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Abstract: In the course of investigating structural modifications of the 3-,4-connected net 
known as the Pt3O4 structure-type (waserite), a novel 4-,8-connected structure-type was 
discovered.  This lattice is generated by replacing the 3-connected trigonal planar vertices 
of the Pt3O4 structure-type with 4-connected tetrahedral vertices, to achieve a structure 
which possesses a generic empirical formula of JK6L8. In such a topological modification, 
the four 3-fold axes of the parent cubic, Pm3n, Pt3O4 structure-type are retained.  Thus 
the 4-connected tetrahedral vertices are oriented so as to preserve cubic symmetry in the 
resulting Pm3, JK6L8 (jubilite) lattice. The unit cell contains a single 8-connected cube-
centered vertex, six 4-connected distorted square planar vertices and eight 4-connected 
distorted tetrahedral vertices. It is a Wellsean structure with a Wells point symbol given 
by (4166484)(4282)6(4383)8 and a Schläfli symbol of (53/4, 4.2667). This latter index reveals 
a decrease in the lattice’s polygonality and concomitant increase in the connectivity 
through the transformation from waserite to jubilite.  The topology of the parent waserite 
lattice (Pt3O4) corresponds to that of the Catalan structures with the Wells point symbol 
(84)3(83)4, which has the Schläfli symbol (8, 3.4285). Finally, it can be seen that a 
sequence of structure-types starting with waserite (Pt3O4) and moving to jubilite (JK6L8) 
and finally to fluorite (CaF2) represents a continuous crystallographic structural 
transformation in which the symmetry and topology undergo concomitant changes from 
one structure-type (waserite) to the other structure-types.  The topology of the fluorite 
lattice, represented by the Wells point symbol (424)(46)2, and the Schläfli symbol (4, 51/3), 
indicates a discontinuous topological transformation from the intermediate jubilite lattice; 
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like the discontinuous topological transformation from Pt3O4 to JK6L8; in which the 
polygonality is again reduced, in this step from 53/4 to 4, and the connectivity is 
concomitantly increased, from 4.2667 to 51/3, during the continuous structural 
transformation.  The l index,  a topological measure of the form of a structure-type in 
terms of the ratio of the weighted average polygonality to the weighted average 
connectivity in the unit cell, decreases in the sequence from Pt3O4 (2.3333) to jubilite 
(1.3476) to fluorite (0.7500). This indicates the discontinuous, though monotonic, 
appearance of more closed networks upon increasing the connectivity and concomitantly 
decreasing the polygonality in the structural sequence. Interestingly, the ratios of the 
form indexes of the adjacent members in this series: lwaserite/ljubilite and ljubilite/lfluorite, are 
approximately equal to each other.  
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Introduction 
 

Waser and McClanahan solved the structure of a novel sodium platinate lattice, NaPt3O4, in 1954 
[1]. This structure was synthesized as a jet black powder by the reaction of dry sodium chloroplatinate 
with dry sodium carbonate in a platinum crucible heated to a temperature at which the powdered 
material became molten, as is shown in Equation 1 below:   

 12 Na2PtCl6  +  26 Na2CO3   →  4 NaPt3O4  +  72 NaCl  +  26 CO2  +  5 O2           (1) 

 Upon cooling the molten mixture, the resulting black powder of the product sodium platinate was 
purified and conductivity and powder diffraction studies were carried out [1]. Conductivity 
measurements showed that the product phase NaPt3O4 was a good sodium ion conductor (specific 
resistance at room temperature measured as ≈ 104 ohm-cm) because of the loose association of the Na+ 
ions in the lattice coordinated to the oxygen atoms at a relatively large distance of 2.46 Å.  According 
to the investigators, the sodium ions could be reversibly removed from the Pt3O4 host lattice to some 
extent, but the sodium ions could not be completely removed.  The Pt3O4 host lattice, herein called 
waserite in honor of its discoverer, is shown in Figure 1. 

This cubic structure-type represents a unique 3-,4-connected net which, to some degree, 
complements the hexagonal phenacite structure-type discovered in 1930 by Bragg and Zachariasen [2].  
Both networks consist of 3- and 4-connected vertices that alternate in 3 dimensions, giving rise to a 
connectivity index (weighted average atomic valency), p, of about 3.4285 [3].  Interestingly, this index 
represents a continued fraction, and evidently the presence of high symmetry in these lattices does not 
preclude a connectivity index which is irrational [4].  Pt3O4 lies in space group Pm3n, number 223, 
with 6 Pt's in the Wyckoff positions 6(c) ±(1/4, 0, 1/2) and 8 O's in the Wyckoff positions 8(e) ±(1/4, 
1/4, 1/4) [5].  In contrast, the phenacite structure-type, in a binary stoichiometry of A3B4, lies in space 
group P63/m, number 176, with three sets of atomic positions: N(1) 2(c) ±(1/3, 2/3, 1/4), N(2) 6(h) 
(±(u, v, 1/4); ±(-v, u-v, 1/4); ±(v-u, -u, 1/4)) and Si 6(h) (±(u, v, 1/4); ±(-v, u-v, 1/4); ±(v-u, -u, 1/4)) 
[6]. 
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Figure 1. Waserite structure-type. 

   
The present communication describes a novel structure-type derived from waserite by replacing 

the trigonal planar, 3-connected vertices in Pt3O4 with tetrahedral, 4-connected vertices. In its most 
obvious form such a structure would possess 8 tetrahedral O vertices; in the Wyckoff positions 8(i) ±(x, 
x, x) of a Pm3 space group, number 200. Upon transforming waserite into the new structure-type by 
replacing the trigonal planar vertices with tetrahedral vertices, an 8-connected cube centered vertex is 
introduced into the unit cell, while the six 4-connected square planar vertices are retained, albeit 
slightly distorted, from waserite's structure.  This novel structure-type is shown in Figure 2 [7]. 

The new structure-type, hereafter called jubilite because of its discovery at the beginning of the 
new millenium, is cubic and lies in space group Pm3, number 200, with 1 atom in the Wyckoff 
position 1(a) (0, 0, 0), 6 atoms in the Wyckoff positions 6(f) ±(x, 0, 1/2) and 8 atoms in the Wyckoff 
positions 8(i) ±(x, x, x).  It therefore has 15 atoms in the cubic unit cell, with a generic composition 
JK6L8.  J is an 8-connected cube centered vertex, the 6 K correspond to the slightly distorted square 
planar vertices in Figure 2, and the 8 L correspond to the slightly distorted tetrahedral vertices in 
Figure 2.   
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Figure 2. Jubilite structure-type. 

 
The 4-connected vertices, both the square planar and the tetrahedral atoms, are forced to be 

distorted from their ideal bond angles of 90° (square planar) and 109.47° (tetrahedral) by the geometry 
of the lattice.  In contrast, in waserite the 3-connected trigonal planar vertices and 4-connected square 
planar vertices are both completely undistorted from their ideal angles of 120° (trigonal planar) and 
90° (square planar), respectively.  

 
Transformations and Topology of the Jubilite Lattice 
 

As has been previously discussed, the topological characteristics of crystalline materials may be 
described with reference to the two secondary topological parameters called the polygonality, n, and 
the connectivity, p, of the unit of pattern [8]. The polygonality refers to a weighted average of all the 
shortest circuits about all of the atoms (vertices) in the unit cell of the structure; the connectivity is the 
weighted average valence over the atoms (vertices) in the unit cell. These parameters, n and p, are 
rigorously determined in all crystalline matter where links (bonds) between atoms are unambiguous.  
For some structure-types, it may be useful to view the lattice as consisting of interpenetrating 
component lattices with their respective polygonalities and connectivities. 

As topological parameters, the polygonality and connectivity originate from the Euler relation for 
the sphere [9] which rigorously describes the relation between the vertices, V, edges, E, and faces, F, 
of convex polyhedra; as shown in Equation 2. 

 V - E + F = 2          (2)                 
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This relation holds for any division of the sphere into vertices, edges and faces.  By recognizing 
the identities, nF = 2E and pV = 2E, one may relate the secondary topological indexes, n and p, to the 
primary topological indexes, V, E and F, as is shown in Equation 3 [10]. 

 
1
n        -  

1
2        +  

1
p         =  

1
E                   (3)                 

Equation 3 is rigorous for the polyhedra and polygons, but it does not hold for 2-dimensional and 3-
dimensional extended structures. Evidently, the Euler relation needs to be modified in order to 
describe the structure of crystalline materials in a topological sense.  At any event, the values of n and 
p can be rigorously calculated for any arbitrary unit cell and these indexes can be used to characterize 
the material topologically, as, for example, in the topology map shown in Figure 3 below [11]. The 
ordered pair of numbers (n, p) is called the Schläfli symbol of the unit of pattern. One can apply these 
ideas to topologically characterize the waserite, jubilite and fluorite lattices, which are related to each 
other through a continuous crystallographic structural transformation. 
 

Figure 3. Topology map of regular structures. 
 

 
 

Beginning with the waserite lattice, shown on the top side in Figure 4, one can envision a structural 
transformation in which the eight trigonal planar vertices, in Wyckoff positions 8(e) ±(1/4, 1/4, 1/4) of 
Pm3n, are deformed continuously by drawing these atoms towards their respective, adjacent cube 
vertices along the <111> axes, and preserving 3-fold symmetry along the continuous deformation 
pathway, to generate eight tetrahedral vertices, in Wyckoff positions 8(i) ±(x, x, x) of Pm3 of the 
jubilite lattice, shown on the bottom side of Figure 4. During this continuous, cubic symmetry 
preserving structural transformation, the six 4-connected square planar vertices, originally in the 
Wyckoff positions 6(c) ±(1/4, 0, 1/2) of Pm3n of the waserite lattice, are held fixed relative to the 
deformation of the eight 3-connected trigonal planar vertices (in 8(e) ±(1/4, 1/4, 1/4) of Pm3n), and are 
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transformed, through the change in space group symmetry, to occupy the Wyckoff positions 6(f) ±(x, 0, 
1/2) in Pm3 of the product jubilite lattice.   

 
Figure 4. Continuous structural transformation of waserite to jubilate. 

 

 
The structural transformation is termed continuous because the deformation of the eight 3-

connected trigonal planar vertices along <111>, to form eight 4-connected tetrahedral vertices, which 
is shown schematically in Figure 5, can occur virtually infinitesimally inside the unit cell.   
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Figure 5. Cubic symmetry preserving distortion of trigonal planar vertex into tetrahedral vertex. 
 

 
 

During this structural transformation, the topology of the original waserite unit cell, given by the 
Schläfli symbol (8, 3.4285), with the Wells point symbol (84)3(83)4, is discontinuously transformed 
into a topology represented by the Schläfli symbol (53/4, 4.2667) of the jubilite unit cell, with a Wells 
point symbol given by (4166484)(4282)6(4383)8.  In the topological change accompanying the 
structural transformation, the polygonality is compressed from a value of n = 8 in waserite to n = 53/4 
in the latter jubilite structure-type.  In contrast, the change from trigonal planar connectivity to 
tetrahedral connectivity results in the connectivity index increasing from 3.4285 to 4.2667.  The space 
group symmetry is concomitantly lowered from Pm3n, number 223, in waserite to Pm3, number 200, 
in the jubilite lattice. 

In a subsequent continuous structural transformation, the jubilite lattice, shown on the top in Figure 
6, is continuously transformed into the fluorite lattice, shown on the bottom of Figure 6, by coalescing 
the six 4-connected square planar vertices in 6(f) ±(x, 0, 1/2) of Pm3 jubilite into three 8-connected 
cube centered vertices (the fourth 8-connected cube centered vertex located at (0, 0, 0) is retained 
undeformed from the parent jubilite lattice) in Wyckoff positions 4(a) (0, 0, 0) of Fm3m, number 225, 
fluorite [12]. In such a structural transformation, each of three pairs of adjacent 4-connected square 
planar vertices in {100} of jubilite is condensed into each of three corresponding single 8-connected 
cube centered vertices in {100} of fluorite. It is interesting to note that once again, as in the original 
waserite lattice, in the fluorite lattice there is no angle strain as the resulting eight 4-connected 
tetrahedral vertices in 8(c) ±(1/4, 1/4, 1/4) all have the ideal tetrahedral angle of 109.47° and all four 8-
connected cube centered vertices, in 4(a) (0, 0, 0) of Fm3m of fluorite, have the ideal cubical angle of 
70.53°. 

During the continuous structural transformation from jubilite to fluorite, the topology once again 
changes discontinuously as the polygonality is reduced from jubilite (53/4, 4.2667) to fluorite (4, 51/3), 
represented by the Wells point symbol (424)(46)2, and the connectivity is once again increased in the 
structural transformation; this time from 4.2667 to 5.3333.  The symmetry of the lattice is curiously 
decreased from waserite in Pm3n, number 223, to jubilite in Pm3, number 200, and then increased 
from jubilite to fluorite in Fm3m, number 225.  Finally, the l index [9]; which is a measure of the form 
of a structural pattern in terms of the ratio, shown in Equation 4, of the average polygonality in the unit 
cell, n, to the average connectivity in the unit cell, p; 

  l  =  
n
p                   (4) 

decreases monotonically in the sequence from waserite, where l is 2.3333, to jubilite, where l is 1.3476, 
to fluorite, where l is 0.7500.  This change in l to some extent reflects a transition from a relatively 
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open structure (waserite) into more highly connected structures which are topologically more closed 
(jubilite and fluorite). 
 

Figure 6. Continuous structural transformation of jubilite into fluorite. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is quite interesting in this connection to compare the ratios of the form indexes for the members 
in this series of 3 patterns related through a continuous crystallographic structural transformation.  The 
ratios lwaserite/ljubilite and ljubilite/lfluorite can be formed and their values compared, as shown in Equation 5: 

 
lWaserite
ljubilite         ≈  

ljubilite
lfluorite         ≈  1.7        (5) 
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Evidently, the transformation of the topological form of the structure in changing from waserite to 
jubilite and then from jubilite to fluorite, manifests as nearly the same number.  The similarity of the 
form change reveals the transformations are in some sense proportional, in other words the ratio of 
polygonality change to connectivity change is proportional in the 2 related continuous structural 
transformations.     

 
Presence of Strain in Jubilite 
 

In the structural transformations represented in Figures 4 and 6, one sees the generation of a 
strained intermediate lattice, jubilite, occurring between the continuous structural transformation from 
one unstrained structure-type, waserite, into another unstrained structure-type, fluorite.  The question 
naturally arises as to the occurrence of structure-types with strain in them.  One prominent example of 
a strained lattice is the cooperite structure-type shown in Figure 7 [13]. 
 

Figure 7. Cooperite structure-type. 
 

 
This structure-type is observed as the sulfide mineral PtS, and the oxide PdO.  The lattice lies in 

space group P42/mmc, number 131.  The structure, which contains one 4-connected tetrahedral vertex, 
the S or O atom, and one 4-connected square planar vertex, the Pt or Pd atom, is forced by its 
geometry to have strain.  The bond angles observed in the lattice are distorted from the ideal 
tetrahedral angle of 109.47°, and the ideal square planar angle of 90° [11]. 
 Yet another prominent example of a strained lattice is the phenacite structure-type [2], which is 
the structure of Si3N4 and Ge3N4 and several other oxides and fluorides [14].  Its structure is shown in 
Figure 8, for a binary stoichiometry it has the space group symmetry P63/m, number 176, as discussed 
above. The lattice contains three 4-connected tetrahedral vertices and four 3-connected trigonal planar 
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vertices in the unit of pattern. Once again, the geometry of the lattice forces the trigonal planar and 
tetrahedral vertices to be distorted from their ideal bond angle values of 120° and 109.47°, respectively.  

 
Figure 8. Phenacite structure-type. 

 

 
 

It is interesting to speculate whether in analogy to the waserite-jubilite-fluorite triad, there may 
exist strain-free end-member structures that are related to the strained lattices of cooperite and 
phenacite through continuous structural transformations. 

Finally, some important groundbreaking theoretical [15] and synthetic [16] work has been carried 
out on the jubilite structure-type very recently in 2004. The work of Balakrishnarajan et al. includes 
theoretical analysis of the bonding in a potential transition metal realization of the jubilite structure-
type that suggests that quadruply bonded transition metal dumbbell pairs may be stabilized in the cube 
faces of the structure (atom “K” in Figure 2) when atom “J” is an alkaline earth metal and atom “L” is 
a chalcogenide, in Figure 2. In other work by Pley et al., a Pt-containing cluster anion has been 
synthesized that exhibits the core jubilite structure.   
 
References and Notes 
 
1. (a) Galloni, E. E.; Roffo, A. E. J. Chem. Phys. 1941, 9, 875. (b) Waser, J.; McClanahan, E. D. J. 

Chem. Phys. 1951, 19, 413. 
2. Bragg, W. L.; Zachariasen, W. H. Zeit. f. Krist. 1930, 72, 518. 
3. Wells, A. F. The Geometrical Basis of Crystal Chemistry: (a) Part 1, Wells, A. F. Acta Cryst. 1954, 

7, 535; (b) Part 2, Wells, A. F. Acta Cryst. 1954, 7, 545; (c) Part 3, Wells, A. F. Acta Cryst. 1954, 7, 
842; (d) Part 4, Wells, A. F. Acta Cryst. 1954, 7, 849; (e) Part 5, Wells, A. F. Acta Cryst. 1955, 8, 
32; (f) Part 6, Wells, A. F. Acta Cryst. 1956, 9, 23; (g) Part 7, Wells, A. F.; Sharpe, R. R.  Acta 
Cryst. 1963, 16, 857; (h) Part 8, Wells, A. F. Acta Cryst. 1965, 18, 894; (i) Part 9, Wells, A. F. 
Acta Cryst., 1968, B24, 50; (j) Part 10, Wells, A. F. Acta Cryst. 1969, B25, 1711; (k) Part 11, Wells, 



Int. J. Mol. Sci. 2005, 6      187 

 

A. F. Acta Cryst. 1972, B28, 711; (l) Part 12, Wells, A. F. Acta Cryst. 1976, B32, 2619; (m) Wells, 
A. F. Three Dimensional Nets and Polyhedra, 1st Edition; John Wiley and Sons Inc.: New York, 
1977; (n) Wells, A. F. Further Studies of Three-dimensional Nets, American Crystallographic 
Association, Monograph Number 8, 1st Edition; American Crystallographic Association Press, 
1979. 

4. In contrast, in the cubic diamond lattice, which possesses high symmetry, space group Fd3m, 
number 227, it simultaneously possesses a high topology with all circuits being six-gons and all 
vertices tetrahedral; i.e. Schläfli symbol (6, 4). 

5. Waser, J.; McClanahan, E. D. J. Chem. Phys. 1951, 19, 413.  
6. Wyckoff, R. W. G. Crystal Structures, 2nd edition: Robert E. Kreiger Publishing Company: 

Malabar, FL, 1986, Volume II, p.157. 
7. Illustrations of all the unit cells have been provided by Ms. Jane Jorgensen at Jane Jorgensen 

Illustrations, 458 Valley Road, Brooktondale, NY 14817. 
8. Bucknum, M. J. Carbon 1997, 35, 1.  
9. Euler L. Elementa doctrinae solidorum et Demonstratio nonnularum insignium proprietatum 

quibus solida heddris planis inclusa sunt praedita.. Included in the Proceedings of the St. 
Petersburg Academy, 1758. 

10. Henle, M. A Combinatorial Introduction to Topology, 1st Edition; W.H. Freeman and Company: 
San Francisco, CA, 1979, p.9. 

11. Wells, A. F. Three Dimensional Nets and Polyhedra, 1st Edition; John Wiley and Sons Inc.: New 
York, 1977. 

12. Wyckoff, R. W. G. Crystal Structures, 2nd edition; Robert E. Kreiger Publishing Company: 
Malabar, FL, 1986; Volume I, p.239. 

13. Bannister, F. A. Zeit. f. Krist. 1937, 96, 201.  
14. (a) Wells, A. F. Structural Inorganic Chemistry, 5th Edition, Oxford University Press: Oxford, 

U.K., 1984; (b) Bragg, W. L.; Zachariasen, W. H. Zeit. f. Krist. 1930, 72, 518; (c) Juza, R.;  Hahn, 
H. Naturwissenschaften, 1939, 27, 32; (d) Juza, R.; Hahn, H. Z. Anorg. Chem. 1940, 244, 125;       
(e) Hardie, D.; Jack, K. H. Nature (London) 1957, 180, 332. (f) Ruddleson, S. N.; Popper, P. Acta       
Cryst. 1958, 11, 465.  

15. Professor Roald Hoffmann's group in theoretical chemistry at Cornell University has studied the 
jubilite structure-type and has discovered that it is compatible in its structure with the presence of 
quadruple transition metal M-M bonded dumbell pairs in the cube faces of the jubilite lattice (the 
element symbolized as "K" in Figure 2), see M.M. Balakrishnarajan, P. Kroll, M.J. Bucknum and 
R. Hoffmann, New Journal of Chemistry, 2004, 28, 185.  

16. Pley et al. have synthesized a Pt-containing transition metal cluster anion with the core jubilite 
structure, see M. Pley and M.S. Wickleder, Angewandte Chemie International Edition, 2004, 
43(32), 4168. 

  
© 2005 by MDPI (http://www.mdpi.org). 
 


