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Abstract: Canine-mammary-gland tumors (CMTs) are prevalent in female dogs, with approximately
50% of them being malignant and often presenting as inoperable owing to their size or metastasis.
Owing to poor outcomes, effective alternatives to conventional chemotherapy for humans are nec-
essary. Two estrogen receptors, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ),
which act in opposition to each other, are involved, and CMT growth involves ERα through the
phosphoinositide 3-kinases (PI3K)/AKT pathway. In this study, we aimed to identify the synergistic
anti-cancer effects of ERB-041, an ERβ agonist, and genistein, an isoflavonoid from soybeans known
to have ERβ-specific pseudo-estrogenic actions, on CMT-U27 and CF41.Mg CMT cell lines. ERB-041
and genistein synergistically inhibited cell proliferation and increased the number of annexin V-
positive cells in both cell lines. Furthermore, we observed a synergistic increase in the Bax/Bcl-2 ratio
and cleaved caspase-3 expression. Additionally, cell-cycle arrest occurred through the synergistic
regulation of cyclin D1 and cyclin-dependent kinase 4 (CDK4). We also found a synergistic decrease in
the expression of ERα, and the expression of proteins involved in the PI3K/AKT pathway, including
p-PI3K, phosphatase and tensin homolog (PTEN), AKT, and mechanistic target of rapamycin (mTOR).
In conclusion, ERB-041 and genistein exhibited a synergistic anticancer effect on CMTs, suggesting
that cotreatment with ERB-041 and genistein is a promising treatment for CMTs.

Keywords: canine-mammary-gland tumors; estrogen receptor; ERB-041; genistein; PI3K/AKT
pathway

1. Introduction

Canine-mammary-gland tumors (CMTs) are the most common tumors in female
dogs and approximately 50% of these tumors are malignant [1]. Approximately 50% of
these tumors are inoperable because they are excessively large or metastasized; therefore,
chemotherapy is administered [2]. The chemotherapeutic agents used in these cases are
designed for humans and do not have a significant therapeutic effect in the treatment of
CMTs [3]. In recent years, several methods have been used to treat CMTs, including surgery,
radiotherapy, chemotherapy, and hormonal therapy. Chemotherapy is frequently used for
CMTs that have metastasized or have a high probability of recurrence; however, the effec-
tiveness of chemotherapeutic agents has not been proven, leading to high recurrence rates
and poor prognosis [4,5]. Therefore, it is necessary to identify effective chemotherapeutic
agents for the treatment of CMTs.

Estrogen is a steroid hormone that acts as a primary female sex hormone and affects
many aspects of the body, including growth and differentiation. There are three main forms
of estrogen: estrone (E1), estradiol (E2), and estriol (E3) [6]. These molecules primarily
interact with two types of estrogen receptors, estrogen receptor alpha (ERα) and estrogen
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receptor beta (ERβ), to perform their roles. ER, a ligand-dependent transcription factor,
regulates gene transcription through estrogen response elements, thereby promoting the
normal biological functions of estrogen [7]. In numerous cases of breast cancer, the in-
creased proliferation is commonly attributed to the activation of ERα by estrogen, which
is counterbalanced by the existence of ERβ, which imparts an inhibitory effect on cell
growth [8]. In addition, previous studies have reported that high ERβ levels reduce ERα
expression [9]. In contrast to the way normal mammary glands express both ERα and ERβ
positively, CMTs have been reported to exhibit a predominantly ERβ-positive status and a
weaker intensity of ERα [10]. Despite these ERβ-dominant features, CMTs are fatal with
low survival rates [11].

The phosphoinositide 3-kinase (PI3K)/AKT pathway, which consists of PI3K, a phos-
phatase and tensin homolog (PTEN), AKT (also known as protein kinase B), and a mecha-
nistic target of rapamycin (mTOR), is one of the most important pathways involved in cell
death, metabolism, proliferation, and cell-cycle regulation [12]. In addition, PI3K, a key
enzyme in this pathway, is considered an important therapeutic target because its gene
PI3KCA is highly mutated in many tumors, including human breast cancer and CMTs,
increasing the expression of downstream signals and promoting tumor growth [13,14].
Furthermore, in breast cancers, estrogen activates the PI3K/AKT pathway through ERα
to increase downstream signaling, leading to tumor growth, invasion, and metastasis [15].
Therefore, it is essential to confirm whether the ERα inhibition effect occurs when treated
with an ERβ agonist. If this inhibitory effect leads to the inhibition of the PI3K/AKT
pathway, it may contribute to the treatment of CMTs.

ERB-041 is a potent and selective ERβ agonist and has been reported to exhibit anti-
inflammatory effects in Phase II clinical trials for the treatment of rheumatoid arthritis [16–18].
ERB-041 inhibits triple-negative breast-cancer-cell invasion [19]. Furthermore, ERB-041
decreased cell migration, invasion, and proliferation and induced cell-cycle arrest by modu-
lating the PI3K/AKT pathway in ovarian cancer cells [20]. Genistein is a phytoestrogen that
belongs to the flavonoid family and is derived from soybeans and soy-derived foods [21].
Genistein has been reported to have anti-cancer effects in breast cancers, demonstrating
its potential as a therapeutic agent [22]. Additionally, it inhibits the PI3K/AKT pathway
in triple-negative breast cancer cells [23]. The most important characteristic of genistein
is that as a phytoestrogen, it binds to and acts more specifically on ERβ than ERα [24].
Both ERB-041 and genistein act as ERβ agonists, showing selectivity with differences in the
ligands that bind to ERβ [25,26]. Therefore, the aim of the present study was to determine
whether two agonists can have a synergistic anticancer effect on CMTs.

2. Results
2.1. ERB-041 and Genistein Synergistically Inhibit Proliferation of CMT Cells

To confirm the effective concentrations of ERB-041 and genistein against two CMT
cell lines, a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium (MTS) assay was performed on the CMT-U27 and CF41.Mg cell lines according
to each determined concentration. At 10 µM, ERB-041 induced significant proliferation
inhibition in both cell lines, whereas genistein induced significant proliferation inhibition
at 20 µM in CMT-U27 and 80 µM in CF41.Mg cells (Figure 1A,B). It is important to consider
the fact that CMT-U27 has the characteristics of an epithelial cell and CF41.Mg has the
characteristics of a mesenchymal cell, which means that the effective concentration of
genistein for each is different. Therefore, we examined the synergistic effect of 8 µM ERB-
041 and 10 µM genistein in CMT-U27 and 8 µM ERB-041 and 20 µM genistein in CF41.Mg
cells, as concentrations that did not significantly reduce cell viability. We observed the
morphology of CMT-U27 and CF41.Mg cells and performed an MTS assay. Morphological
imaging of both cell lines showed that the combination of drugs synergistically reduced
the number of cells and altered their morphology (Figure 1C,D). In the MTS assay, the
treatment of CMT-U27 cells with ERB-041 and genistein inhibited cell proliferation by
approximately 1.4% and 6.3%, respectively, compared to the control group, showing no
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significant difference. However, upon cotreatment, a significant synergistic proliferation-
inhibition effect of approximately 25.5% compared with the control group was observed
(Figure 1E). Similarly, compared to the control group, the proliferation of CF41.Mg cells did
not significantly differ with ERB-041 and genistein treatment. However, with cotreatment, a
significant inhibitory effect of approximately 48.9% compared with that in the control group
was observed (Figure 1F). These results indicate that ERB-041 and genistein synergistically
inhibited cell proliferation in both CMT-U27 and CF41.Mg cell lines.
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Figure 1. ERB-041 and genistein synergistically suppress the proliferation of CMT cells. (A,B) Cell
viability at indicated concentrations of ERB-041 and genistein in CMT-U27 (A) and CF41.Mg (B); (C,D)
morphological images of CMT-U27 (C) and CF41.Mg (D); (E,F) synergistic cell viability reduction
in CMT-U27 (E) and CF41.Mg (F) following treatment with ERB-041 and genistein at the indicated
concentrations. Magnification, 100×. Values are mean ± SD. * p < 0.05; ** p < 0.01; *** p < 0.001 versus
untreated cells by one-way ANOVA followed by Bonferroni post hoc test.

2.2. ERB-041 and Genistein Synergistically Induce Apoptosis in CMT Cells by Regulating the
Expression of Bcl-2/Bax/Caspase-3

To determine the effects of ERB-041 and genistein on CMT cell death, we performed
an Annexin-V/Propidium Iodide (PI) assay. The results showed that in CMT-U27 cells,
ERB-041 treatment increased cell death by approximately 5-fold compared to that in the
control group, and genistein treatment increased cell death by approximately 2-fold. In
addition, the combination treatment induced approximately 6.5-fold more cell death than
the control (Figure 2A). Similarly, in CF41.Mg cells, ERB-041 and genistein increased cell
death by approximately 1.6- and 1.8-fold, respectively, compared to that in the control
group, and by approximately 2.4-fold when combined compared to that in the control group
(Figure 2B). To confirm apoptosis induction, Western blotting was performed to determine
the expression of Bcl-2, Bax, caspase-3, and cleaved caspase-3. The Bax/Bcl-2 ratio in CMT-
U27 cells was not significant when treated with ERB-041 alone but increased significantly
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to approximately 25% compared to that in the control group when treated with genistein
alone and to approximately 48% when treated with both agonists (Figures 3A and S1).
Caspase-3 expression did not differ significantly between the treatment and control groups.
In contrast, cleaved caspase-3 expression showed no difference when treated with genistein
alone, but showed a significant increase of approximately 98% when treated with ERB-041
and an increase of approximately 120% when cotreated compared to that in the control
group (Figures 3B and S1). Protein expression in the CF41.Mg cells was similar to that in
the Western blot-treated CMT-U27 cells. In CF41.Mg, a significant difference was absent
in the Bax/Bcl-2 ratio when treated with ERB-041 alone. However, when treated with
genistein alone or cotreated, the Bax/Bcl-2 ratio increased by approximately 30% and
143%, respectively, compared to that in the control group, which was highly significant
(Figures 3C and S2). Caspase-3 expression was reduced by approximately 31%, 11%, and
10% compared with that in the control group when treated with ERB-041, genistein, or both,
respectively, and the expression of cleaved caspase-3 was reduced by approximately 1%,
10%, and 12%, respectively, compared with that in the control group (Figures 3D and S2).
Activated caspase-3 was identified using immunocytochemistry. A significant difference
was absent in the expression of activated caspase-3 between the ERB-041 and genistein
alone groups. However, with cotreatment, CMT-U27 and CF41.Mg showed significant
increases of approximately 245% and 34%, respectively, compared to that in the control
group (Figure 3E–H). These results indicate that ERB-041 and genistein synergistically
induced apoptosis in both CMT-U27 and CF41.Mg cell lines.
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Figure 2. ERB-041 and genistein synergistically induced apoptosis in CMT cells. (A,B) Images of
Annexin-V/PI staining results of CMT-U27 (A) and CF41.Mg (B) cells treated with ERB-041 and
genistein at the indicated concentrations.
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Figure 3. ERB-041 and genistein are involved in the regulation of Bcl-2, Bax, and caspase-3.
(A,B) Western blot images and quantification of the expression of Bcl-2, Bax (A), caspase-3, and
cleaved caspase-3 (B) in CMT-U27 upon ERB-041 and genistein treatment at the indicated concen-
trations and the expression of Bcl-2, Bax (C), caspase-3, and cleaved caspase-3 (D) in CF41.Mg.;
(E–H) immunocytochemistry images and quantitative analysis of activated caspase-3 in CMT-U27
(E,F) and CF41.Mg (G,H). Cas-3, caspase-3. Scale bar, 50 µm. Values are mean ± SD. * p < 0.05;
** p < 0.01; *** p < 0.001 versus untreated cells by one-way ANOVA followed by Bonferroni post
hoc test.

2.3. ERB-041 and Genistein Synergistically Induce Cell-Cycle Arrest by Regulating
Cell-Cycle-Related Proteins in CMT Cells

To investigate the effects of ERB-041 and genistein on the cell cycle of CMT-U27 and
CF41.Mg, we performed Western blotting with anti-CDK4 and -cyclin D1 antibodies and
a cell-cycle arrest assay (Figures 4A–E and S3). When CMT-U27 cells were treated with
ERB-041, genistein, and both, the expression of CDK4 increased by approximately 8%, 5%,
and 19%, respectively, compared to that of the control group. In contrast to the expression of
CDK4, cyclin D1 expression was reduced by approximately 13%, 13%, and 28% in the three
groups, respectively, compared to that of the control group. Subsequently, a cell-cycle arrest
assay revealed a G0/G1 phase arrest. The number of cells in the G0/G1 phase increased
synergistically from approximately 48% in the control to 61% with ERB-041 treatment alone,
60% with genistein treatment alone, and 64% with cotreatment. A Western blotting and
cell-cycle arrest assay in CF41.Mg cells showed contrasting effects to that in CMT-U27
cells (Figures 4F–J and S3). The expression of CDK4 in the CF41.Mg cells decreased by
approximately 19%, 23%, and 35% compared to that in the control group when treated
with ERB-041, genistein, or both, respectively. Conversely, the expression of cyclin D1
increased by approximately 24%, 48%, and 66%, respectively, in each group compared
to that in the control group. In the cell-cycle arrest assay, a significant difference in cell
number was observed only in the cotreated group with ERB-041 and genistein. The number
of cells in the G0/G1 phase decreased by approximately 26% in the cotreatment group
compared to the control group, and the number of cells in the G2/M phase increased by
approximately 11% compared to that in the control group, indicating G2/M phase arrest.
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These results indicate that ERB-041 and genistein synergistically regulate the expression of
cell-cycle-related proteins to induce cell-cycle arrest in CMT cells.
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Figure 4. ERB-041 and genistein induce cell-cycle arrest in CMT cells through synergistic regulation
of CDK4 and cyclin D1. (A–C) Western blotting images and quantification of CDK4 (A,B) and cyclin
D1 (A,C) following treatment with indicated concentrations of ERB-041 and genistein in CMT-U27;
(D,E) cell-cycle-arrest assay data by flow cytometry (D) and quantitative analysis (E) in CMT-U27;
(F–H) Western blotting images and quantification of CDK4 (F,G) and cyclin D1 (F,H) after treatment
with ERB-041 and genistein at the concentrations indicated in CF41.Mg; (I,J) cell-cycle-arrest assay
data by flow cytometry (I) and quantitative analysis (J) in CF41.Mg. CDK4, cyclin-dependent kinase 4.
Values are mean ± SD. * p < 0.05; ** p < 0.01; *** p < 0.001 versus untreated cells by one-way ANOVA
followed by Bonferroni post hoc test.

2.4. ERB-041 and Genistein Synergistically Inhibit the Expression of ERα

Western blot analysis was conducted to assess the alterations in the expression of
ERα and ERβ upon treatment with ERB-041 and genistein, which both function as ERβ
agonists. Upon treatment with ERB-041, genistein, and their combination, in CMT-U27
cells, the expression of ERβ exhibited significant reductions by approximately 18%, 36%,
and 54%, respectively, compared to that in the control group. Similarly, the expression of
ERα showed substantial decreases of approximately 11%, 19%, and 29% compared to that
in the control group upon treatment with ERB-041, genistein, and cotreatment, respectively
(Figures 5A and S4). CF41.Mg cells showed similar results, with ERB-041 alone, genistein
alone, and combined treatment reducing ERβ expression by approximately 4%, 13%, and
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24%, respectively, compared to that of the control group. The expression of ERα was
not significantly different from that of the control group in the ERB-041 treated group,
whereas it was significantly reduced by approximately 32% and 37% in the genistein and
cotreated groups, respectively, compared to that in the control group (Figures 5B and S4).
Immunocytochemistry was then performed to confirm the Western blotting results for ERβ
and ERα. The expression of ERβ in CMT-U27 was reduced by approximately 8%, 20%,
and 22% when treated with ERB-041 alone, genistein alone, and both treatments together,
respectively, compared to that in the control group. ERα expression was significantly
different in the three groups, showing a decrease of approximately 29%, 35%, and 31%,
respectively, compared to that in the control group (Figure 5C). CF41.Mg cells showed the
same results, with ERβ expression significantly declining by approximately 36%, 47%, and
51% compared to that in the control group when treated with ERB-041 alone, genistein
alone, or together, respectively. The expression of ERα was greatly reduced in the three
groups to approximately 26%, 55%, and 40%, respectively, compared to that in the control
group. The most significant decrease occurred in the group treated with genistein alone.
However, all three groups showed substantial differences (Figure 5D). These results suggest
that ERα is repressed by the ERβ agonists ERB-041 and genistein in both CMT cell lines.
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2.5. ERB-041 and Genistein Synergistically Inhibit the Expression of the PI3K/AKT
Pathway-Related Proteins

To confirm that the previously identified inhibition of ERα expression in CMT cells by
ERB-041 and genistein leads to the inhibition of the PI3K/AKT pathway, Western blotting
was performed. In CMT-U27, Western blot analysis showed that the protein expression
levels of p-PI3K, PTEN, p-AKT, and p-mTOR were reduced. The p-PI3K level was reduced
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by approximately 39% and 52% with ERB-041 treatment alone (84 and 54 kDa), 32% and
47% with genistein treatment alone, and 50% and 51% with their cotreatment, respectively,
compared to that in the control group (Figures 6A and S5). The expression of PTEN was
reduced by approximately 27% compared to that in the control group when treated with
ERB-041 alone, 43% when treated with genistein alone, and 45% when treated together;
the expression of p-PTEN was decreased by 2%, 24%, and 18%, respectively, compared
to that in the control group (Figures 6B and S5). AKT expression was only significant
in the cotreatment group, increasing by approximately 23% compared with that in the
control group. In contrast, the expression of p-AKT decreased by approximately 10%
compared to that in the control group with ERB-041 alone, by approximately 19% with
genistein alone, and by approximately 28% with cotreatment, with the decrease being
significant in all groups (Figures 6C and S5). Furthermore, the expression of mTOR was
reduced by approximately 5%, 3%, and 3% compared to that in the control group when
cells were treated with ERB-041 alone, genistein alone, and both, respectively, and p-mTOR
expression was decreased by approximately 26%, 25%, and 53%, respectively, compared
to that in the control group (Figures 6D and S6). In CF41.Mg cells, a similar pattern of
protein expression to that observed in CMT-U27 was observed with Western blotting. The
expression of p-PI3K was significantly reduced by 27% and 5% when treated with ERB-
041 alone (84 and 54 kDa) and by 55% and 32% when treated with genistein alone and
together, respectively, compared to that in the control (Figures 6E and S6). The expression
of PTEN increased by approximately 3% compared to the control group when treated with
ERB-041 alone, decreased by approximately 14% when treated with genistein alone, and by
approximately 27% when treated with both, compared to that in the control group. The
expression of p-PTEN declined by approximately 22% compared to that in the control
group control when cotreated, which was the only significant finding (Figures 6F and S6).
The expression of AKT decreased by approximately 21% compared to that in the control
group when treated with genistein alone and by approximately 24% when cotreated with
ERB-041 and genistein, whereas the expression of p-AKT was significantly reduced by
approximately 12%, 14%, and 29% compared to that in the control group when treated
with ERB-041 alone, genistein alone, and cotreated, respectively (Figures 6G and S7). The
expression of mTOR increased by approximately 4%, 28%, and 19% when treated with
ERB-041 alone, genistein alone, and their combination, respectively, compared to that in the
control group. Furthermore, p-mTOR expression was reduced by approximately 16% in
the cotreatment group compared to that in the control group, which was highly significant
(Figures 6H and S7). We then performed immunocytochemistry to confirm the synergistic
effect of ERB-041 and genistein on the inhibition of the PI3K/AKT pathway, as observed
through Western blotting. The results showed that the expression of p-PI3K in CMT-U27
cells showed a significant synergistic decrease, with reductions of approximately 26%,
29%, and 36% compared to that in the control group upon treatment with ERB-041 alone,
genistein alone, and their cotreatment, respectively (Figure 7A). The expression of PTEN
also exhibited a synergistic effect, showing reductions of approximately 28%, 25%, and
40%, respectively, in the three treatment groups compared to that in the control group
(Figure 7C). The expression of p-PI3K in CF41.Mg cells was reduced by approximately
24% compared to that in the control group when treated with ERB-041 alone, 23% when
treated with genistein alone, and approximately 50% when treated with cotreatment, with
significance only in the cotreatment group (Figure 7B). In addition, PTEN expression was
reduced by approximately 21%, 4%, and 68% in the three treatment groups compared to
that in the control group, with significance only in the cotreatment group (Figure 7D). These
results indicated that ERB-041 and genistein synergistically inhibited the expression of
PI3K/AKT pathway-related proteins in both CMT cell lines.
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reduce the expression of the PI3K and PTEN. (A–D) Immunocytochemistry images and quantitative
analysis of the p-PI3K expression in CMT-U27 (A) and CF41.Mg (B) when treated with ERB-041 and
genistein at the indicated concentrations and PTEN expression in CMT-U27 (C) and CF41.Mg (D).
PI3K, phosphoinositide 3-kinases; PTEN, phosphatase and tensin homolog. Scale bar, 50 µm. Values
are mean ± SD. ** p < 0.01; *** p < 0.001 versus untreated cells by one-way ANOVA followed by
Bonferroni post hoc test.

3. Discussion

In numerous cases of human breast cancer, growth is commonly promoted by estrogen-
activated ERα, which is counterbalanced by the cell growth-inhibitory effects of ERβ [27].
Similarly, in veterinary research, ERα activated by E2 has been demonstrated to play an
important role in the growth of CMTs [28]. In addition, the development of CMTs is
estradiol-dependent, wherein many of these patients express high tissue levels of ERα
or elevated concentrations of serum E2 [28,29]. However, the selective estrogen receptor
modulators such as tamoxifen and raloxifene, which act as antagonists to ERα, did not
show a significant effect on CMTs, probably owing to a low affinity for the receptor [10].
Furthermore, the selective activation of ERα or ERβ can be influenced not only by the
affinity for selective receptor binding but also by the selective activation of each receptor
subtype [30]. In this study, we aimed to determine whether treatment with ERB-041 and
genistein, which act as ERβ agonists, can exert anti-cancer effects on CMTs by reducing
the expression of ERα. Our results demonstrate that ERB-041 and genistein synergistically
decreased ERα expression, resulting in PI3K/AKT pathway inhibition and the induction of
cell apoptosis and cell-cycle arrest in both CMT-U27 and CF41.Mg cell lines.

Numerous studies suggest that the induction of apoptosis and cell-cycle arrest are
major strategies in anti-cancer therapy [31,32]. Previous studies have shown that ERB-
041 and genistein increase the Bax/Bcl-2 ratio and expression of cleaved caspase-3, a
marker of apoptosis induction in various human cancers [33,34]. Our findings indicate
that ERB-041 and genistein synergistically inhibited the proliferation of CMT-U27 and
CF41.Mg cells. In addition, Annexin-V/PI staining demonstrated a synergistic increase
in apoptosis when both cell lines were treated with ERB-041 and genistein. Moreover,
synergistic effects were identified through the ratio of Bax/Bcl-2 and the expression of
cleaved caspase-3, which are proteins involved in apoptosis. The Bax/Bcl-2 ratio and
cleaved caspase-3 expression in both cell lines significantly increased in the cotreatment
group. In addition, immunocytochemistry results confirm that the expression of activated
cas-3 was significantly increased in both cell lines in the cotreatment group. Regarding
cell-cycle arrest, previous studies have reported that ERB-041 induced G1-phase arrest in
human cancers by decreasing cyclin D1 expression, which regulates the cell-cycle transition
from the G1 phase to S phase through PI3K/AKT pathway inhibition [34]. In contrast,
genistein induces G2/M phase arrest through PI3K/AKT pathway inhibition in several
human tumors, and cyclin D1 is upregulated [35,36]. Our cell-cycle-arrest assay results
for CMT-U27 and CF41.Mg cells were very different. In CMT-U27 cells, there was an
increase in CDK4 expression and a decrease in cyclin D1 expression, which synergistically
induced G0/G1 phase arrest. In contrast, in CF41.Mg, the expression of CDK4 decreased
and that of cyclin D1 increased, synergistically inducing G2/M phase arrest. We assumed
that these contrasting results were due to differences in the characteristics of the two cell
lines. In a previous study, it was reported that when human liver cancer cell lines HepG2
and Hep3B were treated with doxorubicin, the two cell lines responded differently to the
drug, with HepG2 showing a G1 arrest and Hep3B showing a G2/M arrest [37]. These
results are consistent with those of previous studies, and this study confirmed the same
effect in both CMT cell lines. Based on these results, we conclude that ERB-041 and genis-
tein synergistically exert anticancer effects by inducing apoptosis and cell-cycle arrest in
CMT cells.

Next, we determined whether these anti-cancer effects of ERB-041 and genistein were
mediated through reduced ERα expression and through the PI3K/AKT pathway. ERB-041
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and genistein have been reported to reduce the expression of ERα in human tumors, and
ERα has been reported to regulate apoptosis in breast cancer [38–40]. Furthermore, the
expression of the PI3K/AKT pathway in breast cancer is ERα-dependent. In detail, the
underlying mechanism involves ERα directly binding to PI3K, leading to an increase in
PI3K expression and a decrease in the expression of PTEN, which functions in opposition
to PI3K [41,42]. Our results showed that the expression of ERβ was synergistically reduced
by ERB-041 and genistein in CMT-U27 and CF41.Mg cell lines despite treatment with ERβ
agonists. Noteworthily, our experiments showed a significant decrease in the expression
of ERα regardless of the decreased expression of ERβ, contrary to what is commonly
known about ERβ inhibiting ERα [9]. In addition, Western blotting demonstrated that the
expression of p-PI3K, p-AKT, and p-mTOR was synergistically reduced in both cell lines.
The expression of PTEN, a negative regulator of PI3K, was reduced, despite the decreased
expression of p-PI3K [43,44]. We focused on PTEN to understand the paradoxical expression
of these proteins. The decreased expression of proteins involved in the PI3K/AKT pathway
is speculated to be attributable to the reduced expression of ERα, leading to a diminished
direct binding to PI3K. The expression of PTEN is decreased when PI3K expression is
inhibited [45]. Furthermore, knockdown of PTEN induces a decrease in ERβ expression [46].
Based on the results reported in previous studies, we speculated that the direct effects of
ERB-041 and genistein reduced the expression of ERα and PI3K, which in turn reduced
the expression of PTEN, and that this would have led to a reduction in the expression of
ERβ. Therefore, we determined that ERB-041 and genistein exert their anti-cancer effects
by directly inhibiting the expression of ERα, which in turn downregulates the expression
of the PI3K/AKT pathway in both CMT cells.

In conclusion, our results showed that treatment of two different CMT cells with ERβ
agonist ERB-041 and genistein synergistically decreased the PI3K/AKT pathway expression
by decreasing the expression of ERα. Thus, we suggest that cotreatment with ERB-041 and
genistein has the potential to be effectively used in the treatment of CMTs.

4. Materials and Methods
4.1. Cell Culture and Reagents

CMT-U27 and CF41.Mg cell lines were purchased from the American Type Cul-
ture Collection (Manassas, VA, USA) and cultured in Roswell Park Memorial Institute
1640 medium (CMT-U27 cells; HyClone, Logan, UT, USA) or Dulbecco’s modified Eagle’s
medium (CF41.Mg cells; Gibco, Grand Island, NY, USA) supplemented with 10% fetal
bovine serum (FBS; Atlas Biologicals, Fort Collins, CO, USA), 100 unit/mL of penicillin
(100 unit/mL) and 100 µg of streptomycin (Sigma-Aldrich, St. Louis, MO, USA). All
cells were incubated at 37 ◦C in 5% CO2. ERB-041 and genistein were purchased from
Sigma-Aldrich (ERB-041; PZ0183, Genistein; G6649).

4.2. MTS Assay

To assess the synergistic effect of palmatine on cell viability, we conducted a CellTiter
96® AQueous One Solution Cell Proliferation Assay (Promega Corporation, Madison, WI,
USA) based on the MTS assay. CMT-U27 cells were plated at 1 × 104 cells and CF41.Mg
cells were plated at 5 × 103 cells in 96-well plates with 100 µL of medium and incubated
at 37 ◦C for 24 h. Then, the cells were treated with ERB-041 and genistein for 24 h at each
concentration. Following treatment, 20 µL of CellTiter 96® AQueous One Solution Reagent
was added to each well and incubated for 2 h at 37 ◦C. The absorbance was measured at
490 nm using a microplate reader (Spectramax M2; Molecular Devices, San Jose, CA, USA).

4.3. Annexin-V/PI Staining

Cell death in CMT-U27 and CF41.Mg cells was evaluated by flow cytometry using an
Annexin-V assay (Santa Cruz Biotechnology, Inc., Dallas, TX, USA) according to the manu-
facturer’s protocol. Annexin-V content was estimated by measuring the fluorescence at
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488 nm (excitation) and 525 nm (emission) using the Guava easyCyte HT system (Millipore,
Billerica, MA, USA).

4.4. Western Blotting

CMT-U27 and CF41.Mg cells were lysed in cold lysis buffer supplemented with a
protease inhibitor cocktail (Sigma-Aldrich). Protein extraction was followed by separation
using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent transfer
to nitrocellulose membranes. To inhibit non-specific binding, the membranes were treated
with 5% skim milk and then incubated overnight at 4 ◦C with the following primary
antibodies in a blocking buffer: rabbit polyclonal anti-ERβ (ab3576; 1:1000; Abcam, Cam-
bridge, MA, USA), mouse monoclonal anti-ERα (MA1-12692; 1:1000; Invitrogen, Carlsbad,
CA, USA), rabbit polyclonal anti-p-PI3K (AF3242; 1:1000; Affinity biosciences, Cincinnati,
OH, USA), rabbit polyclonal anti-AKT (9272; 1:1000; Cell Signaling Technology, Inc., Bev-
erly, MA, USA), rabbit polyclonal anti-p-AKT (9271; 1:1000; Cell Signaling Technology),
rabbit monoclonal anti-mTOR (2983; 1:1000; Cell Signaling Technology), rabbit mono-
clonal anti-p-mTOR (5536; 1:1000; Cell Signaling Technology), rabbit polyclonal anti-PTEN
(bs0686-R; 1:1000; Bioss, Inc., Beijing, China), mouse monoclonal anti-p-PTEN (sc-377573;
1:1000; Santa Cruz Biotechnology, Santa Cruz, CA, USA), mouse monoclonal anti-Bcl-2
(Sc-7382; 1:1000; Santa Cruz Biotechnology), rabbit polyclonal anti-Bax (2772; 1:1000; Cell
Signaling Technology), rabbit polyclonal anti-caspase-3 (9662; 1:1000; Cell Signaling Tech-
nology), mouse monoclonal anti-Cyclin D1 (AHF0082; 1:1000; Invitrogen), rabbit polyclonal
anti-CDK4 (11026-1-AP; 1:1000; Proteintech, Chicago, IL, USA) and mouse monoclonal anti-
β-actin (A5441; 1:1000; Sigma-Aldrich). Membranes were then incubated with horseradish
peroxidase (HRP)-conjugated secondary antibodies for 1 h at room temperature. Chemilu-
minescent signals were amplified using WESTSAVE Gold (LF-QC0103; Abfrontier, Seoul,
Republic of Korea) or WESTSAVE Star (LF-QC0106; Abfrontier) and subsequently captured
using a Fusion FX7 acquisition system (Vilbert Lourmat, Eberhardzell, Germany). Band
densities were quantified using Quantity One (version 4.6.6) and normalized to that of
β-actin. The intensity was then presented relative to that of the control.

4.5. Cell-Cycle-Arrest Assay

CMT-U27 and CF41.Mg cells were seeded in 6-well plates at 5 × 105 and 25 × 104 cells,
respectively. After treatment, cells were fixed overnight in ice-cold ethanol/PBS (7:3). The
cells were then washed twice with PBS and incubated with FxCycle™ PI/RNase Staining
Solution (F10797; Invitrogen) for 30 min at room temperature. The cells were analyzed
using a CytoFLEX S V4-B2-Y0-R3 Flow Cytometer (C02948; Beckman Coulter, Brea, CA,
USA) and the data were analyzed using CytExpert software (version 2.5.0.77).

4.6. Immunocytochemistry

CMT-U27 and CF41.Mg cells were cultured on gelatin-coated coverslips. Cells were
fixed with 2% paraformaldehyde for 20 min at 4 ◦C and permeabilization using 0.5% Triton
X-100 in PBS for 10 min. Blocking was performed using 5% animal serum (donkey or
goat) in 2% bovine serum albumin in PBS for 1 h at room temperature. Subsequently,
the cells were treated with primary antibodies against anti-ERβ (1:200; Abcam), anti-
ERα (1:200; Invitrogen), anti-p-PI3K (1:200; Affinity Biosciences), and anti-PTEN (1:200;
Bioss) in a blocking solution at 4 ◦C overnight. The cells were incubated with Alexa
FluorTM 594 conjugated goat anti-mouse IgG (A-11005; 1:1000; Invitrogen) or Alexa Fluor®

488 conjugated goat anti-rabbit IgG (ab150077; 1:1000; Abcam). The cell nuclei were
counterstained with 4′,6-diamidino-2-phenylindole (DAPI). The cells were then mounted
using mounting medium (Dako, Carpinteria, CA, USA) and images were captured using a
THUNDER Imager 3D Live Cell & 3D Cell Culture System (Leika Microsystems, Wetzlar,
Germany). The mean fluorescence intensity for each channel in the three distinct regions
was quantified using ImageJ software (version 1.52a). The fluorescence intensity was
expressed relative to that of the control.
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4.7. Statistical Analysis

All data are presented as mean ± standard deviation (SD). Statistical significance
between groups was determined using an unpaired Student’s t-test. One-way analysis of
variance (ANOVA), followed by Bonferroni post hoc tests, was conducted to determine
significant differences among multiple groups. Statistical analyses were performed using
GraphPad Prism software (version 5.0). Statistical significance was set at p < 0.05.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms25052466/s1.
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