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Abstract: This paper offers a thorough investigation of hyperparameter tuning for neural network
architectures using datasets encompassing various combinations of Methylene Blue (MB) Reduction
by Ascorbic Acid (AA) reactions with different solvents and concentrations. The aim is to predict
coefficients of decay plots for MB absorbance, shedding light on the complex dynamics of chemical
reactions. Our findings reveal that the optimal model, determined through our investigation, consists
of five hidden layers, each with sixteen neurons and employing the Swish activation function.
This model yields an NMSE of 0.05, 0.03, and 0.04 for predicting the coefficients A, B, and C,
respectively, in the exponential decay equation A + B · e−x/C. These findings contribute to the realm
of drug design based on machine learning, providing valuable insights into optimizing chemical
reaction predictions.

Keywords: drug design; chemical reaction prediction; hyperparameter tuning; neural network
architecture; methylene blue reduction; machine learning in chemistry

1. Introduction

The kinetic assessment of chemical reactions is pivotal in elucidating reaction mech-
anisms and optimizing processes across diverse domains of chemistry. Among these,
the reduction of Methylene Blue (MB) by ascorbic acid (AA) [1,2] stands as a notable reac-
tion, owing to its widespread applications in analytical and industrial contexts, attributed
to its sensitivity and specificity. MB is a water-soluble cationic dye molecule [3], readily
reduced to leucomethylene blue, and oxidized back to its blue form. The reduction reaction
of MB is actively researched by scientists worldwide [1,4,5], reflecting its significance in
various fields of study. Despite challenges in employing it as a clock reaction, its kinetics
remain a valuable teaching tool, measured spectrophotometrically at λ = 665 nm, offering
insights into rate law dependencies on MB, ascorbic acid, and other concentrations.

The reduction of MB has been scrutinized and extensively discussed in academic
literature. The optimal conditions for decolorizing methylene blue using ascorbic acid
were determined by Weiland et al. [6] by investigating the wavelength and intensity of
illumination. Apples and potatoes were halved, immersed in a methylene blue solution,
and exposed to light. Decolorization was observed, revealing the tissue’s reducing capacity,
with apples showing greatest effect around the core and under the skin, while potatoes
exhibited less decolorization, primarily in a band near the skin.

Seno et al. [7] proposed that the reduction of MB with L-ascorbic acid in aqueous
surfactant solutions is accelerated by hexadecyltrimethylammonium bromide (HTAB) [8]
but not by tetrabutylammonium bromide. Micellar effects, affected by pH and inhibited by
KCl, suggest changes in substrate dissociation and product binding to micelles.

MB reduction to leucomethylene blue (MBH) by ascorbic acid in acetonitrile is stud-
ied by Hallock et al. [9] using cavity ring-down spectroscopy (CRDS) [10]. This tech-
nique allows for precise monitoring of concentration changes on a microsecond timescale,
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which was previously unattainable. CRDS utilizes reflective mirrors to form an opti-
cal cavity, and changes in light intensity are recorded as the absorber affects the de-
cay time. This method offers significantly increased sensitivity compared to traditional
absorption measurements.

The impact of the anionic surfactant sodium dodecyl sulphate (SDS) pre-micellar
clusters on the electron transfer reaction between MB and AA in dilute acid conditions
was explored by Sen et al. [11]. The reaction, exhibiting first-order kinetics with respect to
both MB and AA, involves uncatalyzed and H+-catalyzed paths. Iodide ion was found to
accelerate the reaction rate.

Simple classroom experiments, like clock reactions, offer accessible avenues to grasp
advanced concepts. For instance, Snehalatha et al. [12] demonstrated MB and L-ascorbic
acid clock reaction to undergraduates, showcasing kinetics principles with visible color
changes. This approach contrasts with the classic “Blue Bottle” experiment and has been
expanded to include studies on persulfate-iodide and bromination reactions, elucidating
factors like ionic strength and substituent effects on reaction rates.

Recent literature has seen a surge in studies investigating the properties and behaviors
of MB through the lens of machine learning (ML) algorithms. Kooh et al. [13] employ
supervised ML algorithms to model MB dye adsorption by Azolla [14] pinnata, aiming
for accurate predictions of adsorption capacity across various conditions. SVR-RBF [15]
emerges as the top-performing algorithm, achieving an R value of 0.994 with minimal error.

As global regulations tighten on water discharge color, the need for affordable dye
removal solutions grows. Marzban et al. [16] investigates MB removal using sodium
alginate-kaolin beads, assessing various parameters’ impact on efficiency. Characterization
and modeling techniques reveal an artificial neural network (ANN) [17] as the most accurate
predictor. The developed model aids in optimizing treatment processes, achieving efficient
removal of basic dyes. Adsorption kinetics [18] followed a pseudo-second-order model,
and encapsulating kaolin in sodium alginate significantly enhanced removal efficiency.

Asfaram et al. [19] investigates zinc sulfide nanoparticles with activated carbon
(ZnSNPs-AC) for MB adsorption. Characterization methods and modeling techniques,
including RSM [20], ANN, and least squares-support vector machine (LS-SVM), were em-
ployed. LS-SVM [21] and ANN models outperformed central composite design (CCD) [22]
in predicting MB adsorption efficiency.

Investigations into the adsorptive removal of MB dye from water using different parts
of an Abelmoschus esculentus (lady’s finger) [23] with processed seed powder (LFSP) are
described by Nayak et al. [24]. Batch studies evaluated biosorption performance under
varying conditions, revealing pseudo-second-order kinetics and intra-particle diffusion as
significant factors. Langmuir and Temkin isotherms provided the best fit. Thermodynamic
analysis indicated spontaneous and endothermic processes. RSM combined with ANN
showed RSM’s dominance in both data fitting and estimation capabilities.

Water contamination from artificial dyes in domestic and industrial wastewater poses
a significant environmental challenge, necessitating effective adsorbents for dye removal.
Soleimani et al. [25] addresses water contamination by utilizing calcium alginate hydrogels
reinforced with cellulose nanocrystals (CA/CNC) [25] as an effective and environmentally
friendly adsorbent for MB removal. Characterization confirmed CA/CNC’s suitability,
with adsorption kinetics following the pseudo-first-order model and equilibrium data
fitting the Langmuir isotherm model. RSM and an artificial neural network integrated with
the whale optimization algorithm (ANN-WOA) [26] were applied for analysis, with ANN-
WOA demonstrating superior predictive accuracy. These findings highlight CA/CNC
hydrogels as promising bio-adsorbents for addressing MB contamination in water.

Mahmoodi et al. [27] introduces a novel approach by coupling an artificial neural
network (ANN) with particle swarm optimization (PSO [28] to predict MB adsorption by
a starch-based superadsorbent. The superadsorbent, synthesized with acrylic acid and
acrylamide polymers, was functionalized with catecholamine groups via dopamine poly-
merization. Comparing the performance, ANN-PSO showed superior accuracy compared
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to RSM, and the prediction model for adsorption capacity was exemplified through a set of
explicit equations arranged in a matrix format.

This paper introduces a novel approach by coupling an artificial neural network
(ANN) with particle swarm optimization (PSO) to predict methylene blue (MB) adsorption
by a starch-based superadsorbent. The superadsorbent, synthesized with acrylic acid
and acrylamide polymers, was functionalized with catecholamine groups via dopamine
polymerization. ANN-PSO outperformed response surface methodology (RSM) in accuracy,
with the best ANN topology identified as 3-7-1. The ANN-PSO model yielded lower root-
mean-square error (22.46), higher correlation coefficient (0.99), and normalized standard
deviation (16.83) compared to RSM (82.89, 0.98, and 65.41, respectively).

Alibak et al. [29] employ cascade correlation neural network (CCNN) [30] modeling
to simulate the removal of MB using a bio-based hydrogel. The CCNN, trained with the
Levenberg-Marquardt algorithm, predicts MB uptake based on factors such as adsorbent
type, temperature, initial dye concentration, pH, and contact time. Results show excellent
agreement with experimental data, confirming that MB uptake intensifies with tempera-
ture, contact time, pH, and initial dye concentration, while the hydrogel reinforced with
bentonite/GO nanoparticles proves to be the most effective adsorbent.

In the landscape of chemistry and engineering, leveraging machine learning (ML) to
forecast the coefficients of the rate law governing the interactions involving MB marks
a significant advancement. Our study undertakes a thorough examination of the kinetic
characteristics associated with the reduction of MB by ascorbic acid within the super diluted
solutions (SDSs) of MB, water, and ascorbic acid at various concentrations. By scrutinizing
the reaction kinetics across these diverse solvent matrices, our aim is to elucidate the
nuanced correlation between solvent composition and reaction rate, ultimately identifying
the most sustainable model for predicting rate law coefficients through neural network
hyperparameters tuning [31].

2. Results
2.1. Spectroscopic Analysis Results

Based on the conducted measurements, a total of 220 files were obtained, each contain-
ing at least 10 spectra corresponding to different combinations of reactions with varying
concentrations of mixed substances. Figure 1 illustrates examples of absorption intensity
spectra over time for various reactions with differing concentrations.
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Figure 1. Examples of absorbtion intensity spectra for reaction MB+H2O (a–c) with varying volumetric
ratios of mixed substances at 1:1, 9:1, and 99:1, respectively.

2.2. Exponential Fitting

As previously mentioned, these spectra were fitted with an exponential function.
In some cases, the fitting process failed due to the limited number of measurements,
resulting in the library’s inability to capture the decaying trend accurately. Such profiles
were excluded from further analysis.
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Consequently, after filtering, a dataset for training was obtained, consisting of 180 records
of conducted reactions. In some instances, the same reaction was conducted multiple times
(specifically, six times). Examples of such reactions are illustrated in Figure 2.
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Figure 2. Examples of combined decay profiles with original data of maximum absorbtion intensity
for reactions (a–c) MB+H2O, conducted six times with varying volumetric ratios of mixed sub-
stances at 1:1, 9:1, and 99:1, respectively. (each point represents the maximum absorbance intensity
at λ = 665 nm).

2.3. Hyperparameters Optimization Pipeline

To enhance the efficiency of predicting coefficients A, B, and C in decay profiles,
a Python code was developed to fine-tune the architecture [32] and the hyperparameters
of a neural network model tailored for regression tasks. The grid search method explores
a range of parameters to optimize the neural network architecture. These parameters
include the number of hidden layers [33] (1 to 5), the number of neurons per layer [34]
(16 to 256), activation functions (ReLU [35], Sigmoid [36], Tanh [37], Leaky ReLU [38],
ELU [39], and Swish [40]), training epochs (50 or 100), and batch sizes [41] (16 or 32). Each
combination of these parameters is tested to identify the optimal configuration for the
neural network model.

For each parameter combination, a neural network model is instantiated with the
specified architecture and hyperparameters. The model is trained on a training dataset and
evaluated on a separate test dataset. During evaluation, the Normalized Mean Squared
Error (NMSE) [42,43] is calculated for each target variable (A, B, C) to assess the model’s
predictive performance.

Subsequently, the NMSE scores obtained for each parameter combination are stored,
along with the corresponding architecture and hyperparameters. These results are then
saved in an Excel file, with columns representing the architecture and hyperparameters
used for training, as well as the NMSE scores for each target variable.

Throughout this process, the grid search [44] seeks to identify the optimal combination
of model architecture and hyperparameters that minimize prediction error for the given
regression task. This systematic approach facilitates the exploration of a wide range of
model configurations, leading to informed decisions regarding the most effective neural
network architecture for the predictive task at hand. Figure 3 illustrates the results of NMSE
scores for predicting the coefficients A, B, and C.
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Figure 3. NMSE scores representing coefficients A, B, and C in approximating decay intensity profiles,
varying across neural network hyperparameters, are visualized in the plane of NMSE against the
number of layers and neurons.
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In the course of our study, where we systematically explored parameter combinations
using a grid search on our dataset, we identified optimal models with the lowest normal-
ized mean squared error (NMSE) values. The following models demonstrated the best
performance:

• A model with 1 hidden layer containing 256 neurons, utilizing the ELU activation
function, and trained for 100 epochs. For this model, the NMSE values for coefficients
A, B, and C were 0.011391, 0.019457, and 0.124704, respectively.

• A model with 1 hidden layer containing 64 neurons, utilizing the ELU activation
function, and trained for 100 epochs. For this model, the NMSE values for coefficients
A, B, and C were 0.152417, 0.083142, and 0.110623, respectively.

• A model with 5 hidden layers containing 16 neurons each, utilizing the Swish acti-
vation function, and trained for 100 epochs. For this model, the NMSE values for
coefficients A, B, and C were 0.053186, 0.033048, and 0.037663, respectively.

All these models were trained using a batch size of 32 and 100 epochs. The performance
of each model was evaluated using cross-validation, resulting in variance in the NMSE
metrics. Other models exhibiting low NMSE are presented in Table 1.

Table 1. Best Models Performance Summary.

Hidden Layers Neurons Activation Epochs Batch Size NMSE_A NMSE_B NMSE_C
1 256 ELU 100 16 0.01 ± 0.005 0.02 ± 0.008 0.12 ± 0.03
2 64 ELU 100 32 0.15 ± 0.02 0.08 ± 0.01 0.11 ± 0.02
2 128 Leaky ReLU 100 16 0.25 ± 0.03 0.18 ± 0.02 0.01 ± 0.005
2 256 ELU 100 32 0.14 ± 0.02 0.21 ± 0.03 0.09 ± 0.015
3 128 ELU 100 16 0.21 ± 0.02 0.20 ± 0.03 0.03 ± 0.01
4 128 ReLU 50 16 0.18 ± 0.02 0.20 ± 0.03 0.03 ± 0.01
5 16 Swish 100 32 0.05 ± 0.01 0.03 ± 0.005 0.04 ± 0.008
5 128 ReLU 100 16 0.25 ± 0.03 0.22 ± 0.02 0.06 ± 0.01

3. Discussion
3.1. Optimization of Neural Network Hyperparameters for Chemical Reaction Prediction

The optimization of hyperparameters for neural network architectures is critical in
achieving optimal performance for datasets related to chemical reactions, which encompass
information on various volumetric compositions of reacting substances. This study under-
scores the importance of carefully selecting and fine-tuning the architectural parameters of
neural networks to accurately model and predict the behavior of complex chemical systems.
By systematically exploring different combinations of layers, neurons, activation functions,
epochs, and batch sizes through techniques like grid search, we can identify configurations
that yield the lowest errors and the highest predictive accuracy.

Recent advances in artificial neural networks, particularly in deep learning, have
demonstrated their efficacy in drug discovery and toxicology research. The study [45]
explores various hyper-parameter configurations for deep neural networks and finds
that optimized models outperform traditional cheminformatics methods, with non-linear
models performing well under low noise levels and Naïve Bayes models excelling at higher
noise levels.

Computational simulations offer promise in rational material design, but their high com-
putational cost limits their ability to efficiently explore material phase space. The study [46]
employs machine learning to predict a critical parameter in catalyst performance, the reac-
tion barrier, advancing the computational prediction of catalytic activity.

A demonstration of the effectiveness of transformer-based models in automatically
inferring reaction classes from simple text-based representations of chemical reactions is
shown in [47]. Additionally, the authors showed that the learned representations serve as
reaction fingerprints, capturing nuanced differences between reaction classes better than
traditional methods. These findings facilitate a deeper understanding of chemical reaction
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spaces, as illustrated by an interactive reaction atlas offering visual clustering and similarity
searching capabilities.

3.2. Exploring Architectural Choices and Model Performance

The results obtained from this optimization process provide valuable insights into
the interplay between architectural choices and model performance [48]. For instance, we
observed that certain configurations, such as networks with a higher number of layers
and neurons, tend to capture more intricate patterns in the data but may also be prone to
overfitting, especially with limited training data. On the other hand, simpler architectures
with fewer layers and neurons may generalize better to unseen data but could potentially
overlook subtle nuances in the dataset.

Furthermore, the choice of activation functions plays a crucial role in shaping the non-
linear relationships between input features and output predictions [49]. By experimenting
with a variety of activation functions like ReLU, sigmoid, tanh, leaky ReLU, ELU, and swish,
researchers can gain deeper insights into how different activation functions influence the
learning dynamics and convergence of neural networks.

Additionally, the impact of training parameters such as the number of epochs and
batch size on model convergence and computational efficiency cannot be understated. Fine-
tuning these parameters based on the dataset size, complexity, and computational resources
available is essential to strike a balance between training time and model performance.

Overall, the findings from this study pave the way for future research endeavors aimed
at further refining neural network architectures for chemical reaction datasets. Potential
avenues for future exploration include the investigation of more advanced neural network
architectures such as recurrent neural networks (RNN) [50] or attention mechanisms, en-
semble methods for combining multiple neural network models, and the incorporation of
domain-specific knowledge into model design through techniques like transfer learning or
neural architecture search. Moreover, exploring the applicability of neural networks in con-
junction with other machine learning techniques like support vector machines (SVM) [51]
or random forests (RF) [52] could offer complementary insights and enhance predictive
capabilities for chemical reaction datasets.

4. Materials and Methods
4.1. Preparation of Chemical Reactions

The study focuses on investigating the kinetic properties of the chemical reaction
involving the reduction of methylene blue by ascorbic acid in various solvent systems.
These solvent systems encompass super dilute solutions (SDS) of methylene blue, ascorbic
acid, and water, as well as purified water. Rigorous characterization procedures will be em-
ployed to ensure the uniformity and purity of each solvent system prior to experimentation.
Subsequently, four distinct reactions will be conducted as follows:

1. MB (dissolved in H2O) + AA (dissolved in H2O) → Products
2. MB (dissolved in a SDS of H2O) + AA (dissolved in a SDS of H2O) → Products
3. MB (dissolved in a SDS of MB) + AA (dissolved in a SDS of AA) → Products
4. MB (dissolved in a SDS of AA) + AA (dissolved in a SDS of MB) → Products

The subsequent task entailed assessing the kinetic characteristics (reaction rate of
neutralization or decolorization) of the model reaction upon mixing its components with
varying concentrations of super-dilute solutions (SDSs). To achieve this, methylene blue
was pre-mixed with the following:

1. SDS MB/SDS water/water (in a volume ratio of 1:1)
2. SDS MB/SDS water/water (in a volume ratio of 9:1)
3. SDS MB/SDS water/water (in a volume ratio of 99:1)

A solution of MB is prepared in the designated solvent and transferred into a cuvette
with a volume of 2 mL. The cuvette is then placed in the cuvette compartment of the
spectrophotometer, and the absorption spectrum of the solution is recorded in the range of
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500 to 700 nm. The measurements obtained on the spectrophotometer PB 2201 (SOLAR,
Belarus, Minsk ) involved recording at least 10 consecutive readings with a 30 s interval
between each. Subsequently, the maximum absorbance for each of the curves was identified,
resulting in first-order decay plots for MB+ absorbance at 665 nm.

4.2. Processing of Results

A Python script was developed to automate the processing of data obtained from
the spectrophotometer. This script facilitated the conversion of cumbersome .txt files into
more manageable .xlsx files, each storing spectral curves at various time points, with a
new curve generated every 30 s. The script also automatically detected the maximum of
each spectrum, typically located around 665 nm as theorized. Upon detection, it created
.xlsx files for the decay of the maximum absorbance. Using the lmfit library, the script then
performed curve fitting using an exponential decay function of the form

A + B · e−x/C (1)

The resulting fits were visualized alongside the original data, providing insight into the
decay behavior. Consequently, a dataset was compiled containing filenames corresponding
to reaction experiments and coefficients obtained from curve fitting.

The dataset was constructed by recording the volumes of substances involved in each
reaction, where each row represented a distinct reaction scenario. For instance, if the initial
mixing volume for substances was 2000 mL and the volumetric ratios of MB and AA were
99:1, then 99 and 1 were entered into the respective columns for MB and AA. Similarly,
if SDS of AA and H2O were added in a 9:1 ratio, 9 and 1 were recorded in the corresponding
AA_SDS and H2O columns. Additionally, an extra solution was consistently introduced in
a volume of 120 mL. Up to six substances could be included: MB, SDS MB, AA, SDS AA,
H2O, and SDS H2O. An attempt was made to incorporate temperature data during solution
measurements and to indicate the influence of sunlight exposure, but these additions did
not contribute to model improvement. Further columns, denoted as MB+, AA+, MB_SDS+,
AA_SDS+, H2O+, and H2O_SDS+, were appended to include additional substances.

Figure 4 illustrates the proposed neural network architecture for predicting coefficients
A, B, and C in chemical reactions. The diagram showcases the input parameters of the
model, allowing for variation in the number of neurons and hidden layers. Despite these
variations, the model focuses on predicting the three coefficients, providing a streamlined
approach to reaction prediction.

H2O_SDS
MB_SDS

MB
AA_SDS

AA
H2O
MB+
AA+

MB_SDS+
AA_SDS+

H2O+
H2O_SDS+

N1
N2
N3
N4
N5
N6
N7
N8
N9
N10
N11
N12
N13
N14
N15
N16

A
B
C

Figure 4. One of the possible Neural Network Architectures for Predicting Coefficients A, B, and C: a
variant with sixteen neurons and one hidden layer.
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5. Conclusions

In this study, we investigated the optimization of hyperparameters for the architecture
of a neural network for analyzing data related to chemical reactions. Our dataset contains
information on various volumetric compositions of substances involved in the reactions.
The primary aim of our investigation was to ascertain the optimal parameters of the
neural network for accurately predicting the profiles of exponential decay coefficients in
chemical reactions.

In the process of hyperparameter optimization, we used the grid search method,
exploring different combinations of parameters such as the number of layers, the number
of neurons per layer, activation functions, the number of training epochs, and batch size.
This approach allowed us to systematically investigate various configurations of neural
networks and evaluate their performance on our dataset.

The results of our study showed that the choice of optimal hyperparameters signifi-
cantly influences the performance of the neural network. Our investigation unveiled the
significant impact of activation functions on enhancing the efficiency of the neural network.
We found that for certain types of data and tasks, specific activation functions may be more
suitable than others. For example, the Swish function performed best for certain types of
chemical data, while ReLU was preferable for others.

Overall, our study confirmed the importance of selecting the right hyperparameters
to ensure the optimal performance of neural networks in analyzing chemical data. Our
findings can be valuable for researchers and engineers working in the fields of chemistry
and machine learning and can serve as a basis for further research in this area.
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