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Abstract: Due to their widespread use in bactericides, imsdet, herbicides, and
fungicides, chlorophenols represent an importanircg of soil contaminants. The
environmental fate of these chemicals depends @in pihysico-chemical properties. In the
absence of experimental values for these physiemdal properties, one can use predicted
values computed with quantitative structure-prgperelationships (QSPR). As an
alternative to correlations to molecular structure have studied the super-structure of a
reaction network, thereby developing three new QS3#vbdels (poset-average, cluster-
expansion, and splinoid poset) that can be appbechemical compounds which can be
hierarchically ordered into a reaction networktHe present work we illustrate these poset
QSSPR models for the correlation of the octanokwpartition coefficient (lodkon) and the
soil sorption coefficient (lodkoc) of chlorophenols. Excellent results are obtaifmdall
QSSPR poset models to yield: 1&gy, r = 0.991,s = 0.107, with the cluster-expansion
QSSPR; and lo&oc, r = 0.938,s = 0.259, with the spline QSSPR. Thus, the pose&R}S
models predict environmentally important properbéshlorophenols.

Keywords. chlorophenols (CPs), reaction network; Hasse dmgnartially ordered set;
poset; poset-average; cluster-expansion; splinadet) quantitative structure-property
relationships; QSPR; quantitative structure-agtivielationships (QSAR); octanol/water
partition coefficient (lodow); soil sorption coefficient (lo¢oc).
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1. Introduction

The widespread use of synthetic organic compoundsdustry, agriculture, health care, and
household is an important source of soil and wedetamination. Other sources of contamination are
accidental spills, hazardous waste disposal stesage tanks, or municipal landfills. To minimibe
environmental impact of organic pollutants, the edmtion of contaminated soil usually starts with t
extraction of the pollutants into an aqueous ph#&skégwed, if necessary, by other chemical or
biological treatments. Knowledge of various physibemical properties of the organic pollutants is
necessary for the design of these remediation psese[1,2]. Whenever the values for these physico-
chemical properties are not experimentally avadlabl/arious quantitative structure-property
relationships (QSPR) have often been used to gregise properties.

The success of the soil remediation process foaréicplar organic compound depends on the
distribution of that chemical in soil/water or gsdlvent systems. The partition of an organic pgalit
between the water (hydrophobic) and organic (hylobjc) phases is generally correlated with various
properties, such as the water solubility S and dlctanol/water partition coefficienKo,. The
environmental fate of organic compounds is alsoretared with the soil adsorption partition
coefficient Koc. The modeling of these properties from structyratameters, with various QSPR
models, has been investigated in many papers [3-12]

Phenol and its derivatives are common environmerttataminants [13-18], and most of them are
known or suspected to be human carcinogens. Bethdefact that phenols give an unpleasant taste
and odor to drinking water, they are powerful texfor various biological processes. Due to their
widespread use in industry, household, forest imghss and as disinfectants, chlorophenols reptesen
an important source of soil contaminants [13,19-Z1e environmental fate (soil adsorption, water
solubility, partition between soil and water, réactrates) of these chemicals depends on theirigdwys
chemical properties.

Many chemical compounds, derived from a common oubée skeleton, can be organized in formal
reaction networks, such as substitution—reactionvaris, having the mathematical structure of a
partially ordered set (or poset) [22-31]. Thus pasdstitution—reaction networks are a type of supe
structure which then might be utilized in propemtgdeling [26]. Using this reaction poset, we have
recently developed highly predictive quantitativepar-structural QSSPR models (poset-average,
cluster-expansion, and splinoid poset), and applieelse models for chlorobenzenes [26,32],
methylbenzenes [26], methylcyclobutanes [31], amigighlorinated biphenyls [33].

Unlike the classical QSPR & QSAR (quantitative stuwe-property & -activity relationships), the
reaction poset super-structure QSSPR and QSSAR Isalte not use conventional molecular
descriptors to correlate physical, chemical, otdgizal properties. In the reaction poset appro#uod,
molecular properties are predicted from a resp@m@seework generated by the super-structure of the
substitution—reaction network. In the present weekapply these poset QSSPR models to predict the
octanol/water partition coefficient (lodon) and the soil sorption coefficient (lo¢loc) of
chlorophenols. These fittings are here (favorabdjidated via a leave-one-out procedure.
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2. The Reaction Poset Diagram for Phenol Substitution

The poset super-structural QSSPR and QSSAR modeke mpecial use of the mathematical
structure of a partially ordered set induced frorauastitution—reaction network, when a molecular
skeleton is subjected to successive steps of swfiwti. Starting from an unsubstituted compound,
substituents are progressively introduced one aftexther, with earlier substituents fixed at their
different possible positions.

The special super-structure considered here isstiistitution—reaction network that starts with
phenol and continues with consecutive formal stigin reactions in which a H atom from the
phenyl ring is replaced with a Cl atom (Figure The poset reaction diagram starts with phenolat th
top and ends with pentachlorophenol at the bottetmie all the remaining different patterns of
substitution occur in between. The arrows indi¢ageshierarchic generation of the different pattevhs
more substituted compounds from the different pastef less substituted ones.

As we present in detail in the following sectiotise poset reaction diagram from Figure 1 is
subjected to various mathematical treatments t@rgé® poset super-structural QSSPR and QSSAR
models to predict the octanol/water partition cioeght and the soil sorption coefficient of
chlorophenols. The topology of the chlorophenottiea poset is the basis for all these models, whic
is a notable departure from the classical QSAR &Q®PR models that use various structural
descriptors.

3. Experimental Data

As can be seen from Figure 1, chlorinated phenmistitute a series of 19 substituted compounds,
which can be further classified as three monocipleenols, six dichlorophenols, six trichlorophenols,
three tetrachlorophenols, and one pentachlorophdin@ parent phenol is included in the poset as a
20th member. The United States Environmental Ptioteé\gency (EPA) has classified chlorophenols
as priority pollutants owing to their environmentakicity. Due to their wide use in industry anct th
household (as bactericides, insecticides, hertscidengicides, and wood preservatives) [13-21],
chlorophenols are easily released in the enviromnegher from direct use or accidental spillags.a
consequence, they cause severe environmental prebleeing frequently detected in surface water,
wastewater, soil, and sediments [17,34,35]. Exmosnirchlorophenols can result in irritations of the
respiratory tract and of the eyes. Higher dosesimance convulsions, shortness of breath, coma, or
even death. The toxicity of chlorophenols is deteed by the number and position of the Cl atoms,
and by the concentration in a particular environtalecompartment.

Due to their importance as environmental pollutamktsch can produce serious risks for human
health, we have developed reaction poset supeststel QSSPR and QSSAR models for
octanol/water partition coefficients (logo.,) and soil sorption partition coefficients (Id§oc) of
chlorophenols. All experimental data were colledtedh the literature: lo¢ow [36,37]; logKoc [38].
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Figure 1. The posetic phenol super-structural substitutieaetion network. The black enlarged dots
indicate the sites on which an aromatic H atomhail has been replaced by a Cl atom.
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4. Posetic M ethodology
4.1 Posetic Applications in General

Partially ordered sets (or posets) have been athaes of very general utility in chemistry [22,23]
having numerous chemical applications [24]. Briiggemand co-workers [39-44] have proposed their
use as an attractive way of handling complex ingram within the environmental area. Poset models
in ranking or prioritizing chemical pollutants halveen proposed [45-48]. A book on the chemical and
environmental science applications has appearr@ld §hd beyond this they are advocated [50] as of
rather general utility in science, with there tladso being numerous mathematical developments.

Formally a poset consists of a $etvith a relation> which satisfies two conditions: first, far,
LUOP, a - = L% a, and second foa, 5, yO P, a -Fandf >y= a >y In the particular
case of chlorophenols (Figure 1) the Betonsists of chemical compounds derived from phéyol
substituting aromatic H atoms with Cl atoms, areldhderingn - £ means thaf is obtainable fronzr
after some (non-zero) number of chlorinations. Télation which allows eitheto >~ or a = S is
denoteda > £, and the relation where > S without any intervening members Bfis denotedr - £,
in which case one says covers . The Hasse diagram H(P) of P displays these covering relations,
chosen to be oriented downward.

4.2 Reaction Poset Super-Structures

As presented in Figure 1, the chemical basis of reaction-poset super-structural models is
represented by the mathematical structure of aafigriordered set induced from a substitution—
reaction network when a molecular skeleton is subge to successive steps of substitution. The
mathematical poset focused on here is represemsedly the bare super-structural reaction network (
Hasse diagram), without explicit reference to th@eaoular structures shown at the different nodes of
the network in Figure 1.

These reaction-network posets are of a special fipey always have a unique maximum and a
unique minimum, and moreover each is self-dual, pimap into itself under the interchange of
substituted and unsubsituted sites. Yet furthesdhgosets are ranked (according to the number of
substituents), those members at the same rank bsomgers. In general these posets are not
mathematical lattices (defined as posets for wigehry pair of elements has a unique least upper
bound and a unique greatest lower bound). In pdaticour phenol substitution poset is not a lattic
e.g., because membgrand7 do not have a unique least upper bound (but rather2 and3). But
still they have an interesting structure, reminigcef a “finite geometry” on a space of skeletal
substitution positions, with the geometric struetunediated by the skeletal group, heggi4OH for
our phenol example.

4.3 Posetic QSSPR and QSSAR Modelling

The reaction poset super-structure QSPR modelsdmyed here are based on the substitution—
reaction network that starts with phenol and car@swith consecutive formal substitution reactions
which a H atom from the phenyl ring is replacedhwé Cl atom. After five steps of successive
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substitution, all reaction branches converge totgmrorophenol, which concludes the reaction
network (Figure 1). Each vertex in the Hasse diagnaay be identified to the property value for the
corresponding compound.

The topology of the chlorophenol reaction posethis basis for all models investigated in the
present paper, namely poset-average, cluster-eiparsnd splinoid poset. Otherwise information
about the molecular structures is foregone — thatigiay be seen that the poset has embedded in it
much information about molecular structure, andeegly about interrelations between molecular
structures. Following our previous procedure testech number of chemical classes (chlorobenzenes
[26,32], methylbenzenes [26], methylcyclobutane&],[3and polychlorinated biphenyls [33]), we
evaluate the models by comparing their leave-ondtddO) cross-validation statistics giving them the
correlation coefficient and standard deviatioll We next briefly describe the three reaction poset
super-structural QSSPR models to be utilized here.

4.4 Average-Poset Model

Starting from the Hasse diagram (Figure 1) our paserage method [26] computes a predicted
valueX(B)pred for a propertyX of a compoungB as the average of two averages, namely the avefage
experimental valueX(a)exp for all compoundsxy from the previous level that connect by incoming
arrows to B, and the average of experimental val(gkyp, for all compounds/from the next level
that that receive outgoing arrows from B. To apiplis the experimental property values must be
available for all diagram positions adjacent td-Br example, in Figure 2 we present the reacti@epo
diagram for chlorophenols, in which each vertexr{pound) has attached the experimental value for
log Kow [36,37]. The poset-average |&g,, predicted value for 4-chlorophenol (4-CIP) is catsal
with the formula:

logK,, (4- CIP)=%{ IogKOW(P)'r%[ loK,, (2,4 CIP) log, (34 Gl F})

=3{ 1.4&5[ 3.22 3.1]}!= 2.33

2 2

As one can see from this example, the propertieapated with the poset-average method are
parameter-free predictions, and the statisticataslare obtained via LOO statistics.

4.5 Splinoid Poset Model

The chloro-substitution network of phenol is repraed here as a Hasse diagtd(®) (Figure 1)
which mathematically represents a finite poBetAn oriented edge in the Hasse diagram here
represents the transitiam- S from a chemical compoung with n chlorine atoms to ong with n+1
chlorine atoms, and we attach a real variakjes ranging from 0 to 1, that represents the
transformation ofa into . When formulating the splinoid QSSPR model for raperty X, one
considers cubic spline polynomials @R on the oriented edges- S of the Hasse diagraid(P).
Further each verteg of H(P) or P is identified by a valua, and a slopé,, for the spline polynomials
incident ata. The splinoid poset QSSPR model is generated basdéehown values of the propenty
for a subseKOP of the chemical compounds. Briefly, the splinatdcbnsists of the following steps:
first, the cubic splines match valuag at the nodesr (K to the known property values; second, the
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incoming and outgoing slopes through each node miat¢he correspondinl, value; and third, a
relevant total “curvature” of the overall spling i minimized (subject to the constraints of tiretf
two conditions). With the splinoid QSSPR determiried the vertices fronK, one can predict the
property values for the remaining chemical compauttihit do not have an experimental value for the
propertyX these being the compounds that form the “unknosenl of verticesa [IK.

A mathematical derivation [27] leads to a closeudnfala predicting the values &ffor the seUU of
chemical compounds. Lét denote the adjacency matrix of the Hasse diadgié®), and letS denote
the oriented adjacency matrix id{P), where:

1 ifB-a
Sp=9"1 ifa- g
0 ,otherwise

The in-degree on vertex [IP is denoted byl ., ,, and the out-degree on vertex]P is denoted by, ..
Then, we introduce two diagonal matrices:

D=diadd, -d ,]
A=diadd, +d ]

Further define the matricdd (the |U|¥P| submatrix of the unity matrik, with rows indexed by the
elements olJ), andK (the K|x|P| submatrix of the unity matrik with rows indexed by the elements
of K), and the derived matrix:

M =2(A-A)-3(D-S)(A+2A) (D +9)

The (column) vector of known property values isated byk . Then, the vectod that contains the
predictions for the unknown property valiggss computed from:

a=-(umut)*UmK Kk

For a few different reaction networks we have stddhe matrixJM U' which appears in practice to be
invertible regardless of how sparse the “known’adiatin the network up to the point that very few
(=<2) known data are available. The coefficients appgan the spline polynomialdo not explicitly
appear in our splinoid formula far, but they are complicit in the derivation of thagmula ford.

The present formula givas in terms of the poset structure, and thence caeplbe splinoid QSSPR
algorithm, which turns out to give a robust moaehccommodating a diversity of missing values for
several compounds (which may possibly even be adfacThis is a significant advantage of the
splinoid model, which uses the topology of the ladmgram to generate a response network for the
investigated property. To achieve comparison withresults from the other poset QSSPR models, we
have used the splinoid model in the leave-one-msgsevalidation procedure.
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Figure 2. The reaction poset diagram of chlorophenols Witheéxperimental values of the
octanol/water partition coefficients (I¢G.w) [36,37].
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4.6 Cluster-Expansion Model

Formal cluster-expansion in general re-expressssakar function (or property) for the different
members of a poset in terms of related functiomsising more strongly on earlier members of the
poset. Much of the formal theory is described byaR[®d1] for general posets, and its chemical
application in the case that the partial ordergthie subgraph partial ordering is described in32B
Generally, for a scalar proper¥defined on the members of a poBefwith partial ordering-) one
may expanK for a 0 P, as

X(@)=S 1(B.0)X, (B)
B

where the sum goes over All> a, f(5,a) is acluster function that maps pairs of membersRobnto
real numbers witH(8,a) = 0 wheneverB + a, and is such thal(a,a) # 0. Further,X¢(f) is anf
transform property depending ad and the cluster functioin Conveniently, this cluster-expansion may
be truncated to a limited sequence of non-zeroteduspproximants, and so applied whenever the
earlier terms offer a good approximation of thepemby X.

For our reaction-network posets, we choose [31tB81f(5,a) be the number of ways in which
substitution patterna occurs as a subset of substitution pattgnFor the poset diagram of
chlorophenols, we have truncated the cluster-expansodel toX; contributions from the chlorine
atoms situated through the second and third rowthefposet (Figure 1). The number of parameters
(i.e., theX{()) from the third row is reduced from 5 to 3 thrbuifpe approximation of making them
depend solely on the relative positions of the tlorine atoms (asrtho, meta, andpara):

Xi(2,3-CbP) =X¢(3,4-CbP)=d
Xi(2,4-CbP) =X¢(3,5-CbP) = e
Xi(2,5-CbP) = f

where P indicates phenol. The parameters assod¢@tbd second row of the poset are abbreviated to
Xi(2-CIP)= a, X{(3-CIP)= b, X{(4-CIP)=c.

This truncated cluster-expansion model proves taldde to model the properties of chlorophenols.
In each series of QSSPR models, phenol was coesi@er a reference structure, namely, the property
values are shifted so théfphenol) = 0. The set o&(0) parametersa b, c, d, e, f) can be computed by
a least-squares procedure based on a subset afutesleor by “inversion” from small systems - and
here we use the former choice. All models wereetkst a leave-one-out cross-validation procedure, i
order to obtain results comparable with those fthenother poset QSSPR models.

5. Results and Discussions

The first group of poset QSSPR models is develdpethe octanol/water partition coefficieKt,,
of chlorophenols. All 20 values, including that fanenol, were collected from the literature [36,37]
The predictions obtained with the reaction posgiesstructure QSSPR models are of very good
quality: poset-average,= 0.987,s = 0.115; cluster-expansion= 0.991,s = 0.107; splinoid poset,=
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0.990,s = 0.122. As can be seen from the plots of experiaies. predictedK,,, values (Figure 3),
there are no significant outliers or deviationsrirtinearity.

5 4 4 -
3.51
3 -
4 -
8 8 2.51
: : 5 .
X v 2
g 8 1 5 -
= 5 o 1.
°
11 °
0.5 1
2 1 1 1 0 1 1 1 1 1 1 1 1
2 3 4 5 0O 05 1 15 2 25 3 35 4
|Og I<0W€Xp |Og KOW@(p
average method = 0.987;s=0.115 cluster-expansion method 0.991;s= 0.107
6 -
5 4 [ J
B 4
5 °
X
8 34 °
2 -
1 1 1 1 1 1
1 2 3 4 5 6
lOg Kowexp

spline methodr = 0.990;s=0.122

Figure 3. Plot of experimentals. predicted octanol/water partition coefficient @orophenols with
the poset-average, cluster-expansion, and splpmsdt QSSPR models.

The second application for Id§oc considers the situation when not all 20 experimlevdlues of
the chlorophenols are known. We found in the litgeonly 12 values for the soil sorption coeffitie
Koc for chlorophenols and phenol [38]. Due to the abseof a significant number of experimental
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values, the poset-average method cannot be usethe@uther hand, we obtained good statistics fer th
cluster-expansiornr (= 0.912,s = 0.287) and splinoid poset£ 0.938,s = 0.259). The predictive values
by these two different methods are identified irbl€al. The splinoid scheme reproduces exactly the
12 known experimental values, which then in thel@dbare entered in bold-face. Comparision of
predictions for the 12 known ones when one-by-bweg aire left out are shown in Figure 4.

Table 1. Experimental and predicted values for cluster-aspm and splinoid QSSPR models for sall
sorption coefficient, logkoc. The experimental values are presented in bold.

No. Compound Splinoid model Cluster-expansion

1 P 1.72 1.72
2 2-CIP 2.60 2.23
3 3-CIP 2.54 2.78
4 4-CIP 2.42 2.81
5 2,3-ChP 2.65 3.25
6 2,4-ChP 2.74 2.95
7 2,5-CpP 2.87 2.68
8 2,6-ChP 2.78 2.51
9 3,4-ChP 3.09 3.14
10 3,5-C}P 2.92 2.71
11 2,3,4-C4P 3.32 3.43
12 2,3,5-CG4P 3.35 3.09
13 2,3,6-CG4P 3.24 2.99
14  2,45-CP 3.36 3.12
15 2,4,6-C{P 3.03 2.95
16  3,45-CJP 3.56 3.48
17  2,3,45-GP 4.12 3.97
18 2,3,4,6-GP 3.82 3.74
19 2,3,5,6-GP 3.92 3.58
20 CkP 4.52 4.96

Overall the correlation coefficients are very gdodsuch complex property correlations, whence a
subsequent natural question concerns the relatiaondlecular structure and a comparison to more
conventional QSPR fittings. There are many hursirefl possible choices of molecular-structure
descriptors, so that a definitive comparison to RSB elusive, even for the limited case of
chlorophenols, though the more fundamental questtorterns a more general range. But obviously
QSPR schemes focus on molecular structure as titafuental object of study, whereas our posetic
approach focuses on the super-structural reacebmank as the fundamental object of study (so that
we have used the abbreviation QSSPR). Questiondhatf QSSPR tells us about molecular structure,
though rather incompletely answered, might be coetgpdo the incompletely answered converse
question of what ordinary QSPR approaches tellatrmit the reaction network. Our splinoid QSSPR
approach clearly tends to assign similar valuesstarctures which are similar in the sense thay the
have a large common graphical substructure (simee the two molecular structures are close together
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in the reaction poset), while the splinoid fit indelates as smoothly as possible between the nearby
known values. Likewise with two molecular structures sharing egg|acommon substructure and so
being nearby in the posetic diagram, the clustpaegion we make gives a similar set of predecessors
for two such nearby structures, and thence similanerical values for the fitted property. Both GSP

& QSSPR schemes, then tend to assign similar piopalues to "similar” structures. We believe that
there is an even tighter formal relationship betweeir reaction-network cluster expansion and
common (QSPR-based) substructural cluster expamsiars is seen in the examples where we have
indicated a molecular substructural interpretatibrour retained reaction-network-cluster terms. We
believe there is a general correspondence betweetwb types of cluster expansions, though in the
structural & super-structural circumstances thenteare ordered differently, and thence differeterla
terms are generally omitted in the two schemesis $hrely warrants more formal study, only the
beginning of which is described in [31], and is patsued here.

4 5 -
°
°
3 - 4
8 8
] ]
< 27 < 37
(@] (@]
o o
14 2 -
°
0 1 1 1 1 1 1 1 1 1
0 1 2 3 4 1 2 3 4 5
|Og KOCexp |Og KOCexp
cluster-expansion methaod= 0.912;s= 0.287 spline method = 0.938;s = 0.259

Figure 4. Plot of experimentals. predicted soil sorption coefficient for chloroplénwith the cluster-
expansion and splinoid poset QSSPR models.

Overall it seems that one might frequently antitgpgimilar fittings from QSPR & QSSPR schemes
—so long as the QSPR is limited to structures wowiwithin the reaction-network superstructurss

an example comparison, we consider QSPR fittingsvto structural indexes:cé) the number of
chlorine atoms in the chlorophenét and x(¢) the Randic connectivity index for the H-deletedpir

(not distinguishing C, O, or Cl atoms). That isea@onsiders a fitting of a molecular propeftio

X($) = A+B#; () +CLY(S)
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We make two least-squares fittings, for our twosprely studied properties. The results forkgg
are:

A=39.484B= 53414 =- 11.207 with = 0.993  ®IQ,, = 0.99]
the statistics here being excellent. Forkeg the results are:
A=-3.325B=-0.113%2= 1.530 withr = 0.9686; 0.22], =0.943

which also are very good statistics. As expectethfthe excellence of our earlier cluster-expansion
fit, and its close relationship to typical invararfor QSPR fittings, the results for either type o
approach are very good, and very similar as torestatistics. Though the results are comparable,
what we have done is to show that an alternativelnsort of (QSSPR) approach is also available, and
that for the example here along with a few elsewheather high quality fits are achievable.

3. Conclusions

Chlorophenols are widely used as bactericides,ctitsges, herbicides, fungicides and wood
preservatives [13-21], which makes them frequenirenmental pollutants, either from direct use or
accidental spillage. Exposure to chlorophenolsreanlt in irritations of the respiratory tract amicthe
eyes. Commonly detected in surface water, wasteywsdd, and sediments [17,34,35], chlorophenols
were classified by the EPA as priority pollutant3he investigation of their sorption behavior is
fundamental to simulate and eventually predictrtlegivironmental fate. Because the octanol/water
partition coefficientK,, and the soil sorption partition coefficiekioc are useful to estimate the
mobility of an organic compound in soil, both amgportant to understand the distribution of chemical
compounds in soil, sediments, and water. Becdwestaboratory methods for the determinationkgf
andKqc are time consuming, the reaction poset superistei©QSSPR models demonstrated here can
be applied to obtain reliable predictions for thpsgperties.

To predict the octanol/water partition coefficiéog Ko, and the soil sorption coefficient lddpc of
chlorophenols we have compared the predictive p@ivéiiree reaction poset super-structural QSSPR
models developed in our group [22-33], namely paserage, cluster-expansion, and splinoid poset.
The poset super-structural QSSPR models make $pseiaf the mathematical structure of a partially
ordered set induced in a substitution—reaction agtwhen a molecular skeleton (such as benzene,
naphthalene, or biphenyl) is subjected to successteps of substitution. Starting from an
unsubstituted compound, substituents are progedgsimtroduced one after another, with earlier
substituents fixed at their different possible fioss. The special super-structure considered tsere
the substitution—reaction network that starts witienol and continues with consecutive formal
substitution reactions in which a H atom from theepyl ring is replaced with a Cl atom. The poset
reaction diagram starts with phenol at the top emds with pentachlorophenol at the bottom, while al
the different patterns of substitution occur invietn. The poset-average is a local non-parametric
method, the cluster-expansion is a parametric ndethod the splinoid poset method is a global
interpolation method.

Based on the poset reaction diagram, all thredege QSSPR models reflect in distinct ways the
topology of the network that describes the intevewsion of chemical species. All three poset QSSPR
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methods give very good predictions for the properiinvestigated here. For ld¢,,, the cluster-
expansion gives slightly better leave-one-out mtsahs & validationsr(= 0.991,s = 0.107), while for

log Koc the best LOO predictions & validations are obtdingth the splinoid poset method=£ 0.938,

s = 0.259). Thus, we have extended the applicatfotine® poset QSSPR models to the prediction of
environmentally important properties of chlorophiend&vidently especially the splinoid and cluster-
expansion models are applicable to circumstancesenthere is missing data, as in the case of tihe so
sorption coefficient. There seems promise for frrsimilar uses of such posetic reaction-netwooks f
QSSPR and QSSAR modeling. But in addition, it seémus that it would be of value to further
extend our approach with the simultaneous use ofdmwmore reactions, so as to treat in one se#ing
larger range of structures — this then yieldingnaulti-poset”. Further, we think that it could be
interesting if there were revealed a formal relatietween QSSAR (or QSSPR) on one hand and
QSAR (or QSPR) on the other. In particular, it Vdole of interest if features of the present QSSPR
(or QSSAR) were identified to engender greaterirdition in fittings. Certainly much work remains,
both in the general context of partial orderingad &or our currently studied special case of
substitution-reaction-network posets.
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