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Abstract: The coupled cluster based linear response theory which is applicable to

the direct calculation of atomic and molecular properties are presented and applied
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heavy atoms. The effect of electron correlation on the ground and excited states is

studied using Hartree-Fock, Dirac-Fock and approximate two-component relativistic

spinors.
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1 Introduction

The study of physical and chemical processes in atomic and molecular systems containing heavy

elements is of great importance both experimentally and theoretically. Aside from their obvious

relevance to understanding the chemistry of compounds containing heavy atoms, these studies

can provide a quantitative estimate of relativistic contributions, kinematic effects, and a probe

for physics that departs from the predictions of the standard model. The twin facts that heavy

atom compounds contain many electrons and that the behavior of these electrons must be treated

relativistically introduce severe impediments to accurate theoretical treatments of systems con-

taining heavy atoms. Rigorous relativistic electronic structure methods begin by forgoing the

Schrödinger equation in favor of the Dirac equation. The concomitant size of the matrices to

be manipulated and the number of two-electron integrals to be evaluated in the Dirac equation

have forced the introduction of various approximate method to describe the electronic structure

of heavy atom polyatomics by either restricting the number of electrons to be treated explicitly

or by converting the relativistic problem into a combination of a non-relativistic many electron

problem, a perturbative treatment of the relativistic corrections, and/or both.

The most widely used approximate relativistic scheme for describing heavy atom systems is

the effective core potential (ECP) method, where the core electrons are represented by suitable

functions and where only the valence electrons are treated explicitly. Recently Motegi et al. have

proposed a somewhat less approximate relativistic scheme (RESC) [1] for generating relativistic

spinors. The RESC method proceeds by eliminating the small component portion of the relativistic

Hamiltonian from the four-component Dirac equation through a suitable transformation.

In this article, we illustrate the efficacy of the RESC scheme by comparing the ionization poten-

tials (IPs) and excitation energies (EEs) obtained from the coupled cluster based linear response

theory (CC-LRT) [2–10] with Hartree-Fock, RESC, and four-component Dirac-Fock orbitals.

2 Coupled Cluster Based Linear Response Theory

In CC-LRT approach, one begins with the ground state function |Ψ0〉, written in the coupled

cluster form

|Ψ0〉 = exp(T )|φ0〉 (1)

where the cluster operator T consists of various hole-particle excitations from the closed-shell

function φ0, taken as the vacuum. The ionized/excited state Ψk are generated from the ground

state by the action of ionization/ excitation operator W †
k , and the corresponding energy ωk are

obtained from an equation of the form [2–7]:

[H,W †
k ]|Ψ0〉 = ωkW

†
k |Ψ0〉 (2)
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In non-orthogonally spin-adapted formulation of CC-LRT, both T and W †
k are expressed as a

linear combination of various spin-free hole-particle excitations operators, written in normal-order.

Thus, for example, for single and double excitations, one has operators like

q†pα =
∑
σ

a†pσaασ = {epα}, (3)

and

q†pα,qβ = {epα, eqβ}, (4)

respectively.

The curly brackets in eqs. (3) and (4) stand for normal ordering. The labels α, β and p, q

signify hole and particle orbitals, respectively, and σ denotes spin labels. The operators T and

W †
k are expressed as

T =
∑

i

tiq
†
i , (5)

and

W †
k =

∑

i

xikq
†
i , (6)

respectively, for excitation process. The cluster operators W †
k s for ionization and electron attach-

ment processes are expressed as

W †
k =

occ∑

α=1

xαaα +
occ∑

α,β=1

unocc∑

p=1

xp
αβa†paβaα (for IP), (7)

and

W †
k =

unocc∑

p=1

xpa
†
p +

uocc∑

p,q=1

occ∑

α=1

xpq
α a†pa

†
qaα (for EA), (8)

respectively.

Since T and W †
k commute, premultiplying eq. (2) by exp(−T ) we get the following equation of

motion (EOM):

[H̄, W †
k ]|φ0〉 = ωkW

†
k |φ0〉 (9)

with

H̄ = exp(−T )Hexp(T ) + E0 (10)

where E0 is the ground state energy. Projecting eq.(9) on to the biorthogonal space 〈φ̃i| = 〈φ0|q̃i,

we get

AXk = ωkXk, (11)

where

Aij = 〈φ0|q̃i[H̄, q†j ]|φ0〉 (12)

and Xk denotes the columns of xk. Since T is anti-Hermitian, eq. (10) leads to a non-Hermitian

operator H̄ and the associated matrix A.
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3 Results

In the present work, we have used the truncation scheme T = T1 + T2 for computing Ψ0. The ex-

cited/ionized states Ψk are generated by the action of W †
k where the excitation/ionization operator

W †
k is truncated at 2h-2p level for EE, 2h-1p for IP, and 1h-2p for EA processes, respectively. To

avoid variational collapse in the DF procedure, we impose kinetic balance condition and relativistic

boundary conditions on the basis spinors. Since the expression for kinetic balance condition is

simple for uncontracted Gaussian/Slater functions, we use uncontracted Gaussian basis to gener-

ate the Hartree-Fock(HF), RESC and Dirac-Fock (DF)orbitals. While the HF and RESC orbitals

are obtained from GAMESS [11] code, the DF orbitals are generated from the code developed in

our laboratory. Note that in the present RESC scheme, only the one electron integral corrections

are added. A more accurate treatment can be achieved by means of relativistically averaged basis

set which incorporates the two- electron integral corrections. However, the RESC corrections to

two-electron is beyond the scope of the present work.

The basis sets used in the computation of IPs and EEs are displayed in Table 1. Figure 1 plots

the absolute difference in the ground state energy obtained from CC calculation using DF, HF,

and RESC orbitals with respect to atomic number (Z), i.e., |EDF
gr − EHF

gr | and |EDF
gr − ERESC

gr |
versus the atomic number. The present work shows that the ground energy obtained from HF

orbital is less than that obtained from the RESC and DF orbitals. Figure I also demonstrates that

while |EDF
gr − EHF

gr | increases with increasing atomic number, ERESC
gr remains quite close to EDF

gr

over the entire range. The fact that |EDF
gr −ERESC

gr | << |EDF
gr −EHF

gr | for the ground state clearly

demonstrates that dominant relativistic corrections can be incorporated through RESC scheme.

Table 2 compares the ionization potentials (IPs) obtained from CCLRT-IP method using HF,

DF, and RESC orbitals with the experiment [12]. Table 2 shows that the average deviation

(absolute) of the computed IPs with HF, RESC and DF orbitals are 1.269%, 0.576% and 0.552%,

respectively. Table II further demonstrates that the accuracy of computed IPs with HF orbitals

Table 1: Basis set used in the computation IPs and EEs.

System Basis set Ref.

Be 16s9p5d1f [15]

B 16s10p5d1f [15]

C 14s10p4d1f [15]

Ne 13s9p5d2f [16]

Ar 20s13p4d2f [17]

Rb 15s12p8d2f [18]

Cs 15s12p8d2f [18]
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Figure 1: Plot of |EDF
gr − EHF

gr | (solid line) and |EDF
gr − ERESC

gr | (dotted line) versus the atomic

number (Z).
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Table 2: Ionization Potentials (in eV) of Be, B, C++, Ne, Ar, Rb, and Cs obtained from CCLRT-IP

method using Hartree-Fock (HF), RESC, and Dirac-Fock (DF) orbitals.

System CCLRT Experiment [12]

HF RESC DF

Be 9.315 9.316 9.322 9.322

B 8.222 8.220 8.223 8.298

B+ 25.134 25.140 25.146 25.155

C+ 24.292 24.289 24.289 24.383

Ne 21.240 21.262 21.633 21.564

Ar 15.656 15.638 15.898 15.759

Rb 4.074 4.141 4.185 4.177

Cs 3.735 3.889 3.960 3.894

Average Error 1.269% 0.576% 0.552%

deteriorates with increasing atomic number (Z) as anticipated. The fact that IPs obtained using

RESC orbitals are quite close to those obtained from DF orbitals suggests that relativistic effects

can be introduced efficiently via RESC scheme.

Table 3 compares the CCLRT valence electron removal energies of B, C+, Rb, and Cs atom

with the experiment [12]. It is evident from Table 3 that the average error in computed valence

electron removal energies with HF orbitals is large compared to those obtained from RESC and DF

orbitals. Table 3 also indicates that the computed valence electron removal energies of C+(2P1/2),

Rb(2S1/2), and Cs(2S1/2) states are quite off from the experiment. However, this is purely a

basis inadequacy problem. Using larger basis (with more d and f) this difference can be reduced

significantly [13]. Since, the main motivation of this work is to assess the relative accuracy of

different choice of orbitals, we use limited but same basis for all three cases.

In Table 4, we compare the excitations energies of Be, B+, and C++ obtained from CCLRT-EE

method using HF and RESC orbitals with the experiment. Table IV shows that the average and

RMS errors are slightly less for EE obtained from the HF orbitals than those computed with RESC

orbitals. Since the systems investigated here are not heavy, it is difficult at this stage to assess

the efficacies of the RESC scheme. However, based on the previous results (displayed in Tables 2

and 3), we strongly believe that the accuracy of estimated EEs from HF orbitals will deteriorate

with increasing atomic number. Moreover, studies on alkali metal halides (NaCl, NaBr, KCl,

RbCl etc.) suggest that the RESC orbitals offers more accurate estimate of ionization potentials,

electron affinities, and dissociation energies than the HF orbitals [14] for systems containing heavy

elements.
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Table 3: Valence electron removal energies (in cm−1) of B, C+, Rb, and Cs obtained from CCLRT-

EA method using Hartree-Fock (HF), RESC, and Dirac-Fock (DF) orbitals.

System Dominant CCLRT Experiment [12]

Configuration HF RESC DF

B [Be]2p(2P3/2) 66322 66946

[Be]3s(2S1/2) 26787 26790 26723 26890

[Be]4s(2S1/2) 11829 11830 11789 11921

C+ [Be]2p(2P3/2) 195903 196723

[Be]3p(2P1/2) 64551 64934

[Be]3p(2P3/2) 64786 64783 64780 64923

Rb [Kr]6s(2S1/2) 10963 11242 11260 13557

[Kr]5p(2P1/2) 20804 21112

[Kr]5p(2P3/2) 20481 20500 20577 20874

Cs [Xe]7s(2S1/2) 9067 9854 9960 12872

[Xe]6p(2P1/2) 19741 20229

[Xe]6p(2P3/2) 19215 19265 19309 19674

Average Error 7.754% 6.534% 6.397%

4 Discussion

The coupled cluster based linear response theory is presented and applied to compute ionization

potentials and excitation energies for light atoms. In this work, we investigate the effect of

electron correlation on the ground and excited states using HF, DF and RESC orbitals. The

present work demonstrates that dominant relativistic corrections can be incorporated through

RESC scheme. The present work further demonstrates that for heavy elements accuracy of the

properties computed with HF orbitals is much less than those obtained from DF and RESC

orbitals. Since the two-electron integral corrections are not included in the present RESC scheme,

comparison between the DF and RESC scheme is not perfect at this stage. A comparative study

of DF orbitals versus RESC with relativistically averaged basis set which incorporates the two-

electron integral corrections will be more appropriate. Research in this direction is in progress.
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Table 4: Singlet state excitation energies (in cm−1) of Be, B+ and C++ obtained from CCLRT-EE

using Hartree-Fock (HF) and RESC orbitals.

System Dominant CCLRT Experiment [12]

Configuration HF RESC

Be [He]2s3s(1S) 54657 54665 54662

[He]2s2p(1P ) 42806 42819 42565

[He]2s3p(1P ) 60418 60429 60187

[He]2s4s(1S) 65222 65230 65245

[He]2s5s(1S) 70107 70115 69332

B+ [He] 2s2p(1P ) 73993 74052 73397

[He] 2p2(1D) 104338 104449 102362

[He] 2p2(1S) 129283 129368 127622

[He] 2s3s(1S) 138333 138396 137622

[He] 2s3p(1P ) 144079 144131 144103

[He] 2p2(1D) 156856 156907 154687

[He] 2s4s(1S) 167801 167845 167936

[He] 2s4p(1P ) 171322 171374 170591

C++ [He] 2s2p(1P ) 103254 103411 102351

[He] 2p2(1D) 148668 148966 145875

[He] 2s3s(1S) 185593 185883 182520

Average Error 0.82% 0.87%
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