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It is widely acknowledged that mechanical forces exerted throughout the human
body are critical for cellular and tissue homeostasis. Even during organ development
inside the uterus, the application of balanced physical stimuli is required for normal tissue
differentiation in the course of embryogenesis. Furthermore, tight control of physical forces
and mechanical cues is also crucial for the survival of cells, tissues, and organs during the
adult life [1–3]. To this end, tissues depend on the degree of adaptability of their cells to
the external dynamic mechanical environment. Cells are subjected to and sense certain
mechanical forces which modulate their functions. Typical forces applied on cells include
blood, lymph, and interstitial fluid shear stress which originates from the fluid flow in the
respective circulatory and lymphatic systems, as well as in the interstitial space [4,5]. Cells
are further exposed to hydrostatic pressure from fluid that accumulates in the interstitial
space and in organs like the urinary bladder [6–9]. They are able to experience tensile
forces, which are also known as mechanical stretch, and compressive forces, which are
predominantly observed when there is large-scale tissue deformation during contraction of
muscles, movement of joints, cardiovascular remodeling, compressive burden on cartilage
and bone, as well as shear stress [10,11]. Other types of forces include mechanical stimuli
from cell-to-cell interactions within the respective cell microenvironment and mechanical
forces applied when cells are migrating through spaces with physical confinement [12].

Mechanotransduction is the process through which cells convert these mechanical
forces to signal transduction mechanisms, thereby triggering a cellular response. To
achieve this, cells have developed evolutionary conserved mechanosensitive tools to me-
diate mechanotransduction [13]. Mechanosensitive ion channels are critical effectors of
mechanosignaling and they are mostly associated with regulation of intracellular con-
centration of calcium ions, as it has been documented for Piezo and transient receptor
potential (TRP) families of ion channels [1,13,14]. Mechanosignaling-associated elements
include mechanosensitive receptors and membrane-bound proteins like integrins, G protein-
coupled receptors (GPCRs), cadherins, focal adhesion kinase (FAK), and Src kinases [2].
Primary cilia is an additional structure of the apical membranes in many types of epithelial
cells, through which they are able to sense and transmit mechanical signals to elicit a cellular
effect [15]. Mechanotransduction ultimately integrates to mechano-induced transcription
factors/cofactors, such as yes-associated protein (YAP) and transcriptional coactivator with
PDZ-binding motif (TAZ) (end effectors of the Hippo signal transduction cascade that
function through the TEA domain family members (TEAD) transcription factors), hypoxia-
inducible factor-1α (HIF-1α), and nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) [16,17]. Mechanistic studies reveal specific signaling pathways which are in-
volved in mechanotransduction and related pathobiologies. These pathways encompass the
Hippo, RhoA/Rho-associated protein kinase (ROCK), transforming growth factor-β (TGF-
β)/Smad, Janus kinase (JAK)/signal transducers and activators of transcription (STAT),
Wnt/β-catenin, and mitogen-activated protein kinase (MAPK) signaling cascades [1,18–20].
Aberrant regulation of these pathways has been associated with the pathophysiology of a
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broad spectrum of diseases. Mechanobiology-related disorders emerge usually in tissues
with well-defined mechanical properties, such as in the heart, bone, and cartilage. Distorted
mechanosignaling has been implicated in congenital heart disease, pathological heart hy-
pertrophy, atherosclerosis, liver, renal, pulmonary, cardiac injury and fibrosis, osteoarthritis,
polycystic kidney disease, and cancer [1–3].

Within this group of disorders, the role of extracellular matrix (ECM) is prominently
linked to dysregulation of mechanotransduction. Cellular dynamics face robust alterations
in bone cells, endothelial cells, cancer cells, and cells from their microenvironment. Forces
applied to and generated from the ECM have been highlighted as a key regulator of
cell mechanobiology. Underpinning mechanisms are thoroughly investigated especially
during tumorigenesis. Changes in ECM stiffness and composition as the tumor expands
are perceived by integrins and other mechanosensitive membrane receptors to modulate
cancer and stromal cell properties [1–3,11]. Tissue-dependent increase or reduction in
ECM rigidity fosters cancer cell proliferation, vascularization, invasion, and metastasis [21].
Mounting evidence suggests that ECM stiffness is implicated in various aspects of solid
tumor pathology, as well as in treatment responses to current therapeutic regimens. For
instance, ECM regulates cell proliferation and expression of programmed death-ligand 1
(PD-L1) through YAP upregulation in lung cancer cells [22] and is associated with nasopha-
ryngeal carcinoma (NSC) aggressive cellular features through upregulation of cortactin
and polypyrimidine tract binding protein 2 (PTBP2) [23]. On the other hand, hepatocel-
lular carcinoma (HCC) cells and HCC cancer stem cells present high motility, invasion,
and metastatic potential with reduced stiffness, a process mediated by activation of c-Jun
N-terminal kinase (JNK) [24]. Another cancer hallmark, the function of RAS oncogenes and
concomitant MAPK pathway upregulation, has been linked to changes in actomyosin con-
tractility, thus altering the sensing ability of stiffness. As recently demonstrated, inhibition
of KRASG12D targets integrin subunit beta 1 (ITGB1; also known as CD29) and suppresses
tumor growth in vitro and in vivo through regulation of YAP and TAZ in pancreatic ductal
adenocarcinoma (PDAC) [25,26]. Moreover, an emerging feature of mechanosensitivity is
extracellular viscosity, which seems to interact with ECM stiffness and potentiate mechan-
otransduction. Specifically, in the pre-cirrhotic liver there is augmented ECM viscoelasticity
from the accumulation of advanced glycation end products (AGEs), which promotes HCC
through the integrin-β1-tensin-1-YAP pathway [27].

Current therapeutic approaches exploit features of mechanotransduction to selec-
tively administer treatments and target molecules of the mechanosignaling machinery. A
representative study demonstrates that mechanical cyclic stretching induces apoptosis of
tumor cells through modulation of calcium influx by Piezo1 [11]. Further experimental
evidence reveals that mechanoresponsive stem cells can be reprogrammed to regenerate
bone via FAK signaling and can also sense tissue stiffness to deliver therapeutics directly to
cancer metastases in vivo [28,29]. Various ongoing clinical trials exist to assess the impact
of hindering mechanosensitive molecules on the progression of diseases. Compounds
targeting integrins are evaluated in solid tumors, inflammatory bowel diseases, and pul-
monary fibrosis. Drugs targeting YAP/TAZ and TEAD transcription factors are also tested
in advanced solid tumors [1]. Finally, an ever-growing volume of data implies that mechan-
otransduction in the tumor microenvironment is engaged in mechanisms of resistance to
chemotherapy and immunotherapy. Components of mechanosignaling are bound to the
anti-cancer immunity mechanisms and facilitate immunotherapy resistance, mainly via
alterations of ECM stiffness [30]. Therefore, mechanotransduction offers potential routes to
overcome drug resistance through combinatorial treatments.

In the future, the clinical management of several diseases will incorporate mechanoth-
erapeutics that exploit the physical associations of cells with their microenvironment.
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