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Abstract: Algorithms for classification are proposed basectoteria {nformation entropy
and its production). The feasibility of replacingg@en anaesthetic by similar ones in the
composition of a complex drug is studied. Some ll@eesthetics currently in use are
classified using characteristic chemical properaéslifferent portions of their molecules.
Many classification algorithms are based on infdrama entropy. When applying these
procedures to sets of moderate size, an excessimbar of results appear compatible with
data, and this number suffers a combinatorial estpio However, after thequipartition
conjecture one has a selection criterion between differeatiants resulting from
classification between hierarchical trees. Accaydm this conjecture, for a given charge or
duty, the best configuration of a flowsheet isdhe in which the entropy production is most
uniformly distributed. Information entropy and pipal component analyses agree. The
periodic law of anaesthetics has not the rank efl#ws of physics: (1) the properties of
anaesthetics are not repeated; (2) the orderae$dtips are repeated with exceptions. The
proposed statement is: The relationships that aagsthetipp has with its neighboyr + 1
are approximately repeated for each period.

Keywords. periodic property, periodic table, periodic lawasgification, information
entropy, equipartition conjecture, principal comeon analysis, cluster analysis, local
anaesthetic, procaine analogue.
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1. Introduction

For hundreds of years, surgeons had to work fastitdmize shock and pain to their patients [1].
Local anaesthetics are amphiphile molecules ofatgriamines, and some of them have colloidal
properties in agueous solution. They are classifienl the ester and amide types, by the difference
the chain that binds the hydrophobic group andhidrophilic group in a molecule. The anaesthetic
potency of these drugs is significantly dependentle hydrophobicity of the molecules. The great
majority of the local anaesthetics currently usedmiedical practice have in common a lipophilic
portion (generally an aromatic system), an intefniatedaliphatic-C chain and a hydrophilic portion
(frequently the substituted amine group). Althodlge mechanism of action at the molecular level is
not fully cleared [2,3], it was considered that th@&lance between the lipophilic and hydrophilic
portions influence significantly the biological asitly, modulating its local anaesthetic potency5}4,
On the other hand, the electronic distributionhad tarbonyl group C=0, present in the majority of
local anaesthetics, has an important role for gtabdéishment of this activity. Thus, it was propbse
that substituent groups present in the aromatig aiffiect the local anaesthetic activity, by itseets
hydrophobic and of polar nature. Once it was kndlat the inductive and resonance effects affect
directly the electronic density on O(=C) atom, aasequence it was proposed that C=0 polarity can
be, in principle, modulating the local anaesthattivity. The biological activity of drugs, in panlar
local anaesthetics, can be considered as the m@stiie interactions of these with the biophases Th
drug-receptor interactions depend, by its turnthef physicochemical properties of the compound,
determining and modulating the forces of chemiatlre present in these interactions. Many local
anaesthetics in clinical use are basically terteanyne compounds. They are classified as beingeof t
ester (benzocaine, 2-chloroprocaine, procaineadaine) and amide types (bupivacaine, dibucaine,
etidocaine, lidocaine, mepivacaine, prilocaine,ofiracaine). These drugs exist in both positively
charged and uncharged forms under normalivo conditions [6—8]. The most important clinical
properties of local anaesthetics are potency, ouseation of action as well as relative blockadle o
sensory and motor fibres. These qualities areeglptimarily to the physicochemical propertiestadf t
various compounds. In general, lipid solubilityetetines the relative intrinsic potency of the vasio
agents, while protein binding influences the dorabf anaesthesia an&pis correlated with the onset
of action. The local anaesthetics for infiltratigggripheral nerve blockade and extradural anagathes
can be classified into three groups: agents of Ipatency and short duration (procaine,
2-chloroprocaine), agents of moderate potency amdtidn (lidocaine, mepivacaine, prilocaine), as
well as agents of high potency and long duratietrgtaine, bupivacaine, etidocaine, S-ropivacaine).
These local anaesthetics also vary in terms of tonde&hloroprocaine, etidocaine, lidocaine,
mepivacaine and prilocaine have a rapid onset, ewpilocaine, tetracaine and bupivacaine are
characterized by a longer latency period; bupiveegaresents a moderate onset.

General anaesthetics, including inhaled agents halothane, isoflurane and desflurane, as well as
intravenous agent®.g propofol, are now generally considered to actmmdulating the effects of
yaminobutyric acid (GABA) and type A (GAB# receptors and/or by affecting other ion channels
[9,10]. General anaesthetics that do not act at &ARceptors are N Xe and ketamine. The theory
thatinhaled anaesthetics probably dissolve in the hpath neuronal cell membranes near the nerve
endings and changes their volume or fluidity not well supported by experimental evidenoa:. F
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example, such theories fail to account for diffeesn in potency for stereoisomers of general
anaesthetics [11]. Local anaesthetics act by bhackbltage-gated Nachannels although some agents,
e.g propranolol, affect other proteins as well.

A simple computerized algorithm useful for estalhg a relationship between chemical structures
and their biological activities or significancepsposed and exemplified herd. (Reference 12 or 13
for a review). The starting point is to use an infational or configurational entropy for pattern
recognition purposes. This entropy is formulatedttos basis of anatrix of similarity between two
chemical or biochemical species. The presented pheasmows a classification of local anaesthetics on
the basis of their similarity with procaine [14]sAentropy is weakly discriminating for classificati
purposes, the more powerful conceptesitropy production and itsequipartition conjecture are
introduced [15]. Learning potentialities of the eodave also been developed. Since molecules are
more naturally describeda a varying size structured representation, thdystd general approaches
to the processing of structured information is mekedSection 2 presents the computational method.
Section 3 describes the classification algorithract®n 4 exposes the equipartition conjecture of
entropy production. Section 5 analyzes the learpregedure. Section 6 presents and discusses the
calculation results. Section 7 summarizes the crsnmhs.

2. Computational Method

The key problem in classification studies is toimesimilarity indices when several criteria of
comparison are involved. The first step in quaiitdythe concept of similarity for molecules of lbca
anaesthetics is to list the most important portiohssuch molecules. Furthermore, thector of
propertiesi- = dy,ip,...Ik...> should be associated to each local anaesthetdhose components
correspond to different characteristic groups & tholecule of anaesthetic, in a hierarchical order
according to the expected importance of their plagotogical potency. If then-th portion of the
molecule is pharmacologically more significant tbe anaesthetic effect than tkeh portion, then
m< k. The components are “1” or “0” according to whether a similar (dlentical) portion of rank
is present or absent in anaesthéticompared with the reference anaesthetic. Outysisaincludes
such chemical compounds that fit the following gahecheme: (lipophilic portion)—(intermediate
chain)—(hydrophilic portion), since these are thestmumerous and have the widest range of uses
among the species used in practice of local anesstifil6]. The lipophilic portion normally consists
of at least one phenyl radical, the hydrophilictmor is most often a secondary or tertiary amims a
the intermediate chain commonly has an ester odautimkage [17]. It is assumed that tteuctural
elementsof a local anaesthetic molecule canrleked according to their contribution to anaesthetic
potency, in the following order of decreasing intpace: lipophilic portion > hydrophilic portion >
intermediate chain > number of nitrogen atoms > lmemof oxygen atoms. The lipophilic portion is
primarily responsible for the lipid solubility thailows diffusion across the nerve cell membrane,
determining the intrinsic potency of local anaestse[6,7]. Both the lipophilic and hydrophilic
portions determine protein-binding characteristiwhjch are felt to be the primary determinant of
anaesthesia duration [8].

Procaine or novocaine {4-aminobenzoic acid [2-@@i&tmino)ethyl] ester,
4-H,NCeH4CO,[CHL.CH,N(C,Hs),], PR} is a tertiary amine, containing a primaryiamgroup linked
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to an aromatic ringcf. Scheme 1). Consequently, it may exist as a reutdecule (PR), a
monocation (4-ENCgH4CO,[CH,CHoNH T (CoHs) 2], PRH, or a dication
(4-H,NH*CgH4CO,[CH,CHNH'(C,Hs),], PRHZY. In procaine, the lipophilic portion is a phenyl
radical, the hydrophilic portion is an amine, theermediate chain is an ester, there are two N @itom
and two O atoms; obviously, its associated ve&erlil111>. In this work, procaine was selected as a
reference anaesthetic because it was the first synthetiopomnd successfully used for regional
anaesthesia and, in this and most other local #retEs, the lipophilic portion consists of at lease
phenyl radical, the hydrophilic portion is a secanydor tertiary amine, and/or the intermediate ichai
has an ester linkage. This improves the qualityhef classification for those anaesthetics simitar t
procaine. The selection as reference of an andisthesimilar to procaineg.g dibucaine, would not
improve the quality of the classification for thoaeaesthetics similar to procaine. Furthermore,
Covino results included both ester (similar to pine) and amide (similar to prilocaine) anaestletic
[8]; the inclusion of the results in the classifioa described below improves the quality of the

taxonomy, for both types of anaesthetics.
0 /—

e OIM

Scheme 1. Molecular structure of a local anaesthetic progaiautral molecule.
Table 1 contains the vectors associated to 28 btabsthetics. The <11110> vector is associated to
benoxinate (Table 1), since there are three O atortiss case. The <10101> vector is associated to
benzocaine since the hydrophilic partition is noeaaine, and there is one N atom in this case.

Table 1. Vector properties of local anaesthetics analog@i@socaine.

1. benoxinate <11110> 15. lidocaine <11010>
2. benzocaine <10101> 16. mepivacaine <11010>
3. bupivacaine <11010> 17. piperocaine <11101>
4. butacaine <11111> 18. pramoxine <11000>
5. butamben <10101> 19. prilocaine <11010>
6. 2-chloroprocaine <11111> 20. procaine <1#111
7. cocaine <11100> 21. proparacaine <11110>
8. cyclomethycaine <11100> 22. propoxycaine 401

9. dibucaine <01001> 23. tetracaine <11111>
10. dimethisoquin <01010> 24. tocainide <11010>
11. diperodon <11000> 25. mexiletine <11000>
12. dyclonine <11001> 26. propanolol <01001>
13. etidocaine <11010> 27. phenytoin <10011>
14. hexylcaine <11101> 28. S-ropivacaine <13010
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Let us denote by; (0<r;<1) the similarity index of two anaesthetics asated to the andj
vectors, respectively. The relation of similitudecharacterized by similarity matrix R = [rij ] The

similarity index between two anaesthetics <y, ip,... ix,...> andj = <1, j2,-.0 jko-..> is defined as:

=X b ) (k=1,2.) 1)

where 0<a< 1 andt, = 1 if iy =ji, butt =0 if i #jk. This definition assigns a weigha) to any
property involved in the description of molecuiesrj.

3. Classification Algorithm

The grouping algorithm uses thetabilized matrix of similarity, obtained by applying tingax-min
composition ruleo defined by:

(fzos) max,[min, (5.5, )] 2

wherer = [Fi ]ands = [si ] are matrices of the same type, z(ﬁ@zs) is the {,j)-th element of the
j

matrix RoS [18]. It can be shown that when applying this ritkégatively so thaﬁ(n +1) :=R(n)o=R,
there exists an integar such thatzzR(n):zR(n+ 1)=... The resulting matriX_R(n) is called the
stabilized similarity matrix The importance of stabilization lies in the faéicat in the classification

process, it will generate a partition in disjoifdsses. From now on, it is understood that thelstet
matrix is used and designated Egn) [r (n)] The grouping rule is the following:i andj are

assigned to the same class;in) > b. The class of notedi is the set of specigs that satisfies the
ruler;j(n) > b. The matrix of classes is:

RN = [r, J max. () 07, t07) (3)
wheres stands for any index of a species belonging ¢odlss (similarly fort andj ). Rule (3)
means finding the largest similarity index betwspacies of two different classes.

In information theory, thénformation entropy hmeasures the surprise that the source emitteg th
sequences can give [19,20]. For a single eventronguwith probabilityp, the degree of surprise is
proportional to —Irp. Generalizing the result to a random variakle(which can takeN possible
valuesxy, ..., Xy With probabilitiesps, ..., pn), the average surprise received on learning theevaf X
is - p; In pi. The information entropy associated with the nxatfisimilarity R is:

h(ﬁ)z ';ru Int, ';(1_“1 Jn@-r,) 4)

Denote also byCy the set of classes and Ey the matrix of similarity at the grouping leviel The
information entropy satisfies the following propest

1. h(fz): o ifrj=0orr; = 1.
2. h@?) is maximum ifrj; = 0.5,i.e. when the imprecision is maximum.

3. h(ﬁb) < h(lz?) for anyb, i.e. classification leads to a loss of entropy.

4. h(ﬁbl) < h(_l?aoz) if by <b,, i.e. the entropy is a monotone function of the grogpevelb.

4. The Equipartition Conjecture of Entropy Production
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In the classification algorithm, eattierarchical tree corresponds to a dependence of entropy on
the grouping level, and thus dm-b diagram can be obtained. The Tondeur and Kvdakn
equipartition conjecture of entropy productiois proposed as a selection criterion among differ
variants resulting from classification among hiehécal trees. According to this conjecture, forizeg
charge or duty, the best configuration of a flovethie the one in which entropy production is most
uniformly distributed,i.e. closest to a kind of equipartition. One procebdse by analogy using
information entropyinstead of thermodynamic entropy. Equipartitiomplies a linear dependence, that
is a constant production of entropy alonglthecale, so that thequipartition line is described by:

hegp = Praxd (5)
Indeed, since the classification is discrete, distea way of expressing equipartition would be a
regular staircase function. The best variant issehao be that minimizing the sum of squares of the
deviations:

SS= ; (h- o) (6)

5. Learning Procedure

Learning procedures similar to those encountered gtochastic methodsare implemented as
follows [21]. Consider a given partition in classesgood or ideal from practical or empirical
observations. This corresponds taeference similarity matrixs = [sij ]obtained for equal weights

ag=a,=...=a and for an arbitrary number of fictious propestidlext consider the same set of
species as in the good classification and the bptoperties. The similarity degregis then computed
with Equation (1) giving the matrik . The number of properties fer ands may differ. The learning
procedure consists in trying to find classificaticesults forR as close as possible to tigeod
classification. The first weigh&; is taken constant and only the following weights as,... are
subjected to random variations. A new similaritytrixais obtained using Equation (1) and the new
weights. The distance between the partitions issela characterized Byands is given by:
D——izj:(l— )In—L ;r In—J- Qo<r

'l

IJ'SIJ <1 (7)

The result of the algorithm is a set of weight®wlhg adequate classification. Such a procedure has
been applied in the synthesis of complex flowshesiisg of information entropy [22].

6. Calculation Results and Discussion

In the present report 28 local anaesthetics anakbgtiprocainecf. Table 1) have been studied. The
analysis includes such chemical compounds thahditfollowing general scheme: lipophilic portion—
intermediate chain—hydrophilic portion, since amaimg species used in practice of local anaesthesia,
these are the most numerous and have the widege rahuses. The lipophilic portion normally
consists of at least one phenyl radical; the hykitmpportion is most often a secondary or tertiary
amine; the intermediate chain commonly has an emteamide linkage. The matrix of Pearson
been calculated. The intercorrelations are illdsttan the partial correlation diagram, which camga
133 high partial correlationsr £ 0.75, cf. Figure 1,red lineg, 76 medium partial correlations
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(0.50<r < 0.75,0orange line} and 22 low partial correlations (0.25 < 0.50,yellow line3. Pairs of
anaesthetics with high partial correlations havsimilar vector property (Table 1). However, the
results (Figure 1) should be taken with care, beedour compounds show the constant <11111>
vector (Entries 4, 6, 20 and 23 in Table 1), foriakhthe null standard deviation causes high partial
correlations i = 1) with any local anaesthetic, which is an adif

Figure 1. Partial correlation diagram: Highed), medium ¢rangeg and low yellow) correlations.
Using the grouping rule in the drug-design casé wdual weights, = 0.5, for 0.94< b; < 0.96 the
following set of classes are obtained [17]:

C, = (1,21,22)(2,5)(3,13,15,16,19,24,28)(4,6,20,28)(B,26)(10)(11,18,25)(12)(14,17)(27)
The 11 classes are obtained with the associatedp&ym(ﬁbl) = 58.86. The dendrogram (binary tree)

of Table 1, which separates the same 11 class@sariicular, the ester (benzocaine, 2-chloropragain
procaine, tetracaine) and amide local anaesth€bapivacaine, dibucaine, etidocaine, lidocaine,
mepivacaine, prilocaine, S-ropivacaine) are alwgssuped in different classes. The agents of low
potency and short duration (procaine, 2-chloropregaare separated from the agents of high potency
and long duration (bupivacaine, etidocaine, S-rapaimne), while the agents of moderate potency and
duration (mepivacaine, prilocaine) are classifiegether with the latter. Those anaesthetics betgngi
to the same class appear higly correlated in tmBapaorrelation diagram (Figure 1), in agreement
with previous results obtained for the first 27re#tin Table 1 [17].
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Figure 2. Dendrogram for the local anaesthetics analoguesoziaine at leveb;.

The radial tree for the local anaesthetics relating,iz,iz,isis> andC,, (cf. Figure 3) separates the
same 11 classes, in agreement with the partiakledion diagram, dendrogram (Figures 1-2) and
previous results obtained for the first 27 entie$able 1 [17].
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Figure 3. Radial tree for the local anaesthetics analogtipsoacine at leveb;.
At level b, with 0.85< b, < 0.87 the set of classes is [17]

G, = (1,4,6,7,8,14,17,20,21,22,23)(2,5)(3,11,12,13,43.8,19,24,25,28)(9,10,26)(27)

and C,, (cf. Figure 4) separates the same five classes, ieeagmt with the partial correlation
diagram, dendrogram, binary tree (Figures 1-3)@sslious results obtained for the first 27 entires
Table 1 [17]. A high degree of similarity is foufat Entries 9 and 26.€. dibucaine and propanolol),
as well as Entries 2 and Be( benzocaine and butamben). Again, the ester amdkedotal anaesthetics
are grouped in different classes; the agents ofgotency and short duration are separated from the
agents of high—-medium potency and long—medium oura®The lower leveb, classification process
shows lower entropy and, therefore, may be morsipanious. The classification model divides the
point process into two component&z. signal, and noise; the lower-leugl may have greater signal-
to-noise ratio than the higher-levie] classification process. Naturally, Entries 4, 6, ghd 23 i(e.
butacaine, 2-chloroprocaine, procaine and tetragdielong to the same class at any grouping level
except at the highest level above which each dasgins only one species. A detailed classificatio
at levelb; into 11 classes, and a less detailed classificatica lower leveb, into five classes can be
selected, taking into account the amount of entkapiation.
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Figure 4. Radial tree for the local anaesthetics analogtipsotaine at leveb,.

A comparative analysis of the set containing frone @0 11 classes is summarized in Table 2, in
agreement with previous results obtained for tret 87 entries in Table 1 [17].

Table 2. Classification level, number of classes and gytfor the local anaesthetics.

Classification leveb Number of classes Entropy h
0.96 11 59.65
0.93 8 31.31
0.87 5 12.00
0.78 4 7.23
0.75 3 3.95
0.56 2 1.66
0.25 1 0.14

andC,_, (cf. Figure 5) separates the same five and 11 classagreement with the partial correlation
diagram, dendrogram, binary trees (Figures 1-4)aaedious results obtained for the first 27 entimes
Table 1 [17]. Again, the ester and amide local atietics are grouped in different classes; thetagen
of low potency and short duration are separatenh filoe agents of high—-medium potency and long—
medium duration.
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Figure 5. Radial tree for the local anaesthetics analogtipsozaine from 1 to 11 classes.

The resulting partition into classes compares wiéh other from Covino considered geod [8].
He compared three estetiz. 2-chloroprocaine, procaine, and tetracaine, ds agefive amide local
anaestheticsyiz. bupivacaine, etidocaine, lidocaine, mepivacaare] prilocaine, based on chemical
configuration (aromatic lipophilic group, intermatd chain and amine hydrophilic group), four
physicochemical properties (molecular weigh{gppartition coefficient and protein binding), aslwe
as three pharmacological properties (onset, regpietency and duration). The onset is determined
primarily by K, The percentage of a local anaesthetic that iseptein the neutral form, when
injected to tissue ofhy 7.4, decreases withKg according to the equation of Henderson—Hasséibalc
pH = pK, + log ([PR)/[PRH]). The potency is determined primarily by lipid lgoility, which
increases with partition coefficient. Both lipidlgbility and partition coefficient are mainly due the
neutral forms. Different conformations have diffarepartition coefficients, lipid solubilities and
potencies. It would be of interest to study theeeffof different intermediate chain lengths. In
particular, the presence of a double bond in anchaiuld increase rigidity and enhance potercy;,
the conjugated enol group in 3-phenyl-2-propen-Ielermines a greater membrane permeability,
with respect to 3-phenyl-1-propanol [26]. On theedmand, esters are hydrolyzed easily and are
relatively unstable in solution; on the other, agsidire much more stable. In the body, the amirarsest
are hydrozed in plasma by the enzyme cholinestevasereas the amino amides undergo enzymatic
degradation in the liver.
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The inclusion of this comparison [8] in the radiede of the present worlcf( Figure 6) is in
agreement with the partial correlation diagram,diegram, binary trees (Figures 1-5) and previous
results obtained for the first 27 entries in Tablg.7]. The classification scheme from 1 to 11 Isve
conserved after the addition of Entry 28 (S-ropame) and local anaesthetic S-bupivacaine. In
particular, Fawcetet al compared S-bupivacaine with racemic bupivacalig.[S-ropivacaine is
structurally close to bupivacaine; the main differe is that the former is a pure S-(-) enantiomer
where the latter is a racemate. Again, the estdraamnide local anaesthetics are grouped in different
classes; the agents of low potency and short duratie separated from the agents of high—-medium
potency and long—medium duration. Moreover, thessifecation presents lower bias and greater
precision, resulting in lower divergence with redpéo the original distribution. Therefore, the
approach is quite general. However, the inclusibotber local anaesthetics could change the detail,
i.e. subsequent classifications with more than 11l¢ev& natural trend is to interchange similar
anaesthetics in the composition of complex drugg, the eutectic mixture of local anaesthetics
(EMLA®, lidocaine—prilocaine 2.5/2.5% w [28]). Howeverixtres of dissimilar anaesthetics are also
used,e.g, betacaine-LA (lidocaine—prilocaine—dibucaine®][zand S-caine (1:1 lidocaine—tetracaine
eutectic mixture) [30].

pril ocain & bven 2 ocain
prarn cxn e
lidozain e l:iF'El'DdEI'I m}tlh butarn ben
dyzlonin e
M epivacain e dirn ethiz oquin
dbucain =
S bupivacain = propan of of
ben cxn ate
bupisacain & o . glidceaine o 4 )
ropivacain e proparacain &
O Ain &
Fiperccain E. btacain e
heegdcain e
ozl ornethycain 2
Cocain e procain e

betracain o 2 chloroprocain e

Figure 6. Radial tree for anaesthetics including physicoabahand pharmacological properties.

The predictions for topical anaesthetics and i@th mot included in the models, are included in
Table 3. The predictions have been compared wpleexental results [29,30]. The relative potency is
obtained from the mean pain scores after applicadiotopical anaesthetics for 60 minutes [29,30].
ELA-max is superior to tetracaine and betacainedtA60 minutes, while EMLA is superior to
betacaine-LA at 60 minutes, which is in partialesgnent with our prediction. The relative potency
after removal is obtained from the mean pain scd@@sminutes after removal of the topical
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anaesthetics [29,30]. ELA-max and EMPAre superior to tetracaine and betacaine-LA 30utei
after the 60-minute application period, which ispartial agreement with our prediction. Increased
anaesthetic benefit is obtained 30 minutes aft@oxal, which suggests that a reservoir of anagsthet
is located and stored in the upper skin layersnduapplication, providing additional anaesthetic
benefit after removal (Table 3). Although EMPAs more potent than ice, ice has advantages i eas
of use, fast action, and is less expensive than £/VB1].

Table 3. Predictions for topical anaesthetics and ice nothincluded in the models.

Anaesthetic Ingredients Prediction Experiment
Onset Potency Duration Relative Rél. pot.
potency®  after®

Betacaine-LA lidocaine: rapid moderate moderate 1.0 1.0
prilocaine:
dibucaine
ELA-max 4% lidocaine rapid moderate moderate 15 5 1.
ELA-max 5 5% lidocaine rapid moderate moderate - -
EMLA cream 2.5% lidocaine: rapid moderate moderate 1.4 15
2.5% prilocaine
Tetracaine 4% tetracaine gel slow high long 1.2 1.1
gel
Amethocaine 4% tetracaine slow high long - —
Topicaine 4% lidocaine rapid moderate moderate - -
S-caine 2.5% lidocaine: moderate  moderate- moderate- - —
2.5% tetracaine high high
Ice® moderate low low <1.4 <1.5

#From mean pain scores after application of topcaesthetics for 60 minutes [29].
® From mean pain scores 30 minutes after the 60-miapplication period of anaesthetics [29].
°From mean pain scores after application of topcalesthetics [31].

SplitsTree is a program for analyzing cluster asialyCA) data [32]. Based on the methodsplit
decompositionit takes as input distance matrixor a set of CA data, and produces as output@hgra
that represents the relationships between the Eotaideal data this graph is a tree whereas tiesal i
data will give rise to a tree-like network, whicancbe interpreted as possible evidence for difteren
and conflicting data. Furthermore, as split decositpm does not attempt to force data onto a fitee,
can provide a good indication of hotreedike given data are. The splits graph for the 28alo
anaesthetics of Table tf( Figure 7) reveals no conflicting relationshipvee¢n the anaesthetics. In
particular compounds 1, 3, 4, 6, 11, 13-25 and@fear superimposed. The splits graph is in general
agreement with the partial correlation diagram,dilegram and binary trees (Figures 1-6). The main
difference is the partial fusion ofC, classes (1,4,6,7,8,14,17,20,21,22,23) and
(3,11,12,13,15,16,18,19,24,25,28) correspondirfggare 4. However, the results (Figure 7) should be
taken with care, because the former class inclém@&scompounds with the constant <11111> vector
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(anaesthetics 4, 6, 20 and 23), for which the stalhdard deviation causes a correlation coeffiaxént

r = 1 with any local anaesthetic, which is an actifa

Anaesthetics.nex

1,3,4,6,11,13,14,15,16,17,18,19,20,21,22,23,24,25,28

27m

L 0.1

2,5

12
7,

10

9,26

Fit=14.4 ntax=28

Figure 7. Splits graph for the local anaesthetics analogfigsocaine.

A principal component analysis (PCA) [33] has beamried out for the local anaesthetics. The

the first factorF; explains 35% of the variance (65% error); the ciovedb use of the first two factors
F1-2 explains 61% of the variance (39% error); the afsthe first three factorg;_3 explains 78% of
the variance (22% error).

Table4. Importance of the principal component analystsdes for the vector property.

Factor Eigenvalue Percentage of variance Cumulative percentage of variance
F1 1.73558585 34.71 34.71

Fa 1.33757290 26.75 61.46

Fs 0.81501667 16.30 77.76

Fa 0.75678743 15.14 92.90

Fs 0.35503715 7.10 100.00

The PCA factor loadings are shown in Table 5.
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Table 5. Principal component analysis loadings for the eptoperty of local anaesthetits.

PCA factor loadings

Property Fi F2 Fs Fa Fs
i1 -0.058 0.756 -0.109 -0.428 0.480
i2 0.518 -0.034 0.767 0.086 0.367
i3 -0.453 0.465 0.544 0.184 -0.499
i4 0.371 0.420 -0.315 0.766 -0.006
is -0.621 -0.186 0.065 0.435 0.621

2Loadings greater than 0.7 are boldfaced.

The PCAF;_s profile for the vector property is listed in Taléleln particular fofF; andFs variable
is has the greatest weight in the profile; howewarcannot be reduced to three variablesifis}
without a 14% error. Fdf, variablei; has the greatest weight; notwithstandiRgcannot be reduced
to three variablesi{,is,is} without a 4% error. FoF3 variablei, has the greatest weight; nevertheless,
F3 cannot be reduced to three variableg4i,s} without a 2% error. FoF, variablei, has the greatest
weight; howeverF, cannot be reduced to three variableg4is} without a 4% errorF;_,_3 4 scan be
considered as linear combinations ofi§,is}, {i1izia}, {i2iz,ia}, {i1iais} and {is,is,is} with 14%, 4%,
2%, 4% and 13% errors, respectively.

Table 6. Profile of the principal component analysis fastfur the vector properfy.

Factor Percentageofi; Percentageofi, Percentageofiz Percentageofi, Percentg.of is

Fi1 0.34 26.82 20.48 13.77 38.60
F2 57.12 0.11 21.61 17.68 3.47
F3 1.20 58.84 29.64 9.89 0.42
Fa 18.32 0.73 3.37 58.65 18.93
Fs 23.03 13.49 24.89 0.00 38.58

2Percentages greater than 50% are boldfaced.

In theFo— F; plot (cf. Figure 8), those local anaesthetics analogugsaafine with the same vector
property appear superimposed. In particular anagsti27 (class 4) also comes out placed over
compounds 14 and 17 (class 1). Five classes okHras are clearly distinguished: class 1 with 11
units (0= F1 <F, top), class 2 (11 unitd;; > F», right), class 3 (2 unitdy; <<F,~= 0, left), class 4 (1
unit, -1~ F; <F,~=0, middle and class 5 (3 unitsF; >>F,, botton). The classification is in
agreement with the partial correlation diagram,dilegram, binary trees and splits graph (Figures 1—
7).
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Figure 8. Principal component analydis vs F; plot for the local anaesthetics.

The recommended format for the periodic table (6fTthe local anaesthetics analogues of procaine
is listed in Table 7. Local anaesthetics are diaskifirst by is, then byiy, i3, i> and, finally, byi;.
Periods of five units are assumed. Group g010 stémd<iy,i,,iz> = <010>,viz. <01001> (dibucaine,
propanolol), and <01010> (dimethisoquin), group @10or <i,i,iz>=<100>, i.e. <10011>
(phenytoin),etc The local anaesthetics in the same column of ef@bbhppear close in the partial
correlation diagram, dendrogram, radial treestsgliaph and PCA (Figures 1-8).

Table 7. Table of periodic properties for the local anaests analogues of procaine.

g010 g100 gl01 gl110 glll
diperodon, cocaine,
pramoxine, cyclomethycaine
mexiletine
dibucaine, benzocaine, dyclonine hexylcaine,
propanolol butamben piperocaine
dimethisoquin bupivacaine, benoxinate,
etidocaine, proparacaine,
lidocaine, propoxycaine
mepivacaine,
prilocaine,
tocainide,
S-ropivacaine
phenytoin butacaine,
2-chloroprocaine,
procaine,

tetracaine
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Figure 9 exhibits the variation of the vector pndpeas a function of the structural parameters

superimposed, what agrees with a PT of propertigs wertical groups defined byi4io,is} and
horizontal periods described b {s}.
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Figure9. Variation of the vector property of local anaesitsv/s counts {y,iz,i3,i4,is}.

anaesthetic sets belonging to the same group ian@Tin the successive periods. The minima occupy
analogous positions in the curve and are in phdse representative points in phase should correspon
to the elements of the same group in PT. For the,&,i4,is> minima there is coherence between both
representations; however, the consistency is noergé The comparison of theaves shows two
differences: (1) periods 1-2 show some sawtooth-ltructures with marked discontinuities in
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Figure 10. Variation of the vector property of local anaesttseevs group number.

values for the anaesthetics. A minimum value ofirecfion P(p) has meaning only if it is compared
with those for the formdP(p—1) and lateP(p+1) points, needing to fulfil:
Pn(P)< P(p-1)

Pin(P)< P(p+1) ®)
Order relations (8) should repeat at determinegiwals equal to the values of the period size aad a
equivalent to:

Pun(P)= P(p-1) <0

P(p+1)- Ry, (p)>0 9)
As relations (9) are valid only for minima more geal others are desired for all the valuegpof
Therefore, the differencd¥p+1) —P(p) are calculated assigning each of their valuesn@mesthetip.
Naming this valu®(p):

D(p)= P(p+1)- P(p) (10)
Instead oD(p) theR(p) = P(p+1)/P(p) values can be taken assigning them to anaesghdfi®L were
general, the elements belonging to the same gragppying analogous positions in the different
waves would satisfy:

D(p)>0 or D(p)<0 (11)
R(p)>1 o R(p)<1 (12)
However, the results show that this is not the casthat PL is not general, existing some anomalies

e.g, the variation ofD(p) vs group number in Figure 11 presents lack of calemrebetween the
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period would have the same sign. In general treegetiend in the points to giip) < 0 especially for
the greater groups. In detail, however, there megularities in which the anaesthetics for sudeess
periods are not always in phase.
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Figure 11. Variation ofD(p) = P(p+1) —P(p) vs group numberR is the vector property.

The change oR(p) vs group number in Figure 12 shows lack of constdretyveen the Cartesian
and PT charts. If steadiness were exact all thetpan each period would be either lower or greater
than one. There is a trend in the points to gR(@) > 1 particularly for the smaller groups.
Notwithstanding, there are incongruities in whidfe tanaesthetics for consecutive waves are not
always in phase.
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Figure 12. Variation ofR(p) = P(p+1)/P(p) vs group numberR is the vector property.

7. Conclusions

From the present results and discussion the faitigwonclusions can be drawn.

1. Several criteria have been selected to reduEanilysis to a manageable quantity of structures
from the large set of local anaesthetics. Theyrrédethe structural parameters related with the
lipophilic portion, hydrophilic portionetc

2. Many algorithms for classification are based ioformation entropy When applying these
procedures to sets of moderate size, an excessméar of results appear compatible with data, and
this number suffers a combinatorial explosion. Hesve after theequipartition conjectureone has a
selection criterion between different variants hasg from classification between hierarchical see
According to this conjecture, for a given chargeloty, the best configuration of a flowsheet is tine
in which the entropy production is most uniformigtdbuted. The method avoids the problem of other
methods that consider continuum variables, bec#arsthe four compounds with constant <11111>
vector (anaesthetics 4, 6, 20 and 23), the nulidstal deviation causes a correlation coefficient of
r =1 with any local anaesthetic. The lower levelssification processes show lower entropy and,
therefore, may be more parsimonious.

3. In this work, an overview of an information eqgy approach (based on the equipartition
conjecture) to the modelling of complex data in #rea of cheminformatics has been presented.
Through the proposed method we intended to showtligainformation entropy-based modelling of
complex systems can be effectively equipped withressive representation of complex data in the
form of structured representation. As a result,ceoning chemical and biological problems, we have
shown that predictions can be done directly fromezwar structures, introducing potential bendfits
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the current quantitative structure—property/agtivislationship (QSPR/QSAR) method. In particular,
since universal approximation capabilities of thquipartition conjecture have been proved
(specifically for tree-structured domains [15])e thquipartition conjecture can be considered argéne
tool especially useful to deal with new tasks witaeerelevance of thed hoc molecular descriptors is
unknown. More generally, the present approach easeen as a paradigmatic example of the studies
aiming at extending information entropy technigteghe treatment of various structured classes of
data [17]. Our aim here is also to propose the mpproach as a general method to tackle various
structured problems in the areas of cheminformatio$ bionformatics. Main potential developments
concern hard tasks in toxicology and bioinformatidsenever is natural to find useful structured
representation of chemical/biological data.

4. The area of clustering is notoriously difficuit,g although oranges and apples seem to have
significant differences they are both fruit. Is anpegranate more like an apple or is it more like an
orange? When the clustering problem is poorly $gekior the variation within each cluster is gezat
than that between different clusters, meaningfuistgring often becomes almost impossible.
Progression in the development of new methods mspleaed by the lack ajold standardsagainst
which to judge the quality of any clustering exseciAn understanding of both the chemistry and the
computational methods is essential for tackling #issociateddata mining tasks, without being
distracted by the abundant fool's gold. If a smalimber of clusters of data are easy to fit, the
predictive ability of the model could be guaranteedy if the deviations inside the clusters do not
diverge [34]. As suggested by Seneseal [35] in a different context, the generated clustean be
used to generate different QSAR models in ordeoltain better representation of the data. Thus,
clustering methods can be used to identify singleARs representing each of them different
information that can be overlooked when tryingapresent all the data by only one.

5. Information entropy and principal component gsa$ permit classifying the local anaesthetics
and agree. The ester (benzocaine, 2-chloroprocgragaine, tetracaine) and amide type local
anaesthetics (bupivacaine, dibucaine, etidocaithecdine, mepivacaine, prilocaine, S-ropivacaine) a
always grouped in different classes. The agentdowf potency and short duration (procaine,
2-chloroprocaine) are separated from the agenthigif potency and long duration (bupivacaine,
etidocaine, S-ropivacaine), while the agents of ematk potency and duration (mepivacaine,
prilocaine) are classified together with the latfEhe final classification is shown more precise an
with lower bias. The classification model calcutaile each case the contribution of signal and noise

6. The periodic law has not the rank of the lawspbsics: (1) the properties of the local
anaesthetics are not repeated; perhaps, their chkechiaracter; (2) the order relationships areatguk
with exceptions. The analysis forces the statemidrg:relationships that any anaesthptibas with its
neighbourp + 1 are approximately repeated for each periodo#eity is not general; however, if a
natural order of the anaesthetics is acceptedatheriust be phenomenological.

7. Bupivacaine cardiotoxicity results from prolodgéa” channel dwell time of the R-, as compared
with the S-, stereocisomer. Bupivacaine, like mostr@amide local anesthetics, has a chiral C atom
where the amide linkage joins the hydrophilic t@hirality yields two steric forms (S and R) which
are spatial mirror images with different receptamekics; commercial bupivacaine is the optically
inactive racemic (RS) mixture of R- and S-bupivaeaiRopivacaine is unique in that membrane
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separation synthesis exclusively yields the S-gatiomer, which is a local anesthetic with lower
cardiotoxic potential than racemic bupivacaine.

8. As the options for the practitioner continuegtow, the need for studies comparing onset of
action, efficacy and safety continues to be of pemant importance. A natural trend is to interchange
similar anaesthetics in the composition of complaxgs (EMLA®).
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