substituents are progressively introduced one after another, with earlier 

substituents fixed at their different possible positions. The special super-structure considered here is 

the substitution–reaction network that starts with phenol and continues with consecutive formal 

substitution reactions in which a H atom from the phenyl ring is replaced with a Cl atom. The poset 

reaction diagram starts with phenol at the top and ends with pentachlorophenol at the bottom, while all 

the different patterns of substitution occur in between. The poset-average is a local non-parametric 

method, the cluster-expansion is a parametric method, and the splinoid poset method is a global 

interpolation method. 

Based on the poset reaction diagram, all three of these QSSPR models reflect in distinct ways the 

topology of the network that describes the interconversion of chemical species. All three poset QSSPR 
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methods give very good predictions for the properties investigated here. For log Kow, the cluster-

expansion gives slightly better leave-one-out predictions & validations (r = 0.991, s = 0.107), while for 

log KOC the best LOO predictions & validations are obtained with the splinoid poset method (r = 0.938, 

s = 0.259). Thus, we have extended the application of the poset QSSPR models to the prediction of 

environmentally important properties of chlorophenols. Evidently especially the splinoid and cluster-

expansion models are applicable to circumstances where there is missing data, as in the case of the soil 

sorption coefficient. There seems promise for further similar uses of such posetic reaction-networks for 

QSSPR and QSSAR modeling.  But in addition, it seems to us that it would be of value to further 

extend our approach with the simultaneous use of two or more reactions, so as to treat in one setting a 

larger range of structures – this then yielding a "multi-poset".  Further, we think that it could be 

interesting if there were revealed a formal relation between QSSAR (or QSSPR) on one hand and 

QSAR (or QSPR) on the other.  In particular, it would be of interest if features of the present QSSPR 

(or QSSAR) were identified to engender greater distinction in fittings.  Certainly much work remains, 

both in the general context of partial orderings, and for our currently studied special case of 

substitution-reaction-network posets. 
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