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Abstract: Based on the need for radiobiological databases, in this work, we mined experimental ion-
izing radiation data of human cells treated with X-rays, γ-rays, carbon ions, protons and α-particles,
by manually searching the relevant literature in PubMed from 1980 until 2024. In order to calculate
normal and tumor cell survival α and β coefficients of the linear quadratic (LQ) established model, as
well as the initial values of the double-strand breaks (DSBs) in DNA, we used WebPlotDigitizer and
Python programming language. We also produced complex DNA damage results through the fast
Monte Carlo code MCDS in order to complete any missing data. The calculated α/β values are in
good agreement with those valued reported in the literature, where α shows a relatively good associ-
ation with linear energy transfer (LET), but not β. In general, a positive correlation between DSBs
and LET was observed as far as the experimental values are concerned. Furthermore, we developed
a biophysical prediction model by using machine learning, which showed a good performance for α,
while it underscored LET as the most important feature for its prediction. In this study, we designed
and developed the novel radiobiological ‘RadPhysBio’ database for the prediction of irradiated cell
survival (α and β coefficients of the LQ model). The incorporation of machine learning and repair
models increases the applicability of our results and the spectrum of potential users.

Keywords: database; ionizing radiations; radiobiology; biophysical model; machine learning

1. Introduction

It is well documented that ionizing radiation (IR), in the form of electromagnetic waves
or particles, is capable of causing a wide variety of DNA damage that is spatiotemporally
correlated to irradiated cells, ranging from single-strand breaks (SSBs) and base damage to
double-strand breaks (DSBs) and DNA cross-links. In the case that the burden of damage
overwhelms the repair capacity of the cells, IR, similarly to other potentially carcinogenic
agents such as non-ionizing radiation, may eventually lead to genetic instability, excessive
cell death or cancer-promoting processes [1]. More specifically, the induced clustered DNA
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damage is considered to have a high probability of initiating carcinogenesis [2]. Therefore,
modern anti-cancer radiation therapy (RT) faces the challenge of exerting or potentiating
its deleterious effects on cancer cells, for example, by increasing the complexity of DNA
damage, while decreasing the probability of sub-lethally damaging the surrounding healthy
cells and tissues [3]. Hadrontherapy, with protons or 12C ions, enables a more targeted
administration of IR and the selective destruction of cancer cells.

In recent decades, radiobiological models, together with Monte Carlo (MC) algorithms,
such as PARTRAC [4], Geant4-DNA [5,6] and KURBUC [7], represent the main research
approaches to estimating IR-induced damage at the molecular level with the closest possible
approximation. Many radiobiological models developed to assess cell response to IR, such
as the microdosimetric kinetic model (MKM) [8] and the local effect model (LEM) [9], have
been used thus far to estimate cell survival upon exposure to IR. Of those models, the most
widely applied is the linear-quadratic (LQ) model [10]. Recently, efforts have been made to
integrate machine learning (ML) techniques in order to improve models’ adequacy and
efficacy in terms of predicting dose distribution or forecasting treatment response [11].

In the field of radiobiology, there are a few databases and resources available that
provide valuable information on various aspects of the biology of the irradiated cells. These
sources contain data on radiation-induced biological effects, radiation dosimetry, DNA
damage and repair kinetics, treatment plans and related areas. One notable radiobiology
database is PIDE [12]. Such databases can serve as valuable resources for researchers,
radiobiologists, clinicians and radiotherapists, since they provide access to a large volume
of data that contribute to our understanding of radiation’s biological effects and their
applications in cancer treatment. However, they usually consider only a single type of
radiation (e.g., either particle or electromagnetic radiation), and they contain only two
parameters regarding the type of biological response, i.e., the two LQ model coefficients
(α and β).

Herein, we developed a computational biophysical model, which is able to accurately
predict the response of human cells (i.e., conduct an assessment of complex DNA lesion and
cell survival) after exposure to different types of IR at various dose levels. We were mainly
motivated by the current lack, in the existing literature, of a ‘complete’ radiobiological
model for the prediction of these critical types of biological response. To this end, we applied
a fast Monte Carlo code (Monte Carlo damage simulation (MCDS)) [13] for predicting the
average number of complex DNA lesions, such as DSBs, non-DSBs and SSBs, in the
cells irradiated with γ-rays, protons, α-particles and carbon ions, by providing as input
data the dose of each specific type of radiation. Our scope was the construction of a
reliable radiobiological database which includes the literature-derived experimental data
complemented by the MCDS simulation results for the induced lesions, as well as the
development of an ML biophysical model/prediction tool. Our ultimate goal is to provide
a user-friendly, publicly accessible resource for conducting research or facilitating clinical
applications like radioprotection or radiotherapy.

2. Results
2.1. Experimental Data Calculations

As reported in the literature, early-responding tissues are known to have α/β ratios of
around 7–10 Gy, while late-responding tissues have α/β ratios of 3–5 Gy (Table 1) [10,14].
Of note, the tabulated values are largely based on X-ray data; thus, a direct comparison
against all radiation qualities (Figure 1) has some inherent limitations.

Obviously, these values are approximate and may vary depending on the specific
study, patient population, and treatment techniques used. To be more precise, α and β are
heavily scattered when comparing cells of the same tissue and even when analyzing the
same cell line in different labs, growth conditions, etc. The α/β ratio is not a fixed property
of a tissue, but rather represents an average value used for treatment planning.
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Table 1. Literature-derived suggested α/β value ranges per tissue.

Tissue Range of α/β

kidney
Late-responding tissue

3–5
lung

bladder

bone

Early-responding tissue
7–10

head and neck

colon

skin

The results for the dependence of α/β values from cancerous tissues and all types of
radiation are shown in Figure 1a,b. The data have been ordered in two grouped box charts,
where the majority of the values seemingly range from 4 to 6. The abbreviations ‘Panc’,
‘ConTis’, ‘HnN’, ‘NerTis’, ‘PleEff’ and ‘UmbCor’ refer to Pancreas, Connective Tissue, Head
and Neck, Nerve Tissue, Pleural Effusion and Umbilical Cord, respectively. For this process,
the negative β values were omitted, and only α/β values up to 20 were taken into account.
More specifically, for the generation of the values, 8 datasets were used for the bladder,
4 datasets for the gastric, 15 datasets for the blood, 20 datasets for the bone, 295 datasets for
the brain, 4 datasets for the kidney, 62 datasets for the breast, 40 datasets for the pancreas,
107 datasets for the colon, 4 datasets for the uterus, 8 datasets for the connective tissue,
5 datasets for the head and neck, 2 datasets for the muscles, 4 datasets for the nerve tissue,
27 datasets for the liver, 224 datasets for the lung, 62 datasets for the prostate, 6 datasets for
the sacrum, 87 datasets for the skin, 10 datasets for the thyroid, 2 datasets for the eye and
finally 1 dataset for the pleural effusion, the foreskin and the umbilical cord.
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Figure 1. Grouped box charts for different sets of tissues, as explained above (a) bladder-gastric,
blood-bone, brain-kidney, breast-pancreas, colon-uterus, conntissue-HnN and (b) muscles-nerve tis,
liver-lung, prostate-sacrum, skin-thyroid, eye-pleEff, Foreskin-UmbCord, for the α/β ratio for the
different types of cancerous tissue. The sample size included almost 996 datasets.

The correlation between the linear coefficient α of the LQ model for all types of
radiation and LET is shown in Figure 2. Each point represents the average α value at the
specific LET. We focused on the LET values ranging up to 150 keV/µm, where the majority
of α-values fluctuated until 3.50–4.0 Gy−1. As is largely confirmed by the literature, α
appears to have a nearly linear increase with LET, up to 100–150 keV/µm [15,16]. In this
study, we fitted the data in the Origin 2018-64bit software through a linear equation, as
shown in Figure 2; the exported R-Square (R2) values are shown in Figure 2d.
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Due to the way survival studies are designed, and the nature of LQ, errors are not uni-
formly distributed as a function of survival, with typically smaller (absolute) uncertainties
at the lower survival levels.

The dependence of DSBs on LET, which is depicted in Figure 3, is also of great radio-
biological importance, since the abovementioned complexity increases with the density
of ionization events. There is substantial evidence supporting that by increasing LET, the
yields of DSBs increase up to an LET value of 150–200 keV/µm [4]. In this work, we focused
on those LET value ranges of up to 150 keV/µm, at which the majority of the DSB values
fluctuated. In Figure 3, the orange squares represent the experimental data collected from
the relevant literature, while the blue diamonds indicate the output data from the MCDS
simulation. Each data point corresponds to the average value of DSBs per Gray per Gbp
for the five aforementioned radiation types for each LET value.

Based on the mathematical model for DNA repair kinetics, our results indicate good
fitting between the experimental and predicted values (Figures S5–S7). Moreover, by
comparing our results to these of [17], we may observe an agreement among the repair
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percentages. As seen in Figure 8 of the mentioned article, for 100 keV electrons, this means
that for the majority of our collected data, their repair percentage at 2 h, for example, is
around 40%, while ours varies at around 50%. All our analytical kinetics ki parameters
are included in Table S1. This allows users to apply this mathematical model according
to the initial DNA damage values and make predictions for a type of cell line (fibroblasts,
epithelial and lymphocytes) regarding the expected remaining DSB value, for example, at a
time point of 24 h post-irradiation.
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Figure 3. DSBs per Gy per Gbp with LET for (a) normal cells, (b) tumor cells and (c) both normal and
tumor cells. The sample size included 683 normal cell datasets and 1881 tumor cell datasets, while
both normal and tumor cell datasets totaled 2564.
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2.2. Model Predictions

The actual values of α and β are plotted on the y-axis, while the ML model predictions
are plotted on the x-axis in Figure 4.
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The permutation variable importance [18,19], a model-agnostic method, provided
a better understanding of the impact that different variables have on the coefficients α

(Figure 5a) and β (Figure 5b). More specifically, these diagrams depict which features are
more critical for the prediction of each coefficient.
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the importance of the given feature. All 2773 datasets were used for this procedure.
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3. Discussion

The LQ model, since its formulation about fifty years ago, has been the dominant
radiobiological model, as it provides an accurate and easily implemented description for
the vast majority of the available, experimentally obtained, cell survival dose–response
relationships. It makes use of the exponential relation (Equation (1)) to predict cell survival,
where the two coefficients α and β are often referred to as “radiosensitivity parameters”,
since they exhibit a strong dependence on the irradiated tissue. It is assumed that the
α term represents the direct cell killing (‘single hit’), that is, lethal damage caused by a
single incident particle, while the β term represents the impact of cell killing from ‘multiple
hits’ [20]. By understanding the relationship between radiation dose and cell survival, the
LQ model enables us to determine the most effective strategy for radiation treatment so as
to maximize tumor control while minimizing normal tissue complications.

If the plot of cell survival versus dose is depicted on a log scale, a quadratic response
curve is created. In the first part of the curve at low doses, the linear α term prevails, while
the curvature increases as the quadratic β term becomes more significant. It is noteworthy
that the α/β ratio essentially defines the degree of curvature, as well as the type of tissue
which is being irradiated, serving as a measure of sensitivity to fraction size. It is fairly
well-established that organs which contain rapidly proliferating cells are less sensitive to
the fraction size of a dose. These early-responding tissues are known to have high α/β
ratios, around 7–10 Gy, suggesting that higher doses delivered in fewer fractions can be
more effective in controlling such tumors. Conversely, organs with slower cellular turnover
exhibit much greater sensitivity to the dose fraction size. Late-responding tissues have been
shown to have α/β ratios of 3–5 Gy [10], indicating that they are more effectively treated
with conventional fractionation, where lower doses are delivered into multiple fractions
over several weeks. Determining the appropriate α/β ratio for a specific tissue or tumor
type is a crucial step for treatment planning in radiation therapy in terms of optimizing
the radiation dose and fractionation schedules to achieve maximum tumor control while
minimizing side effects on the surrounding healthy tissues.

Intratumoral heterogeneity greatly affects tumor response to radiotherapy, since the tu-
mor is composed of cells that are both sensitive and resistant to radiation. More specifically,
the vast majority of our data are considered asynchronous, which means that the cells in
the cell culture of the experiments are in a different phase of their cycle, and therefore show
different degrees of radiosensitivity [21]. In this way, when irradiating a heterogeneous cell
population, the sensitive cells are expected to die at lower doses than the more resistant
cells; this process may cause an ‘upward-bending’ survival curve, corresponding to a
negative β value in the LQ model, and a positive second derivative [22].

The LQ model is an empirical, biologically based model, which means that it is
specifically designed to provide an in-depth description of the radiobiological effects of cell
killing and sub-lethal repair. Moreover, it uses very few parameters, which allow the model
to be relatively simple in use, and also its predictions about cell killing up to 18 Gy are in
agreement with the majority of the radiobiological mechanistic models [23]. On the other
hand, at doses below 1 Gy, cells die from excessive sensitivity to small doses of ionizing
radiation but become more resistant to larger doses. As a result, the model underestimates,
in this region, the biological effect of a given dose. In general, the LQ model’s simplified
representation of a linear and a quadratic term may not accurately capture the complexity of
biological responses to radiation, as cellular responses can involve non-linear mechanisms
and complex interactions between different pathways.

Apart from the LQ model, various, similar, well-known radiobiological models are
available. For example, the Repair–Misrepair (RMR) model [24] and the Lethal–Potentially
Lethal (LPL) model [25] are used extensively in the published studies. Furthermore, in the
case of estimating radiation quality, such as heavy ions with high RBE values (e.g., 12C),
more specialized models are needed, such as the Local Effect Model (LEM) [9] and the
Microdosimetric Kinetic Model (MKM) [8]. The latter approaches go one step further and
delve into the nanoscale deposition of energy and its impact on radiation sensitivity [10].
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However, apart from their differences in structure and mechanism of operation, it is
noteworthy that the LQ model provides almost equal predictions for the basic quantities
to the aforementioned ones [23], even though it may not include as many features. In this
respect, the LQ model could be considered as practical and easy to use, since the other
models have many more parameters, which makes their use more complicated.

Regarding the results for the α/β values, as depicted in Figure 1a,b, they are in very
good agreement with the values reported in the literature, as shown in Table 1. Interestingly,
the kidney and lung have values of around 5, while the bladder has values of around 2.
Furthermore, the α/β values for the bones and the skin are around 7, whereas for the head,
neck and colon, the values are around 6. There might be slight deviations, however, as the
experimental values of β are often very small, dramatically affecting the corresponding
ratio. The frequency of the tissue also plays an important role, since some tissues occur
more frequently, resulting in more reliable data, while others appear less. It should be
mentioned that the direct comparison between in vitro- and in vivo-derived LQ values is
likely not directly meaningful. All our LQ values data are based on cellular data.

Regarding the dependence of the α term of the LQ model from LET, the data follow
almost the same scattering pattern in every case (Figure 2), so there is not a great dependence
of α on the cell type. As far as R2 is concerned, although the values from Figure 2d reveal a
positive correlation, they are not particularly high, as the data represent the average α values
of all types of radiation for each LET value. By taking into consideration the collected data,
different radiation types of the same LET exert diverse biological effects, and therefore have
different linear terms [26]. Although two types of radiation may have the same LET, their
different characteristics and mechanisms of interaction with biological tissues may lead to
varying biological effects. The data are also produced, using experimental measurements,
from different laboratories with different equipment, a different dose range and perhaps
under different oxygen and dimethyl sulphoxide (DMSO) conditions. However, due to
the fact that R-square is a limited metric for very heterogeneous data, as it is sensitive to
outliers, we also calculated the Spearman correlation, which is a metric that is less sensitive
to outliers. According to Figure 2d, the value of the metric is 0.71 for normal cells, 0.75 for
tumor cells and 0.74 for both normal and tumor cells. Given that the closer the Spearman
correlation coefficient is to 1, the better the correlation between data, there is an apparently
strong, positive linear correlation between LET and the α coefficient.

There is a general upward trend in the theoretical results, that is, the ones from the
MCDS simulation (Figure 3). However, many values exist between 6 and 8; this is probably
due to the fact that different radiation types of the same LET have different linear terms [26],
as mentioned above. It has been demonstrated that the linear term is linked to lethal damage
and subsequently to DSBs, which means that, for the same LET, different radiation types
lead to different numbers of DSBs. This upward trend of values is anticipated, according
to the relevant literature. As the LET increases, the number of DSBs induced per cell and
the complexity of the breaks are expected to increase [27]. More specifically, high-LET
radiation tends to produce more complex DNA damage, including a higher number of
DSBs, as compared to low-LET radiation like γ-rays or X-rays. This happens because
high-LET radiation deposits more energy per unit distance, leading to a greater likelihood
of simultaneous DNA strand breaks. This fact has also been demonstrated in the literature
through the use of other simulation tools like PARTRAC [28,29].

On the other hand, regarding the experimental DSB values, an increase occurs in
relation to LET, followed by a corresponding decrease. As the data points represent the
average yields of all radiation types, the pattern is not clear enough. Early experimental
studies on DSB induction through radiation with different qualities have shown that
DSBs tend to increase with increasing LET, while other, later, studies have demonstrated
a reduction in DSBs with increasing LET, most probably due to experimental detection
weaknesses [30]. In this case, it is presumed that the indirect strand breaks decrease as
the LET value increases, while the directly induced ones remain constant and then also
decrease at a very high LET. Regarding the decrease in the direct effects at a very high
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LET, it is considered that the extra energy is wasted at the same breakage that has already
occurred [31]. Of particular note, the relationship between LET and DSBs is not linear and
can be influenced by other factors; for instance, the repair mechanisms within cells can vary
depending on the type of radiation and the cellular context.

Furthermore, the majority of experimental values are lower than the theoretical ones
in all diagrams in Figure 3. This disparity was expected, as there is an inherent difficulty
in the measurement of experimental damage. More specifically, the techniques followed
for damage calculation include manual handling or automatic processes by evaluating
the total γH2AX immunofluorescence intensity emission per cell, using high-throughput
techniques such as flow cytometry. These methods are often not sensitive enough, which
makes them not efficient for this purpose [32,33]. Thus, since foci detection techniques
rely on microscopy, the quantification of experimental damage is associated with advances
in fluorescent microscopy technologies [34]. This could also explain the abovementioned
decrease in DSBs, which might be present, but would be difficult to measure with the
current techniques. Of particular note, Monte Carlo simulations are mathematical models
which can provide useful predictions, though they are not exact replicas of experimental
measurements. Their accuracy in predicting DSBs depends on several factors, including
the accuracy of the underlying physical models, the quality of the input parameters and
the data, as well as the complexity of the system that is simulated.

In the plots of the actual versus the predicted values for α and β (Figure 4), the closer
the dots that correspond to the pairs (actual; predicted) fall to the diagonal (black) line,
the better the predictive power of the model. A linear least squares method was applied
to model these points and then the red line was plotted over the same plots. The results
show a good predictive performance for α coefficient (R2 = 0.63), whereas the prediction
of β was not that satisfactory (R2 = 0.6), as we expected, for the reasons mentioned above.
This can also be explained by the scale of β values and the experimental process that is
used to extract α and β values. These values are calculated by fitting the LQ model on the
survival curves for each model. This process itself introduces an error, which, in the case
of α, is not significant in relation to its mean magnitude, but is significant in relation to
β. More specifically, there is intrinsic noise, to the point where it is difficult to predict β
in an adequate way. This conclusion can be also extracted from the performance of the
model in predicting α and β, by using the root mean square error (RMSE) of actual versus
predicted values from the test dataset. The metric RMSE, which is the square root of the
average of squared errors, was used to measure the accuracy of the model, that is, the
differences between the predicted and observed values. This is always non-negative, and
the closer the RMSE values are to zero, the better the model’s prediction. The RMSE value
and the Spearman correlation coefficient for α were calculated as 0.55 and 0.72, respectively,
indicating a satisfactory prediction for α in combination with the value of R2. Concerning
β, the RMSE value and the Spearman correlation coefficient were calculated as 0.24 and 0.4.

Finally, both the features ‘LET’ and ‘irradiation Conditions’ were found to be important
for the prediction of α and β coefficients (Figure 5). The importance of the effect of LET
was expected [11], as the α and β coefficients (indicative of the lethal and potential lethal
damage) are drastically affected by the energy that is deposited per distance. As regards the
irradiation conditions, that is, whether the radiation is mono-energetic or spread-out Bragg
peak (SOBP), the difference in the energy distribution on the target cell appears to have a
different effect on lesions, drastically affecting both α and β. The fact that cell line variance
effect is present but low may reflect the existence of various contaminated cell lines by other
cultures. For example, the HSG line is now known to actually be a HeLa derivative [35]
(https://www.cellosaurus.org/CVCL_2517 accessed on 4 April 2024). Providing consensus
cell line names in the database is not possible in all cases, since there is not a universally
accepted name list. More specifically, some HeLa-contaminated lines are mentioned, such
as HEp-2 and L132, and it is stated that ECV-304 is a derivative of T24 [36]. However,
many cell line origins are still in question, requiring further investigation. The users can
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exploit the radiobiological data in RadPhysBio based on the original data and information
provided and can draw their own conclusion.

In this work, we analyzed thousands of datasets of original experimental radiobiolog-
ical data and calculated the predictive efficiency of α and β parameters for cell survival
with the use of the widely accepted LQ model. Based on these data, we developed an
original, publicly available database, RadPhysBio, which includes several physical and
biological parameters. Our results show meaningful and valuable predictions for most of
the data (α-values). Nevertheless, we acknowledge that this study has several limitations
and uncertainties due to the wide variance in the original experimental data used and
of the software selection. The difference in α between different cell lines is less than that
of the most extreme LET conditions. This is attributed to the fact that there are quite
significant differences amongst cell lines, particularly for low-LET X-rays, which should
not be neglected in any predictive model.

4. Methods
4.1. Data Collection

Initially, we collected the experimental irradiation data of human cells for five different
types (Linear Energy Transfer (LET)) of radiation: X-rays, γ-rays, carbon ions, protons and
α-particles. We manually searched the bibliographic database PubMed [37] from 1980 until
2023 and we correspondingly created five different data files, one for each radiation type.
Then, we stored these data in a database.

Specifically, we used the relevant keywords [“X-ray” OR “γ-ray” OR “carbon” OR
“proton” OR “alpha particles”] AND “radiation” AND “human cells” to search the pub-
lished studies for data relevant to the corresponding five types of radiation. After we
inserted the keywords, we recorded only the publications which included information
about the α,β coefficients or/and DNA damage. Regarding X-rays, we collected 522 publi-
cations out of 11,634 results, from which we recorded 1098 experiments. In the same way,
for γ-rays, we collected 277 publications out of 6611 results, obtaining 506 experimental
datasets (EDs). For carbon ions, we collected 276 publications out of 2394 results, from
which we recorded 676 EDs. For protons, we gathered 163 publications out of 1339 results
and obtained 393 EDs. Finally, for α-particles, we collected 53 publications out of 1018
results, from which we recorded 100 EDs. Therefore, in total, we collected 1291 publications
out of 22,996 results, from which we recorded 2773 experimental datasets (EDs).

Overall, this database combines various physical and biophysical characteristics of
radiation and enables estimation of the induced biological damage through coefficients
used by the LQ model, as well as quantification of the DSB and non-DSB clusters.

A workflow of the process is illustrated in the Figure 6 below:
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Regarding γ-rays, we assumed that the values for the relative biological effectiveness
(RBE) and LET are both almost equal to 1. For X-rays, we also assumed that the RBE
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value is almost 1; the LET value, as reported in the literature, for an energy range around
250 kVp, is equal to 2 keV/µm, while for energy values between 6 and 15 MeV, it is equal to
0.3 keV/µm. For an energy range less than 100 kVp, we assumed that LET is approximately
2.5 keV/µm. For the other types of radiation (carbon ions, protons and α-particles),
LET was calculated from well-known RBE/LET data [38] using the WebPlotDigitizer
software (https://automeris.io/WebPlotDigitizer.html, accessed on 9 September 2023) with
a maximum estimated uncertainty of 20%.

In brief, the LQ survival model provides a simple relationship between cell survival S
and the delivered dose D. In this model, the fraction of the surviving cells is equal to the
sum of a linear term αD and a quadratic term βD2:

S = e−αD−βD2
(1)

In order to calculate the α and β coefficients of the model, in case the latter were not
provided in the corresponding publication or an experimental Survival-Dose diagram was
provided instead, we used WebPlotDigitizer software [39], which allowed us to extract
numerical data from those plot images (for more details, refer to Figures S3 and S4). In
particular, we analyzed the raw survival data from each diagram without considering
extreme values, and then we fitted those pairs with the theoretical equation of the LQ
model through the Python code [40] in the Spyder environment [41] of Anaconda3 [42], in
order to obtain α and β coefficient values (refer to Figures S3 and S4 for more details). More
specifically, from each survival curve, we included at least three pairs in the fitting process.
Subsequently, we included the obtained values of both coefficients from the publications,
together with the fitted ones (wherever needed), in the new database.

For the calculation of the initial values of the induced DSB or non-DSB clusters (in case
they were not provided in the publications), we again used the WebPlotDigitizer software.
From the experimental Damage–Dose or Damage–Time plots, we extracted the initial
number of DSBs or non-DSB clusters per Gray per Giga base pair (bp), within the time
period of a quarter or half an hour after the irradiation. If the damage was calculated, for
example, per cell per two Grays, we divided the given number by 6.4 (as we assumed that
the size of DNA in a single cell is ~6.4 Gbp) and by 2. In the majority of the collected papers,
the number of the induced γH2Ax foci was reported instead of the DSBs, and thus we
assumed a one-to-one ratio between them and included them in the count. Therefore, in the
present database we considered both damage values from the corresponding publications
(337 experimental values) and the calculated ones, when necessary. We also recorded each
initial damage in an Excel spreadsheet, where “p” indicates that the damage was calculated
with the pulsed-field gel electrophoresis method [43] and “f” denotes damage calculation
with the foci method [44].

Regarding the use of the Monte Carlo simulation tool, MCDS, we developed the
RadPhysBio database in response to the worldwide demand for a comprehensive radiobio-
logical database, which combines cell survival data with DNA damage data and radiation’s
physical parameters (e.g., energy, LET and dose rate). The lack of specific DNA damage
data in cell survival papers has raised the necessity of using a Monte Carlo simulation
code. Because of this, we included such data, being aware of the limitations of MCDS as
well as other Monte Carlo codes. The data from MCDS have proven to be—in this work
and previous works—quite compatible with the experimental data [45,46] based on the
selection of several parameters, like oxygen percentage, energy, scavenging capacity, etc.
According to the authors’ experience in applying ML algorithms [11] and vast knowledge
of experimental data [30], there is often a great variability in the DNA damage values,
which can even vary by one to two orders of magnitude when obtained from different
laboratories. Therefore, we deem that the MCDS data can be considered a good indicator
for users of the level of damage expected in each case, and at the same time cannot be
considered as a variable input forcing the model in a specific direction.

For protons, carbon ions and α-particles, we performed the induced DNA damage sim-
ulation using this code by inserting into the input file the specific energy of each experiment
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and the oxygen concentration (i.e., 20% for normoxic cell conditions and 1% for the hypoxic
ones); for X-rays and γ-rays, we inserted in the input file two different energy values (1 keV
and 10 keV) and the previously mentioned values for oxygen concentration. From the
corresponding table provided in the output file of MCDS (refer to Figures S1 and S2 for
more details), the magnitudes which are important to report in our work are the average
total number of DSBs and the average number of non-DSBs (‘Other’). The former is the
number of the induced DSBs per Gray per Giga base pair (Gbp) for every type of radiation
that we mentioned above, and the latter is approximately the number of non-DSB clusters
per Gray per Gbp.

The features of the database are presented in detail in the following Table 2.

Table 2. A detailed presentation of the features of the database.

Column Content

#ExpID Running number labelling the database entry

PMID Running number labelling the publication

#Exp Running number labelling the irradiation experiments within a
publication

CellLine Name of the irradiated cell line

Tissue Name of cell tissue

CellClass Tumor cells (t) or normal cells (n)

CellCycle Cell cycle phase (phases are provided explicitly in each case, or
noted by ‘a’ for ‘asynchronous’ cell lines)

Source Type of radioactive source

Energy (MeV) Specific radiation energy

RBE Relative Biological Effectiveness

LET (keV/µm) Linear Energy Transfer in water

IrradiationConditions Mono-energetic radiation (‘m’), or spread-out Bragg peak (‘s’)

DoseRate (Gy/min) Quantity of radiation delivered per minute of time

α
Linear coefficient of the LQ model (in Gy−1) for response to

radiation, as given in the corresponding publication, or else from
fitting to raw data

β
Quadratic coefficient of the LQ model (in Gy−2) for response to

radiation, as given in the corresponding publication, or else from
fitting to raw data

DSBs/(Gbp*Gy) Number of initial DSBs per Gbp per Gy, as given in the
corresponding publication

nonDSBClusters/(Gbp*Gy) Number of initial non-DSB clusters per Gbp per Gy, as given in
the corresponding publication

DSBs_1%O2
Number of initial DSBs per Gbp per Gy, calculated by the MCDS
simulation code, for the specific energy of each experiment and

1% oxygen concentration in the cell

Other_1%O2
Number of initial non-DSB clusters per Gbp per Gy, calculated by

the MCDS simulation code, for the specific energy of each
experiment and 1% oxygen concentration in the cell

DSBs_20%O2
Number of initial DSBs per Gbp per Gy, calculated by the MCDS
simulation code, for the specific energy of each experiment and

20% oxygen concentration in the cell

Other_20%O2
Number of initial non-DSB clusters per Gbp per Gy, calculated by

the MCDS simulation code, for the specific energy of each
experiment and 20% oxygen concentration in the cell
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Table 2. Cont.

Column Content

1keV_DSBs_1%O2
Number of initial DSBs per Gbp per Gy, calculated by the MCDS
simulation code, for 1 keV energy and 1% oxygen concentration

in the cell

1keV_Other_1%O2
Number of initial non-DSB clusters per Gbp per Gy, calculated by

the MCDS simulation code, for 1 keV energy and 1% oxygen
concentration in the cell

1keV_DSBs_20%O2
Number of initial DSBs per Gbp per Gy, calculated by the MCDS
simulation code, for 1 keV energy and 20% oxygen concentration

in the cell

1keV_Other_20%O2
Number of initial non-DSB clusters per Gbp per Gy, calculated by

the MCDS simulation code, for 1 keV energy and 20% oxygen
concentration in the cell

10keV_DSBs_1%O2
Number of DSBs per Gbp per Gy, calculated by the MCDS

simulation code, for 10 keV energy and 1% oxygen concentration
in the cell

10keV_Other_1%O2
Number of initial non-DSB clusters per Gbp per Gy, calculated by

the MCDS simulation code, for 10 keV energy and 1% oxygen
concentration in the cell

10keV_DSBs_20%O2
Number of initial DSBs per Gbp per Gy, calculated by the MCDS
simulation code, for 10 keV energy and 20% oxygen concentration

in the cell

10keV_Other_20%O2
Number of initial non-DSB clusters per Gbp per Gy, calculated by
the MCDS simulation code, for 10 keV energy and 20% oxygen

concentration in the cell

4.2. DNA Repair Fitting Model

As far as DNA repair is concerned, we used the NHEJ model with 9 variables and
10 unknown rate constants [47] and reproduced the process. We presented the change in
dose equivalent Deq(Gy) with time (h) for lymphocytes, fibroblasts and epithelial cells
(Figures S5–S7) according to this model using MATLAB 2019b software [48]. For each type
of cell line, a table of the experimental and theoretical data is also provided (Tables S2–S4).
In order to obtain the mean values of the k parameters which best fit to the data, we
calculated the average values of DSBs for each value of k and then we numerically simulated
them. The sum yi (for i = 1 to 9) represents the number of the unrepaired cells. In our
calculations, the dose rate was set to dD/dt = 80 Gy/h and the induction rate per unit dose
constant was set as a = 0.2. We also present the experimental and calculated fitting repair
data (Table S1), which contain the number of initial DSBs per Gy per cell (we assumed
that the size of DNA in a single cell is ~6.4 Gbp, even though DNA content differs from
cell to cell, depending on the phase of the cell cycle) and the remaining DSBs% with post-
irradiation time, based on the data in the original publications. In addition, all critical
derived k parameters of the NHEJ model per tissue category were included. In addition
to the existing initial repair data in the database, some extra repair data were added (for
lymphocytes and epithelial cells), and these are symbolized with “+”, as they are not
included in the database but only in Table S1.

4.3. Database Development

For the creation of the RadPhysBio database, the following process was employed:
1. Data Preparation: Excel files containing diverse datasets were gathered and standardized.
Node.js scripts were crafted to merge these datasets into a common JSON format using
libraries like ‘xlsx’ and ‘fast-glob’. This step ensured the uniformity and accessibility of the
data for the web application. 2. Web User Interface Development: The web user interface
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was developed using Nuxt.js, a powerful framework that offers server-side rendering
for improved SEO and enhanced initial load times. Web Workers were harnessed to
execute resource-intensive tasks in the background. This approach prevents UI blocking
and ensures a smoother user experience. Dexie.js was utilized as a client-side database
library and it allowed for the efficient storage and retrieval of data, reducing the need
for frequent server requests and thereby enhancing overall performance. To expedite the
UI development process, Tailwind CSS was adopted. This utility-first CSS framework
provided a responsive and mobile-friendly design system, facilitating rapid prototyping
and consistent styling. 3. Hosting and Deployment: Netlify (https://www.netlify.com/
accessed on 5 July 2023) was chosen as the hosting platform for the web application.

4.4. Machine Learning and Prediction Model

Regarding the ML algorithms, we gathered all radiation data in one Excel spread-
sheet (containing 2774 rows) and we added an extra column “RadiationType” in order to
differentiate the type of radiation. We filled the missing LET values based on (a) existing
RBE–LET curves for a known RBE value [38,49], (b) the MCDS-calculated results in case
the energy value was given, and (c) similar α values in case the RBE and energy values
were not provided. As far as DNA damage is concerned, we filled in the columns with
the experimental values, and when they were not recorded, we filled the blanks with the
values from our simulations. In the case of X-rays and γ-rays, we chose the energy value to
be 1 keV, which is considered an average value. It should be noted that we used the value
“1” for DMSO concentration, which stands for 1 mol/dm3.

In this study, the problem we are dealing with is multivariate regression with categori-
cal and continuous independent variables and a considerable amount of missing values.
To address all these issues, like in our previous work [11], randomForestSRC 3.2.3 [50]
software in the R programming language was used, which is designed for regression and
classification purposes. The random forest algorithm [51] has also been adapted to handle
survival data and multivariate regression tasks. The overall results indicate that the highest
performance is achieved when α and β are predicted together, in contrast to other models
applied to predict α and β separately, underlying the complex interaction between α and β.

The following conceptual pipeline was employed: (1) In an effort to increase the
likelihood of achieving good prediction efficiency, the dataset consisting of 2773 samples
was divided into training (90%; 2257 samples) and testing (10%; 251 samples) datasets.
More specifically, from the 2773 data, we used the 2508 with a non-zero LET value. We
also included results for 70–30% training–testing datasets (70%, 1755 samples, and 30%,
753 samples) in the Supplementary File (Figures S9–S11 and Table S5), although there was
not a significant statistical difference between their performance. (2) We tuned the model
so as to find the optimal hyperparameters:

- mtry: Number of variables to possibly split at each node.
- nodesize: Minimum size of the terminal node.

The tuning of the model was executed by repeatedly fitting the random forest model
with multiple combinations of the mtry and nodesize values and calculating the Out-Of-Bag
(OOB) error. We chose those values that corresponded to the minimum OOB error; in our
case, mtry = 7 and nodesize = 1 (for 70–30% mtry = 9 and nodesize = 1).

(3) We trained the model with the optimal hyper-parameters (for more details, refer to
Figure S8). (4) We used the optimal interpretations, as follows:

- Performance (qq plots).
- Variable importance [51].

5. Conclusions

In this work, we present RadPhysBio, an original radiobiological open-access database,
combining thousands of datasets of cell survival along with DNA damage values and
prediction, using MC code and ML. The future goal of this research is the enrichment of the
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database with additional experimental data, as well as with new parameters, such as cell
death, in order to improve the biological modeling. Furthermore, the development and
application of meta-heuristic optimization algorithms such as genetic algorithms is of great
importance in order to improve the fine-tuning of model parameters. These algorithms
have the ability to search and converge, even in huge search spaces, for optimal sets of
fitting parameters [52].
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