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Abstract: This study conducted phenotypic evaluations on a wheat F3 population derived from
155 F2 plants. Traits related to seed color, including chlorophyll a, chlorophyll b, carotenoid, an-
thocyanin, L*, a*, and b*, were assessed, revealing highly significant correlations among various
traits. Genotyping using 81,587 SNP markers resulted in 3969 high-quality markers, revealing
a genome-wide distribution with varying densities across chromosomes. A genome-wide association
study using fixed and random model circulating probability unification (FarmCPU) and Bayesian-
information and linkage-disequilibrium iteratively nested keyway (BLINK) identified 11 significant
marker–trait associations (MTAs) associated with L*, a*, and b*, and chromosomal distribution pat-
terns revealed predominant locations on chromosomes 2A, 2B, and 4B. A comprehensive annotation
uncovered 69 genes within the genomic vicinity of each MTA, providing potential functional in-
sights. Gene expression analysis during seed development identified greater than 2-fold increases
or decreases in expression in colored wheat for 16 of 69 genes. Among these, eight genes, including
transcription factors and genes related to flavonoid and ubiquitination pathways, exhibited distinct
expression patterns during seed development, providing further approaches for exploring seed
coloration. This comprehensive exploration expands our understanding of the genetic basis of seed
color and paves the way for informed discussions on the molecular intricacies contributing to this
phenotypic trait.

Keywords: colored wheat; genome-wide association studies; marker–trait associations; seed development
stages; transcription profiling

1. Introduction

Since its domestication approximately 10,000 years ago, wheat (Triticum aestivum L.)
has become a cornerstone of global food security, contributing significantly to meeting the
dietary needs of the global population. Its widespread cultivation and consumption have
established wheat as a primary source of calories and protein, providing sustenance for
a substantial portion of the global population [1]. This unique variation in wheat both adds
to its nutritional profile and holds promise for enhancing the overall dietary diversity and
health benefits available to consumers [2]. Wheat provides important nutrients and com-
pounds such as anthocyanins, carotenes, and phenolic acids, which have strong antioxidant
effects [3]. Colored wheat, with its anthocyanin content, has a powerful ability to combat
chronic diseases such as obesity, cancer, and cardiovascular issues, and it can even slow
aging [4]. In contrast to common wheat, the red color of which arises from carotenoids and
catechol in the outer layer, the color of colored wheat is mainly attributable to anthocyanins.
Colored wheat also contains many tocopherols, phenolic acids, and essential trace elements
needed for the human body [5,6].
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The transformative impact of single nucleotide polymorphism genotyping arrays (SNP
arrays) extends beyond their pivotal role in exploring genetic variations in both animal
and plant populations [7,8]. By facilitating the identification and analysis of hundreds of
thousands of SNPs in a single assay, these arrays serve as a robust platform for unveiling
genome-wide sequence variability among individuals and populations [9]. SNP arrays
provide a high-throughput and cost-effective method for analyzing genetic diversity, and
they have been extensively employed in constructing genetic linkage maps, exploring
evolutionary relationships, unraveling functional genomics, and supporting conservation
efforts. Genotyping arrays have played, and continue to play, a critical role in the genotyp-
ing of various crop species. Consequently, the common study of SNPs often identifies loci
that are blocks of correlated SNPs associated with the trait of interest [10].

In recent decades, high-density SNP genotyping arrays such as Illumina Wheat 9K,
90K, 15K, Axiom® Wheat 660K, Wheat 55K, Axiom® HD Wheat (820K), Wheat Breed-
ers’ 35K Axiom, and Wheat 50K Triticum TraitBreed arrays have been developed for
marker-assisted breeding in common wheat [11–16]. This technology facilitates the rapid
genotyping of wheat varieties, precise identification of genetic variants linked to crucial
traits, and marker development for easy integration into breeding programs. High-density
genotyping arrays significantly increase researchers’ ability to study many wheat samples,
making it easier to identify genetic variations and advanced wheat breeding techniques.

In this study, we used the F3 population of both colored and noncolored wheat lines to
identify loci associated with seed color using the comprehensive Illumina Wheat 90 K SNP
array. In addition, we explored the mechanisms governing changes in seed color through a
comparative analysis of RNA sequences during the seed developmental stages of colored
and noncolored wheat. By integrating the results of genome-wide association studies
(GWASs) and RNA sequencing (RNA-Seq), we unraveled the changes in expression in
differentially expressed genes (DEGs) located near quantitative trait loci that regulate seed
color. This collaborative approach sought to enhance our understanding of the complex
mechanisms governing seed coloration in wheat, with GWASs providing valuable insights
into genetic associations, complemented by a detailed exploration of gene expression
patterns through RNA-Seq. In addition, the findings from this study offer novel insights
into potential candidate genes influencing wheat seed coloration, particularly during the
critical seed filling and maturity stages.

2. Results
2.1. Phenotypic Evaluations

Images of the F3 seeds are presented in Figure 1. Of the initial 214 individuals in the
F3 segregated population, some seeds, including damaged or broken ones, were excluded,
resulting in 155 F3 plants available for this study. This subset of 155 F3 plants was evaluated
for traits related to seed color, encompassing chlorophyll a, chlorophyll b, carotenoid,
anthocyanin, L*, a*, and b*. The distribution of the results from the phenotype evaluation
is depicted in Figure 2A–G, and essential summary statistics, including range, mean, and
coefficient of variation, are presented in Table S2.

Pearson’s correlation coefficient (r) estimated between the traits in the F3 population
is presented in Figure S1. The associations were positive and highly significant (all p < 0.01)
among carotenoid, chlorophyll a, and anthocyanin; L* and carotenoid; a* and L*; b* and
carotenoid; and L* and a*. By contrast, strong negative correlations were detected between
carotenoid and chlorophyll b, L* and anthocyanin, and b* and anthocyanin (all p < 0.01) in
the F3 population (Figure S1).
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Figure 1. F3 population seed images. The figure displays seed images representative of the F3 
population used in this experiment showing the observed variation in seed color. The F3 population 
originated from a crossbreeding of recombinant inbred lines (RILs) with distinct seed coat 
phenotypes, namely, yellow (accession no. 10DS1673, sourced from the Korea University Wheat 
Subgene bank) and deep purple (accession no. 10DS1674). The intentional inclusion of RILs with 
diverse seed coat phenotypes contributed to the generation of a genetically heterogeneous 
population, facilitating the exploration of seed color-related traits in subsequent analyses. 

 
Figure 2. Phenotypic trait distribution. (A–G) Histograms illustrating the distribution of phenotypic 
traits in the F3 population, including (A) anthocyanin, (B) chlorophyll a, (C) chlorophyll b, (D) 
carotenoid, (E) L*, (F) a*, and (G) b*. 

Pearson’s correlation coefficient (r) estimated between the traits in the F3 population 
is presented in Figure S1. The associations were positive and highly significant (all p < 
0.01) among carotenoid, chlorophyll a, and anthocyanin; L* and carotenoid; a* and L*; b* 
and carotenoid; and L* and a*. By contrast, strong negative correlations were detected 
between carotenoid and chlorophyll b, L* and anthocyanin, and b* and anthocyanin (all p 
< 0.01) in the F3 population (Figure S1). 

2.2. Phenotypic Evaluation of Marker Distribution, Population Structure, and  
Linkage-Disequilibrium (LD) Decay 

Of the 81,587 SNP markers initially present on the wheat 90K iSelect array for 
genotyping, 3969 high-quality SNP markers remained after eliminating those with minor 
allele frequencies <0.05 and missing data >10%. The selected SNP markers exhibited a 

Figure 1. F3 population seed images. The figure displays seed images representative of the F3

population used in this experiment showing the observed variation in seed color. The F3 population
originated from a crossbreeding of recombinant inbred lines (RILs) with distinct seed coat phenotypes,
namely, yellow (accession no. 10DS1673, sourced from the Korea University Wheat Subgene bank)
and deep purple (accession no. 10DS1674). The intentional inclusion of RILs with diverse seed coat
phenotypes contributed to the generation of a genetically heterogeneous population, facilitating the
exploration of seed color-related traits in subsequent analyses.
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Figure 2. Phenotypic trait distribution. (A–G) Histograms illustrating the distribution of pheno-
typic traits in the F3 population, including (A) anthocyanin, (B) chlorophyll a, (C) chlorophyll b,
(D) carotenoid, (E) L*, (F) a*, and (G) b*.

2.2. Phenotypic Evaluation of Marker Distribution, Population Structure, and
Linkage-Disequilibrium (LD) Decay

Of the 81,587 SNP markers initially present on the wheat 90K iSelect array for geno-
typing, 3969 high-quality SNP markers remained after eliminating those with minor allele
frequencies <0.05 and missing data >10%. The selected SNP markers exhibited a genome-
wide distribution, with the highest number on the A subgenome (2500), followed by the
B (1249) and D (218) subgenomes. An analysis of their chromosome-wide distributions
revealed the highest marker density on chromosome 2A (653), followed by chromosomes
1A (591) and 2B (315). Conversely, chromosomes 5D (11) and 7D (20) contained the fewest
markers (Table S3).

The population structure of the 155 wheat genotypes was examined using the ∆K
method and validated using principal component analysis (PCA). The ∆K method and PCA-
based population structure analysis identified three distinct groups in the GWAS results
(Figure 3A,B). LD decay was estimated by calculating r2 for all 3969 markers. Genome-wide



Int. J. Mol. Sci. 2024, 25, 3600 4 of 14

LD decayed with genetic distance, and LD decayed by 50% at 134 Mb for the entire genome
(Figure 3C).
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by multiple methods, such as BS00067992_51 (detected in FarmCPU L* and BLINK), 
Ra_c13247_528 (detected in BLINK L* and a*), and RAC875_rep_c105150_1024 (duplicated 
in FarmCPU a* and BLINK a*). The phenotypic variation explained (PVE) by these SNPs 
ranged between 0.17% and 86.08%. In BLINK (a*), the SNP with the lowest PVE was 
Ra_c13247_528 (0.17%). Interestingly, these specific SNPs were also detected by BLINK 
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chromosome 2A, whereas chromosomes 2B and 4B each harbored one MTA (Table 1). 

Figure 3. Genotype analysis and linkage-disequilibrium (LD) decay. (A) Principal component analysis
of 155 genotypes using 3969 single nucleotide polymorphisms provides insights into the genetic
relationships among individuals. (B) Population structure analysis with three clusters reveals distinct
subgroups within the 155 genotypes, enhancing our understanding of the genetic diversity of the
population. (C) The LD decay plot depicts the genome-wide decay of LD with genetic distance. The
region in which LD decays to half is highlighted in green, and 50% decay occurred at 134 Mb across
the genome.

2.3. GWASs

The significant MTAs for the seven phenotypic traits were identified by scrutinizing
Q–Q and Manhattan plots in GWAS using FarmCPU and BLINK (Figure 4A–E). The appli-
cation of a stringent threshold (−log10P > 5) served as a robust criterion for designating
MTAs as significant in the GWAS. The analysis revealed eleven MTAs, including three from
FarmCPU and eight from BLINK (Table 1). All 11 MTAs originated from BLINK (L*, a*, and
b*) and FarmCPU (L* and a*). Notably, some MTAs were detected by multiple methods,
such as BS00067992_51 (detected in FarmCPU L* and BLINK), Ra_c13247_528 (detected in
BLINK L* and a*), and RAC875_rep_c105150_1024 (duplicated in FarmCPU a* and BLINK
a*). The phenotypic variation explained (PVE) by these SNPs ranged between 0.17% and
86.08%. In BLINK (a*), the SNP with the lowest PVE was Ra_c13247_528 (0.17%). Inter-
estingly, these specific SNPs were also detected by BLINK (L*), albeit with a significantly
higher PVE of 19.64%. In addition, the analysis of the chromosomal distribution of MTAs
revealed distinct patterns, with the majority being located on chromosomes 2A, 2B, and 4B.
Specifically, six MTAs were identified on chromosome 2A, whereas chromosomes 2B and
4B each harbored one MTA (Table 1).

Three SNPs, namely, RAC875_c37638_233, Ra_c13247_528, and Tdurum_contig5114_319,
are illustrated in Figure 5, and these SNPs originated from FarmCPU (L*), BLINK (L*),
BLINK (a*), and BLINK (b*) (note: BLINK (L*) and BLINK (a*) denote duplicated MTAs).
RAC875_c37638_233, positioned on chromosome 4B with a PVE of 6.00% from FarmCPU
(L*), exhibited A and G alleles and significantly different mean phenotypic values of L*
across genotypes (AA, AG, GG; Figure 4A,D). Meanwhile, Ra_c13247_528 b, located on
chromosome 2A with PVEs of 0.18% and 19.94% from BLINK (a*) and BLINK (L*), re-
spectively, displayed C and T alleles with significantly different mean phenotypic values
of L* across genotypes (CC, CT, TT). In addition, Tdurum_contig5114_319, situated on
chromosome 2A with a PVE of 18.96% from BLINK (b*), displayed significant differences
among genotypes (CC, CT, TT).
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Figure 4. Manhattan and Q–Q plots for significant MTAs. (A) Manhattan and Q–Q plots for BLINK
(L*) analysis, illustrating genomic regions with significant associations with the L* trait in wheat.
(B) Manhattan and Q–Q plots for BLINK (a*), highlighting significant MTAs related to a* in the wheat
genome. (C) Manhattan and Q–Q plots for BLINK (b*), revealing genomic loci significantly associated
with b* in wheat. (D) Manhattan and Q–Q plots for FarmCPU (L*), displaying genomic regions
with noteworthy associations with the L* trait using FarmCPU. (E) Manhattan and Q–Q plots for
FarmCPU (a*), presenting significant MTAs related to a* in wheat through FarmCPU.

Table 1. Marker–trait associations detected for L*, a*, and b*.

Trait Associated SNP Chromosome Position p-Value MAF Effect PVE (%)

BLINK_a BS00010988_51 2A 749,036,656 1.16 × 10−7 0.418831 6.525266 13.05690936
FarmCPU_L BS00067992_51 2B 678,825,642 3.73 × 10−8 0.425325 −6.39214 52.66084028

BLINK_a BS00067992_51 2B 678,825,642 4.64 × 10−8 0.425325 −2.73091 6.486490964
BLINK_a D_contig30784_461 2A 464,937,628 1.16 × 10−7 0.418831 6.525266 4.701598626
BLINK_L Ra_c13247_528 2A 678,678,921 2.58 × 10−7 0.483766 1.886488 19.93782288
BLINK_a Ra_c13247_528 2A 678,678,921 1.12 × 10−5 0.483766 0.446553 0.178450817

FarmCPU_L RAC875_c37638_233 4B 64,861,447 2.10 × 10−6 0.324675 2.037729 5.996921948
FarmCPU_a RAC875_rep_c105150_1024 2A 758,487,818 7.45 × 10−6 0.422078 2.705539 86.07830835

BLINK_a RAC875_rep_c105150_1024 2A 758,487,818 7.92 × 10−13 0.422078 3.01244 49.33097143
BLINK_a RAC875_rep_c114597_51 2A 688,455,016 1.16 × 10−7 0.418831 −6.52527 14.33115573
BLINK_b Tdurum_contig5114_319 2A 667,284,274 3.57 × 10−7 0.483766 1.242985 18.95993048

BLINK, Bayesian-information and linkage-disequilibrium iteratively nested keyway; FarmCPU, fixed and random
model circulating probability unification; PVE, phenotype variance explained; SNP, single nucleotide polymor-
phism; MAF, minor allele frequency.
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protein (MYC protein, TaesCS2A02G409600), MYB transcription factor 
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Figure 5. Box plots of allelic differences of significant MTAs. (A) Allelic differences for the significant
MTAs identified via FarmCPU analysis for L* in wheat. (B) Allelic differences for significant MTAs
identified via BLINK analysis for L* in wheat. (C) Allelic differences for significant MTAs identified
via BLINK analysis for b* in wheat. Statistical analysis was performed using ANOVA followed by
Duncan’s post hoc analysis (p < 0.001) to assess significant differences in mean phenotypic values
among genotypes with different allelic variants. Different letters indicate statistically significant
differences and the blue circles represent the distribution of lines based on alleic differencesMTA,
marker–trait association; BLINK, Bayesian-information and linkage-disequilibrium iteratively nested
keyway; FarmCPU, fixed and random model circulating probability unification.
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2.4. Gene Expression Analysis during Seed Development in the Vicinity of MTAs

To gain deeper insights into the genomic context of these MTAs, a comprehensive an-
notation was conducted using IWGSC Wheat RefSeq v1.1. This annotation effort uncovered
a noteworthy discovery. Specifically, 69 genes were identified within the genomic vicinity of
each significant MTA locus (Table S4). These genes, positioned within a 250 kb radius of the
MTAs, present a rich source for further exploration and potential functional implications
related to the observed phenotypic traits. Based on the RNA-Seq data, 16 of 69 genes dis-
played a greater than 2-fold difference in gene expression between colored and noncolored
wheat during seed developmental stages (10 DAF, 20 DAF, and 30 DAF; Figure 6A,B). Two
genes (TraesCS2A02G424200, and TraesCS2A02G424600) were found in close proximity to the
MTA associated with L*, whereas five genes (TraesCS2A02G532800, TraesCS2A02G436300,
TraesCS2A02G436800, TraesCS2A02G436200, and TraesCS2A02G435800) were located near
the MTA linked to a*. In addition, two genes (TraesCS2A02G409400 and TraesCS2A02G409600)
on chromosome 2A were near the MTA related to b*. All these genes were identified
via BLINK analysis (Table 2). Two genes on chromosome 4A (TraesCS4B02G070800 and
TraesCS4B02G071000) and four genes on chromosome 2A (TraesCS2A02G551200,
TraesCS2A02G551900, TraesCS2A02G551700, and TraesCS2A02G552400) were found to
be closely associated with L* and a*, as identified via FarmCPU analysis. The expres-
sion patterns of all 16 genes during the seed developmental stages are illustrated in
Figure 6B. Among them, eight genes, categorized as transcription factors, flavonoid
pathway-related genes, and ubiquitination pathway genes, were selected, and their ex-
pression patterns are depicted in Figure 6C. To assess the reliability of the RNA-Seq re-
sults, RT-qPCR was employed to validate the expression profiles of selected genes, includ-
ing anthocyanin regulatory R-S protein (MYC protein, TaesCS2A02G409600), MYB tran-
scription factor (TraesCS2A02G552400), bHLH transcription factor (TraesCS2A02G409400),
cinnamoyl-CoA reductase (CCR, TraesCS4B02G071000), cinnamyl alcohol dehydrogenase
(CAD, TraesCS4B02G071000), and F-box protein (TraesCS2A02G551700). The RT-qPCR
results were consistent with the RNA-Seq findings, confirming the concordance between
the two independent methods. These genes were specifically chosen from the MYB–bHLH–
WD40 (MBW) complex, lignin pathway, and E3 ubiquitin ligase categories (Figure 6C)
for comprehensive validation, and the congruence of the results further strengthens the
robustness of our findings (Figure 7).
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Table 2. Identification of genetic loci associated with phenotypic traits of wheat (Triticum aestivum L.)
based on genome-wide association studies. BLINK, Bayesian-information and linkage-disequilibrium
iteratively nested keyway; FarmCPU, fixed and random model circulating probability unification.

Trait Marker Gene ID Chromosome Annotation Species p-Value (BLASTP)

BLINK_a BS00010988_51 TraesCS2A02G532800 2A Diacylglycerol
kinase 5-like

Aegilops tauschii
subsp. tauschii 0

BLINK_L Ra_c13247_528 TraesCS2A02G424200 2A Unnamed protein
product Triticum aestivum 0

BLINK_L Ra_c13247_528 TraesCS2A02G424100 2A F-box protein
At4g22660

Aegilops tauschii
subsp. tauschii 6 × 10−141

BLINK_L Ra_c13247_528 TraesCS2A02G424600 2A
Cinnamyl alcohol

dehydrogenase
7-like

Aegilops tauschii
subsp. tauschii 0

FarmCPU_L RAC875_c37638_233 TraesCS4B02G070600 4B Predicted protein Hordeum vulgare
subsp. vulgare 0

FarmCPU_L RAC875_c37638_233 TraesCS4B02G070800 4B
E3

ubiquitin-protein
ligase RING type

Aegilops tauschii
subsp. tauschii 0

FarmCPU_L RAC875_c37638_233 TraesCS4B02G071000 4B Cinnamoyl-CoA
reductase

Aegilops tauschii
subsp. tauschii 5.00 × 10−179

FarmCPU_a RAC875_rep_c105150_1024 TraesCS2A02G551200 2A
Uracil DNA
glycosylase,

mitochondrial

Aegilops tauschii
subsp. tauschii 0

FarmCPU_a RAC875_rep_c105150_1024 TraesCS2A02G551900 2A

Ubiquinone
biosynthesis

protein COQ4
homolog

Aegilops tauschii
subsp. tauschii 9 × 10−168

FarmCPU_a RAC875_rep_c105150_1024 TraesCS2A02G551700 2A F-box protein
At5g65850

Aegilops tauschii
subsp. tauschii 5 × 10−93

FarmCPU_a RAC875_rep_c105150_1024 TraesCS2A02G552400 2A MYB transcription
factor 77

Aegilops tauschii
subsp. tauschii 0

BLINK_a RAC875_rep_c114597_51 TraesCS2A02G436300 2A
Leucine-rich repeat

extensin-like
protein 3

Brachypodium
distachyon 7 × 10−77

BLINK_a RAC875_rep_c114597_51 TraesCS2A02G436800 2A
Serine/threonine

protein kinase
minibrain-like

Aegilops tauschii
subsp. tauschii 0

BLINK_a RAC875_rep_c114597_51 TraesCS2A02G436200 2A Pectin
acetylesterase 7

Aegilops tauschii
subsp. tauschii 0

BLINK_a RAC875_rep_c114597_51 TraesCS2A02G435800 2A
FBD-associated
F-box protein

At5g50270
Aegilops tauschii
subsp. tauschii 0

BLINK_b Tdurum_contig5114_319 TraesCS2A02G409400 2A bHLH
transcription factor Triticum aestivum 0

BLINK_b Tdurum_contig5114_319 TraesCS2A02G409600 2A

Anthocyanin
regulatory R-S
protein (MYC

protein)

Triticum urartu 0
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Figure 7. Validation of RNA sequencing data using RT-qPCR analysis. (A) Expression patterns of
anthocyanin regulatory R-S protein (MYC protein, TaesCS2A02G409600), (B) MYB transcription factor
(TraesCS2A02G552400), (C) bHLH transcription factor (TraesCS2A02G409400), (D) cinnamoyl-CoA
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(F) F-box protein (TraesCS2A02G551700). Biological replicates were used in triplicate, and error bars
indicate standard errors.
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3. Discussion

In this study, we conducted a comprehensive examination of seven phenotypic traits
within an F3 population derived from both colored and noncolored wheat using GWASs.
The variability in the range of each phenotypic dataset was notable, including coefficients of
variation surpassing 50% for chlorophyll b, carotenoid, and anthocyanin contents (59.22%,
51.77%, and 54.84%, respectively). This substantial variation likely influenced the outcomes,
as evidenced by all 11 significant MTAs being associated with the phenotypic traits L*,
a*, and b*. Considering these results, the observed high interrelation among L*, a*, and b*
represents a noteworthy observation. This robust correlation indicates potential associations
among these phenotypic traits, suggesting the possibility of shared genetic or biochemical
pathways influencing seed color. The CIELAB color space, comprising the L*, a*, and
b* channels, captures distinct aspects of color perception, such as lightness, the green–
magenta spectrum, and the blue–yellow spectrum. These channels, reflecting specific color
attributes, might hold associations with underlying biological factors [17]. In particular,
an increase in anthocyanin content was negatively correlated with L* and b*, suggesting
that as anthocyanin levels rise, seed brightness decreases, manifesting in a blue–yellow
spectrum shifting toward the blue end.

The relationships among the genotypes were analyzed using two distinct methods
as follows: subgrouping analysis based on population structure and PCA. Both analyses
identified three consistent subgroups, affirming the reliability of the genotype analysis. LD
decay over genetic or physical distance in a population influences the marker coverage
density required for effective GWASs. More rapid LD decay implies the necessity of higher
marker density to capture markers in close proximity to causal loci [17]. In this study,
LD decayed to half of its maximum value at 134 Mb across the entire genome. Wheat,
being a self-pollinating species with an extremely large genome, exhibits a larger LD decay
distance than other plants, including maize [18,19]. Moreover, LD decay can vary among
mapping populations of the same species, as observed in Chinese wheat landrace (5.98 Mb)
and Mexican bread wheat (22.85 Mb) [20,21]. These variations are likely attributable to
differences in cultivation practices, breeding methods, breeding history, and evolutionary
history [22]. Additionally, the use of recombinant inbred lines (RILs) with distinct seed
coat phenotypes, namely, noncolored wheat (yellow) and colored wheat (deep purple),
in the development of the F3 population could be one reason for the observed higher LD
decay distance.

In this study, BLINK and FarmCPU analyses identified eight MTAs associated with
L*, a*, and b* traits. Furthermore, among the 69 genes near these eight MTAs, 16 exhibited
significant expression patterns during seed developmental stages, and the corresponding
expression patterns of these genes were also determined. Interestingly, the anthocyanin
regulatory R-S protein (TraesCS2A02G409600), a MYC transcription factor with a basic
helix–loop–helix motif, demonstrated continuous upregulation during seed development
in colored wheat both in the results of RNA-Seq and RT-qPCR, underpinning its role as
a key regulator of anthocyanin structural genes [23]. Moreover, the MYB transcription
factor (TraesCS2A02G552400) and bHLH transcription factor (TraesCS2A02G409400) were
also highly expressed during seed developmental stages in colored wheat. MBW pro-
tein complexes, which comprise MYB, bHLH, and WD40 repeat factors, are recognized
as transcriptional regulators governing the production of secondary metabolites, includ-
ing proanthocyanidins and anthocyanins [24]. These regulatory elements assemble into
the ternary complex MBW, and this complex might utilize alternative MYB and bHLH
components to regulate specific steps in the biosynthetic pathways of proanthocyanidins
and anthocyanins [25,26].

Phenylpropanoid compounds, including flavonoids and lignin, consist of numerous
secondary metabolites that are widely distributed in various tissues and organs of plants.
The biosynthesis of lignin and flavonoids shares the early enzymatic steps of the phenyl-
propanoid pathway before diverging into the flavonoid and lignin pathways [27]. Shi et al.
(2022) reported the mechanism underlying the homeostatic regulation of flavonoid and
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lignin biosynthesis in the phenylpropanoid pathway of plants [28]. In this study, CCR
(TraesCS4B02G071000) and CAD (TraesCS2A02G424600), which are involved in specific
steps of the monolignol pathway, were downregulated during seed developmental stages in
colored wheat, as demonstrated by both RNA-Seq and RT-qPCR. Moreover, similar trends
have been reported in Arabidopsis in which mutant lines deficient in CCR and CAD genes
accumulate higher amounts of flavonol glycosides in the stem, indicating a redirection of
the phenolic pathway [29].

The ubiquitin–proteasome system, which regulates selective protein degradation via
the 26S proteasome, is a key mechanism for the post-translational regulation of gene expres-
sion and protein quality control in eukaryotes [30]. This system plays a pivotal role in gov-
erning signal transduction, metabolic processes, differentiation, cell cycle transitions, and
stress responses by orchestrating the degradation of specific proteins [31,32]. Ubiquitin E3
ligases, which are conserved throughout eukaryotes, perform diverse regulatory functions
by catalyzing the covalent attachment of ubiquitin to target proteins [33]. The Arabidopsis
genome encodes more than 1500 E3 ubiquitin ligase proteins, which are categorized into var-
ious families such as the HECT, RING1, Kelch-type, U-box, and Cullin–RING ligase (CRL)
families. Among these, the F-box protein operates as a component of the SKP1–Cullin–F-box
complex within the CRL family of E3 ubiquitin ligases [34–39]. Three E3 ubiquitin-protein
ligases (TraesCS4B02G070800, TraesCS2A02G551700, and TraesCS2A02G435800), including
one RING E3 ubiquitin ligase and two F-box proteins, exhibited significant expression
during seed developmental stages. In addition, validation via RT-qPCR analysis revealed
that TraesCS2A02G551700 displayed increased expression in colored wheat during seed de-
velopmental stages. Although the specific roles of these E3 ligases in seed coloration remain
elusive, further molecular investigations could reveal their functional associations with seed
pigmentation. Subsequent research endeavors employing molecular biology approaches
could help elucidate the intricate functions linking these E3 ligases to seed coloration.

4. Materials and Methods
4.1. Plant Materials

RILs with distinct seed coat phenotypes, namely, yellow (accession no. 10DS1673) and
deep purple (accession no. 10DS1674) were obtained from Korea University Wheat Subgene
Bank [40]. Crossbreeding between yellow and deep purple wheat lines resulted in the
generation of F2 plants. F3 seeds from each of the 155 F2 plants were selected for use in this
study, with three seeds selected from each plant. Seeds were germinated on moistened filter
paper at room temperature for 24 h, followed by vernalization at 4 ◦C in a dark chamber
for 4 weeks. Each seedling was then transferred to a Magenta box (6.5 × 6.5 × 20 cm3,
Greenpia Technology Inc., Seoul, Republic of Korea) containing polypro mesh. Seedlings
were grown in Magenta boxes filled with 180 mL of water for 14 days in the growth facility
at 23 ◦C and a day/night photoperiod of 16 h/8 h.

4.2. Anthocyanin and Chlorophyll Content Analysis

For anthocyanin content, homogenized F3 wheat seeds were mixed with 1 mL of
methanol–hydrochloric acid (1% HCl, w/v) and incubated at 4 ◦C for 24 h. The absorbance
was measured at 530 and 657 nm using a UV/VIS spectrophotometer (Jenway, Keison
Products, Chelmsford, UK) as described previously [41]. The anthocyanin content was
determined using the formula Q = (A530 − 0.25A657) × M−1 (Q: anthocyanin yield; A530
and A657: absorption at the indicated wavelengths; M: mass of the plant). The leaves of each
F3 plant were ground using liquid nitrogen, and 100 mg of the resulting powder was used
for chlorophyll measurements. Chlorophyll content was determined following the method
outlined by Hong et al. (2018) [41]. To determine the chlorophyll and carotenoid levels,
samples of homogenized 14-day-old wheat seedlings were suspended in 100% acetone
at 4 ◦C in the dark [42]. The homogenized samples were centrifuged at 12,000× g for
10 min, and the supernatant was used for pigment determination. The absorbance of the
supernatant was recorded at 470, 644.8, and 661.6 nm using a UV/VIS spectrophotome-
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ter. The chlorophyll content was estimated using the extinction coefficients provided by
Lichtenthaler (1987) [42].

4.3. Grain Color Determination

The color of wheat grains was determined using the L*, a*, and b* color scale with
a ColorMate spectrophotometer (SCINCO, Seoul, Republic of Korea). Before the color
measurement, the instrument was calibrated with standard black and white tiles. Each
seed sample was placed in a Petri dish prior to reading the color parameters. The color L*,
a*, and b* values were monitored and measured using embedded software (ColorMaster
software 2017) in the device with three technical replicates.

4.4. Genotyping and SNP Calling

For the genotyping assay, leaves were sampled from each F3 population and stored at
−80 ◦C until use. DNA was extracted from a single plant from each germplasm following
the CTAB method outlined in the USDA instructor’s manual [43]. The extracted DNA
was sent to the USDA-ARS Small Grain Genotyping Center in Fargo, ND (https://wheat.
pw.usda.gov/GenotypingLabs/fargo; accessed on 7 March 2022) for processing using the
Illumina iSelect 90K SNP Assay (Illumina, San Diego, CA, USA). SNP allele clustering and
genotype calling were performed using GenomeStudio Module Polyploid Genotyping 2.0
software (https://support.illumina.com/downloads/genomestudio-2-0.html, accessed on
12 June 2023). Markers with minor allele frequencies <0.05 and missing data >10% were
removed, resulting in 3969 high-quality SNPs for population structure and genome-wide
association analyses. Following filtering, missing genotypes were imputed using BEAGLE
v4.1 with the default settings [44].

4.5. Population Structure and LD

The program STRUCTURE v2.3.4, a model-based Bayesian cluster analysis tool was
employed to infer the population structure [45]. The analysis involved 5000 burn-in periods
followed by 50,000 Markov chain Monte Carlo iterations, ranging from 1 to 10 clusters
(K), to identify the optimal K. Three independent runs were conducted for each K, and the
most likely subgroups were determined by assessing the estimated likelihood values (∆K)
using Structure Harvester [46]. LD between marker loci on each chromosome was assessed
with the squared allele frequency correlation (r2) using standalone TASSEL v.5.0 [47] and
visualized using R. The LD decay distance was determined by fitting a non-linear model
following the procedure described by Remington et al. [48], with an r2 threshold set at 0.1
and r2 equal to half of the maximum LD value.

4.6. GWASs

For GWASs of SNPs related to seed color, the GAPIT R package (version 3.0) was
used [49]. Two GWAS methods were applied, namely, fixed and random model circulating
probability unification (FarmCPU) and Bayesian-information and linkage-disequilibrium
iteratively nested keyway (BLINK) [50,51]. In total, 3969 SNPs obtained after filtering were
used for GWASs. To visualize the false positives of the implemented methods, Q–Q and
Manhattan plots were generated using the internal program within GAPIT. The Manhattan
plots depict the genomic distribution of marker associations, whereas the Q–Q plots assess
the observed versus expected p-values. A stringent threshold of −log10P of 5.0 was applied
to ensure robust identification of significant MTAs across the implemented genome-wide
association study methods.

4.7. Transcriptome Data Analysis

Deep purple wheat and yellow wheat were cultivated in a radiation breeding research
farm located at 35.5699◦ N and 126.9722◦ E (Jeongeup, Republic of Korea). The spikes
were tagged at flowering time, and the grains were harvested at 10, 20, and 30 days after
flowering. The samples were stored at −80 ◦C until further use. Total RNA was isolated

https://wheat.pw.usda.gov/GenotypingLabs/fargo
https://wheat.pw.usda.gov/GenotypingLabs/fargo
https://support.illumina.com/downloads/genomestudio-2-0.html
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from developing wheat seeds collected 10 days after flowering (DAF), 20 DAF, and 30 DAF
using Meng and Feldman’s method [52]. An RNeasy plus micro kit (Qiagen, Hilden,
Germany) was used to purify total RNA. Total RNA was isolated from developing wheat
seeds collected 10 DAF, 20 DAF, and 30 DAF to construct RNA-Seq paired-end libraries
using the TruSeq RNA sample preparation kit (Illumina). Each library was sequenced using
the Illumina HiSeq2000 platform. The raw reads were preprocessed using Trimmomatic
v0.36 to remove adapter sequences and low-quality bases [53]. The preprocessed reads
were mapped to a high-quality wheat (T. aestivum L.) reference genome (International
Wheat Genome Sequencing Consortium) from IWGSC using HISAT2 v2.1 [54,55]. The
alignment was capable of determining alternative spliced transcripts for gene models based
on IWGSC RefSeq v1.1. The HTSeq v0.6.1 high-throughput sequencing framework was
employed to count the number of reads mapped to the exons of each gene [56]. DEGs
were determined by p < 0.05, false discovery rate < 0.05, and absolute fold change >4 using
edgeR [57] in the Bioconductor package. DEGs were identified by pairwise comparison
at each time point between yellow and purple seeds. The log2-transformed transcript
per million values was calculated using TPMCalculator and used to construct heatmaps
of DEGs under yellow and purple wheat [58]. To identify genes associated with each
agronomic trait, high-confidence annotated genes located within ±250 kb of each identified
marker–trait association (MTA) were selected from the transcriptome data. The heatmap of
gene expression was generated using MeV software, version 4.9.0 [59].

4.8. Gene Expression Analysis

RT-qPCR was performed using Bio-Rad CFX Opus 96 (Bio-Rad, Hercules, CA, USA)
and TB Green premix EX Taq II (Takara, Tokyo, Japan). RT-qPCR primers for the indicated
genes were designed using an oligonucleotide properties calculator. Each PCR reaction
mixture (20 µL) contained 10 µL of 2 × TB Green premix, 1 µL of the first-strand cDNA, and
gene-specific primers. The reactions were performed in the Bio-Rad CFX Opus 96 system
under the following conditions: 30 s of denaturation at 95 ◦C, followed by 40 cycles of PCR
amplification at 95 ◦C for 10 s and 65 ◦C for 30 s. The primers are presented in Table S1.

5. Conclusions

Overall, our comprehensive investigation into the genetic basis of seed color in wheat
uncovered eight significant MTAs related to colorimetric traits (L*, a*, and b*) and candidate
genes associated with seed coloration. The identified MTAs and candidate genes, including
those encoding putative components of the MBW complex and E3 ubiquitin ligases, provide
valuable insights into the molecular mechanisms governing seed color in wheat. Further
investigations are essential to validate these correlations and unveil the precise roles of the
identified genes in determining wheat seed color. This research provides a foundation for
future studies to unravel the intricate molecular mechanisms governing the diverse colors
of wheat seeds.
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