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Abstract: To modulate the bioactivity and boost the therapeutic outcome of implantable metallic
devices, biodegradable coatings based on polylactide (PLA) and graphene oxide nanosheets (nGOs)
loaded with Zinforo™ (Zin) have been proposed in this study as innovative alternatives for the
local management of biofilm-associated periprosthetic infections. Using a modified Hummers
protocol, high-purity and ultra-thin nGOs have been obtained, as evidenced by X-ray diffraction
(XRD) and transmission electron microscopy (TEM) investigations. The matrix-assisted pulsed laser
evaporation (MAPLE) technique has been successfully employed to obtain the PLA-nGO-Zin coatings.
The stoichiometric and uniform transfer was revealed by infrared microscopy (IRM) and scanning
electron microscopy (SEM) studies. In vitro evaluation, performed on fresh blood samples, has shown
the excellent hemocompatibility of PLA-nGO-Zin-coated samples (with a hemolytic index of 1.15%),
together with their anti-inflammatory ability. Moreover, the PLA-nGO-Zin coatings significantly
inhibited the development of mature bacterial biofilms, inducing important anti-biofilm efficiency in
the as-coated samples. The herein-reported results evidence the promising potential of PLA-nGO-Zin
coatings to be used for the biocompatible and antimicrobial surface modification of metallic implants.

Keywords: polylactide (PLA); graphene oxide; MAPLE; nanostructured coatings; hemocompatible
coatings; anti-biofilm efficiency

1. Introduction

Bacterial biofilms represent an increasing concern for patients, health profession-
als, and healthcare providers worldwide, especially due to the emergence and alarming
spread of antimicrobial-resistant pathogens and taking into consideration the high demand
for implantable medical devices (IMDs) [1–3]. Compared to planktonic cells, biofilm-
embedded microorganisms form a complex adaptive system and possess a much higher
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intrinsic antimicrobial resistance, displaying different growth and spreading rates, par-
ticular structural and functional characteristics, versatile protective mechanisms, altered
pathogenicity factors, and genetic mutations, therefore rendering their eradication far more
challenging [4–6]. In more detail, sessile bacteria (biofilm-forming cells) tolerate antibiotics,
ultraviolet light, chemical biocides, host immune response, and harsh environmental con-
ditions (e.g., extreme temperatures and pH, high salinity and pressure, poor nutrients)
well [1,7].

As the surfaces of IMDs are particularly prevalent sources of bacterial contamination
(and subsequent colonization), biofilms reportedly contribute to ~65% of nosocomial
infections, including major hospital-acquired infections [8]. Bacterial cells can attach and
colonize on the surface of indwelling catheters, mechanical heart valves, pacemakers,
endovascular stents, prosthetic joints and implants, voice prosthesis, artificial lenses, and
internal or external fixation devices, generating inception infection points [1,9–14]. Besides
constraining the immune system of the host organism by causing a moderate-to-severe
systemic response [15,16], biofilm-associated infections can also affect the structure and
functionality of the implanted devices [17], further imposing their removal [2,14].

According to the recent literature, orthopedic interventions have significant rates of
post-operative surgical site infection, namely 13% to 88% for tibial plateau fractures, 3% to
45% for proximal tibia fractures, 3% to 17% for distal femur fractures, and 2% to 10% for
patellar fractures [18]. Furthermore, 1% to 5% of orthopedic implants have been reported
to produce infections, being linked to considerable morbidity, disability, and healthcare
costs [19]. Additionally, the use of fixation devices (such as plates, wires, screws, nails, and
pins) can increase the risk of infection through biofilm formation and may complicate surgi-
cal debridement, resulting in more technically demanding procedures and longer operative
times [20]. Even though metals are viewed as gold-standard materials for restorative or re-
constructive orthopedic IMDs, they are still associated with periprosthetic infections [21,22],
mechanical failure [23,24], local corrosion, and ion-mediated chronic toxicity [25,26], with a
greater probability for revision surgery and hardware removal [27,28].

Reconstruction surgery employing tendon autografts is a preferred therapeutic strat-
egy for patients with knee ligamental injuries. Given the essential role of ligaments in knee
stability and biomechanics and with the aim of avoiding multiple interventions, special
attention must be oriented towards graft positioning and fixation during surgery [29,30].
Metallic (titanium) and composite (biphasic calcium phosphate and polyester copolymer)
screws or pins are available as fixation devices for knee ligament reconstruction, providing
maximal bone fixation [31,32]. Still, recent data report alarming long-term effects associated
with these devices, such as similar joint effusion, inflammation, and infection, but also
a higher risk of intra-articular migration and rupture for composite implants [33]. How-
ever, artificial polymer-based ligaments have been validated as a therapeutic alternative
for extensive ligament injuries, but such devices are fabricated from biocompatible and
non-bioactive materials that are susceptible to microbial contamination [34].

The current practice against biofilm-related infection is the systemic administration
of multiple and high-dose antibiotics, while prevention is generally ensured by the steril-
ization of medical surfaces [17]. For instance, advanced-generation cephalosporins (beta-
lactam antibiotics) have impressive outcomes in the treatment of major-to-severe infec-
tious diseases, including resistant and nosocomial infections, by inhibiting the penicillin-
binding protein-mediated crosslinking of the peptidoglycan layer within the bacterial
cell wall [35,36]. Nonetheless, systemic antibiotic therapy may lead to side effects, low
patient compliance, development of drug-resistant pathogens, and reduced treatment
efficiency [37–39]. On the other hand, during the conventional sterilization of surgical
instruments and IMDs, the products are decontaminated, washed, reassembled, labeled,
sterilized, and redistributed. However, only a small portion of processed implants are used
during surgery, leading to multiple reprocessing of the remaining IMDs before being placed
in a patient. These practices open the door to preoperative contamination, increasing the
infection risk [40].
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Thus, given that current anti-infective strategies are often inefficient and partially
selective or even threaten the patient’s safety, there is an urgent need for developing
improved solutions. One notable and promising approach against persistent bacterial
infections is the optimization of clinical IMDs by their surface modification with microbial-
repellent or microbial-resistant coatings. Specifically, improving the surfaces of implants
and fixation devices with bioactive coatings (that may exert multiple biofunctionalities) has
the potential to prevent microbial attachment, intercept biofilm development, and reduce
the transmission of pathogens in the clinical environment [8,17,41,42].

Interesting possibilities with high-quality therapeutic outcomes can be envisaged
by incorporating conventional (synthetic drugs and natural phytochemicals) and uncon-
ventional (nanosized and nanostructured materials) antimicrobials within biodegradable
polymer layers that provide sustained local release and facilitate circumstantial controlled
and triggered delivery. The use of biopolymers has attracted increasing interest in mod-
ern pharmacotherapy, being either explored as efficient delivery and releasing vehicles
for antibiotics or natural antimicrobials, or for their intrinsic biological effects. Due to
their unique size-governed physicochemical properties, antimicrobial nanomaterials can
overcome bacterial resistance as they can permeate and destroy bacterial cell membranes,
display microbiostatic or microbicidal effects, and hamper biofilm formation. Thus, their
incorporation into coatings for tuning the surfaces of IMDs serves as a performant strat-
egy to prevent or limit microbial adhesion and mitigate or kill the biofilm-embedded
microorganisms [3,43–50].

Graphene is a versatile two-dimensional representative of carbon-based nanomaterials,
and possesses unique electronic, mechanical, optical, and thermal properties that set up
great expectations for technical applications, including biotechnology and biomedicine.
Its intrinsic biocompatibility and low toxicity, tunable mechanical support and elasticity
for cellular adhesion and migration, excellent stability, and appropriate conductivity for
modulated cellular behavior especially recommend this material for use in biosensing
and bioimaging platforms, accurate drug delivery vehicles, and scaffold production for
tissue engineering and regenerative medicine [51–53]. In addition, graphene oxide (GO,
representing the chemically modified form of graphene) is recognized for its extensive
and versatile surface area and outstanding thermal, mechanical, and electrical properties,
while also possessing beneficial biological roles (electroactivity-mediated immunomod-
ulation, molecular regulation, and cellular events—including differentiation and guided
cytophysiology) and intrinsic antimicrobial activity [52,54].

Owing to its attractive features (versatile composition, facile and cost-effective pro-
cessability, adaptable solubility and degradability, and tunable physicochemical and ther-
momechanical behavior), polylactide (PLA, a thermoplastic naturally derived biopolymer)
has been extensively explored for use in innovative therapeutic strategies. In addition, the
excellent biocompatibility, non-toxicity, tunable biodegradability, and reduced immuno-
genicity of PLA-based formulations pave the way for fabricating bioactive platforms for
personalized and modern biomedicine [55,56].

Even though PLA is a widely used biopolymer in biotechnology and biomedicine, it
still exhibits some drawbacks, including poor mechanical behavior, lack of intrinsic bioac-
tivity, and the absence of antibacterial behavior. Incorporating antimicrobial nanofillers has
been proposed to overcome these limitations, as different kinds of additives can synergisti-
cally improve the properties of PLA-based composites [57,58]. Among diverse possibilities,
GO nanofillers are especially useful additives for producing multifunctional nanocom-
posites with adequate mechanical strength, improved flexibility, adaptable barrier role,
antibacterial activity, and enhanced biocompatibility [58,59].

In this context, this study proposes the fabrication of biocompatible coatings based on
polylactide (PLA) and graphene oxide nanosheets (nGOs) for the loading and release of
Zinforo™ (Zin). Using the matrix-assisted pulsed laser evaporation (MAPLE) technique,
this broad-spectrum cephalosporin antibiotic (a ceftaroline fosamil prodrug) has been
successfully transferred within bioactive coating formulations for the surface modifica-
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tion of IMDs. The herein-developed PLA-nGO-Zin nanostructured coatings represent
innovative bioactive alternatives for the local management (prevention and limitation) of
biofilm-associated periprosthetic infections.

2. Results and Discussions
2.1. Physicochemical Characterization of GO Nanomaterial

The Hummers method is a multi-step, facile, and high-yield protocol to obtain GO,
conventionally by using H2SO4, sodium nitrate (NaNO3), and KMnO4 to oxidize graphite.
To overcome the hazard of toxic gases related to NaNO3 decomposition, different chemicals
have been successfully proposed to remove NaNO3 during the synthesis [60,61]. To
improve the oxidation rate of graphite and achieve GO with better oxidation degree [62],
a modified Hummers methodology—consisting in using a mixture of K2S2O8 and P2O5
instead of the conventional NaNO3—was applied in our experiments.

Using this version of the Hummers protocol, a high-purity nGO powdery sample was
obtained, as the corresponding XRD pattern (Figure 1) evidences the presence of a sharp
diffraction maximum at 2θ = 11.3◦, corresponding to the (0 0 2) plane of nGOs. According
to the literature, the (0 0 2) plane of graphite (corresponding to ~0.34 nm basal spacing)
is observed at ~26◦, and its shift towards much lower values is due to the successful
oxidation [63,64]. In addition, the interlayer spacing observed for the as-synthesized
sample (determined by Bragg’s law as ~0.90 nm) confirms the formation of nGOs, as
the increased distance between graphitic sheets is due to the successful intercalation of
oxygen-containing functional groups (such as hydroxyl, carboxyl, carbonyl, and epoxy
groups) and water molecules [65,66]. A second diffraction maximum is noticed at 2θ = 43◦,
indicating the short-range stacking of graphitic layers [67,68].
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Figure 1. X-ray diffraction (XRD) pattern of graphene oxide nanosheets (nGOs)

Complementarily, TEM images (Figure 2) show the formation of ultra-thin nGOs and
confirm the reduced range order in stacked nGO layers (according to previous XRD data),
since continuous wrinkled layers with multilamellar and folded structures (seen as darker
structures) have been evidenced. These findings are consistent with previous studies that
report the formation of highly folded sheets with textured sheet surfaces by the modified
Hummers method, as a consequence of highly abundant oxygen-containing functional
groups and increased water uptake between graphite layers [62,69,70].
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2.2. Physicochemical Characterization of PLA-nGO-Zin Coatings

IRM analysis allows for the concomitant collection of Fourier-transform infrared
spectroscopy (FT-IR) spectra (Figure 3, right) and infrared maps (Figure 3, left), thus
enabling the facile investigation of coating composition and stoichiometry, and laser-
assisted transfer efficiency, respectively.

In this respect, the drop-cast sample (corresponding to the initial mixture of PLA, nGO,
and Zin) was used as the reference material. The presence of carbon-containing moieties,
originating from both PLA and nGOs, can be noticed at ~1755 cm−1 (strong C=O stretching),
~1180 cm−1 (C–O–C stretching), and ~1100 cm−1 (C–OH stretching) [71–73]. Specific PLA
functions, assigned to terminal methyl-originating C–H stretching vibrations (~2997 cm−1),
C–H asymmetric deformation (~1470 cm−1), and –CH3 bending (~1380 cm−1), were also
identified [74,75].

The development of biocompatible coatings with application-related physicochemi-
cal properties and tuned biofunctionality can be successfully achieved using the MAPLE
technique. Some advantages of this versatile laser processing method include the unal-
tered transfer of small-molecule or macromolecule organics, stoichiometric transfer of
inorganic or organic materials, and strong adhesion of the MAPLE coating on the IMD’s
surface. Herein, different laser fluences were employed during the MAPLE experiments
(300, 400, and 500 mJ/cm2), and IRM analysis was used to identify the optimal laser flu-
ence for the MAPLE processing of PLA-nGO-Zin materials. Besides IR spectra (Figure 3,
right—corresponding to different points on each sample), infrared maps (Figure 3, left)
were also collected by monitoring the absorbance intensity of C–H (A maps) and C=O (B
maps) bonds.

Compared to the drop-cast sample, all previously identified IR vibrations were also
noticed in the case of MAPLE materials processed at 400 mJ/cm2, indicating the compo-
sitional integrity and stoichiometry of the coating. A reduced transfer of the composite
material is observed for coatings obtained at low laser fluence (300 mJ/cm2), with preserved
composition, but vibrational signatures of much lower intensity. Conversely, important
alterations of the functional groups are observed for composites processed at 500 mJ/cm2

laser fluence. It is worth mentioning that most IR absorption maxima of Zin might have
been overlapped by the highly abundant carbon-containing constituents (both the polyester
and GO), according to the IR spectra of the drop-cast sample. However, in the case of
PLA-nGO-Zin coatings obtained at 400 mJ/cm2, the additional presence of amide and
phosphate moieties within Zin (~1680 and ~1060 cm−1, respectively) [76–78] may confirm
the laser transfer of this cephalosporin antibiotic.
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Figure 3. IR maps (left) constructed by monitoring the intensity and distribution of C–H (A) and C=O
(B) groups, and corresponding IR spectra (right) for PLA-nGO-Zin coatings obtained at different
laser fluences.

As the color variations in the mapping micrographs (Figure 3, left), ranging from red to
blue, are directly related to the high-to-low intensity of monitored absorbance bands, these
results confirm that an efficient laser transfer and material distribution of PLA-nGO-Zin
composite on the substrate were obtained by using the middle laser fluence.

We have previously reported the successful use of the 300–400 mJ/cm2 laser fluence
range in obtaining PLA-based coatings for the surface improvement of IMD-related materi-
als [39,49]. Also, similar outcomes regarding the MAPLE processing of GO-based coatings
are available, indicating that their stoichiometric transfer can be achieved for reduced-to-
moderate laser fluences when using excimer [79,80] or Nd:YAG [81–83] laser beams. Given
the available literature and the previously discussed IRM data, the middle laser fluence was
selected as optimal for the MAPLE processing of PLA-nGO-Zin materials, and thorough
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investigations were conducted in our study only on the coatings obtained at 400 mJ/cm2

laser fluence.
Consistent with previous studies [79,84], the herein-developed continuous and com-

pact coatings completely cover the substrate. The highly irregular surface appearance of
PLA-nGO-Zin coatings (Figure 4a,b) may result from the laser-mediated rearrangement of
nGOs, which preserves their irregular and wrinkled aspect and their dimensional range (in
compliance with TEM observations). Moreover, the nGOs seem to be individually covered
by a thin organic PLA layer with a wavy aspect, while smoother areas can be noticed
between larger nGO aggregates. These observations, together with previous IR results,
confirm the successful formation of composite and nanostructured PLA-nGO-Zin coatings
by performing the MAPLE processing at 400 mJ/cm2 laser fluence.
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2.3. Blood Interaction with PLA-nGO-Zin Coatings
2.3.1. Evaluation of the Hemolytic Potential of PLA-nGO-Zin Coatings

For blood-contacting materials, hemocompatibility is a critical aspect that needs to
be considered to select and validate materials that do not exhibit harmful effects on the
blood. Hemocompatible materials are selected based on specific assays that highlight the
lack of potential of analyzed samples to activate or destroy blood components following
material-blood interactions. For this purpose, different aspects can be evaluated, such as
the destruction of red blood cells, activation of coagulation via the intrinsic pathway, or
pro-inflammatory effects driven by leukocyte activation [85,86]. Therefore, to assess the
hemocompatibility of PLA-nGO-Zin-coated samples, their hemolytic and pro-inflammatory
potential was investigated following blood interaction.

The ability of PLA-nGO-Zin-coated samples to induce red blood cell lysis was investi-
gated 1 h after interaction with blood samples by the spectrophotometric determination
of hemoglobin (released as an indicator of erythrocyte destruction). The obtained results
(Figure 5) show that PLA-nGO-Zin-coated samples do not induce damage to the red blood
cells’ membranes, as no significant changes are identified between blood samples exposed
to the tested materials in comparison with the unexposed control. It is noteworthy that
for both the uncoated substrate and PLA-nGO-Zin samples, the hemolysis rate is below
the 5% threshold, which defines materials as hemolytic according to the ASTM F756-00
(2000) guidelines [87]. Moreover, although materials presenting a hemolytic index below
5% are considered hemocompatible, these are further characterized as slightly hemolytic
and non-hemolytic, with a hemolytic ratio between 2 and 5% or below 2%, respectively.
Therefore, as the hemolytic index of non-coated samples is 2.29%, while the hemolytic
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index of PLA-nGO-Zin-coated samples is 1.15%, these results clearly highlight the great
promise of the proposed coating strategy in increasing the material’s blood compatibility.
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2.3.2. Assessment of the Pro-inflammatory Potential of PLA-nGO-Zin Coatings by Profiling
Cytokine Expression

To explore the pro-inflammatory potential of PLA-nGO-Zin coatings, the protein
expression of six cytokines with an influential role in regulating inflammatory responses
was investigated by flow cytometry (Figure 6). The expression of analyzed cytokines is
statistically significantly increased in LPS-stimulated blood samples compared to control
blood samples, except for IL12p70, where no changes are identified at any of the considered
time points. Increasing cytokine production is identified starting with short-term exposure
for TNF-α, IL-8, and IL-6, while for the rest of the cytokines, a longer LPS stimulation period
is required to trigger significant alterations of the cytokine levels. This enhancement in
cytokine production was expected, as LPS is a potent stimulus that activates innate immune
cells and triggers in response the gradual production of pro-inflammatory cytokines [88,89].

Regarding our samples, the obtained results show that blood stimulation with PLA-
nGO-Zin coatings does not enhance the analyzed cytokine production when compared
with the control blood sample. After 24 h of blood–PLA-nGO-Zin sample interaction, a
statistically significant decrease in the expression of IL-1β, IL-6, and IL-8 pro-inflammatory
cytokines is obtained as compared with cytokine levels quantified in non-stimulated blood
samples, results that suggest the impact of PLA-nGO-Zin-coated samples on diminishing
the basal levels of these cytokines. Moreover, the expression of these cytokines is statistically
significantly lower in blood samples exposed to coated materials than those exposed to
uncoated references, showing that deposition of the coating on the reference surface could
endorse the original material with potential anti-inflammatory properties. This feature is
most likely due to the presence of GO, which has been characterized as a nanomaterial
with anti-inflammatory effects, a feature that empowers the use of nGOs in biomedical
applications, besides its excellent biocompatibility [90,91].
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Figure 6. Graphic representation of the IL-8, IL-1β, IL-6, IL-10, TNF-α, and IL-12p70 cytokine levels
quantified in recovered supernatants from blood samples which interacted with uncoated and PLA-
nGO-Zin samples for 6 h and 24 h. The experimental control was represented by non-stimulated
blood samples, while the positive control was represented by LPS-stimulated blood samples. The
represented data are the mean values of three independent experiments ± S.D. (* p ≤ 0.05; ** p ≤ 0.01;
*** p ≤ 0.001; **** p ≤ 0.0001).

Consistent with previous studies on nGOs, our results demonstrate the excellent
hemocompatibility and moderate anti-inflammatory activity of PLA-nGO-Zin coatings.
Owing to their distinctive chemistry and structure, and attractive electrical, mechanical,
and thermal peculiarities, nGOs possess a tunable stimulus-responsive ability, which can
be explored for fabricating sensitive platforms for the specific and selective detection and
imagining of biomarkers and cells in blood samples [92–94]. Highly hemocompatible and
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pro-coagulant nGO-based aerogels crosslinked with gelatin and chitosan (CS), respectively,
have been proposed as effective hemostats, their hemostatic performance being superior to
commercial products [95]. While nGOs with small lateral dimensions (50 nm to 3 µm) [90]
and negatively charged GO quantum dots (<10 nm) [96] selectively inhibit the expression
of interleukin genes in macrophages, gold-decorated GO nanocomposites inhibit platelet
activation and fibrotic formation, and exhibit important antioxidant and anti-inflammatory
effects in macrophages, but also modulate the differentiation of stem cells, thus possessing
impressive potential for tissue repair and regeneration [91].

With the aim of developing biofunctional coating materials that modulate the therapeu-
tic outcome of conventional IMDs, impressive results have been reported for GO-embedded
polymer materials. For instance, nGOs have been proposed as a mechanical strengthener
and anti-corrosion filler for polysaccharide [97,98] and protein [45,99] coatings. Without
altering the intrinsic bioactivity of such biopolymers, while promoting and supporting
normal events in osteoblast-like cells, these coatings represent suitable candidates for im-
proving the implant-to-host interface of metallic materials. nGOs also act as a mechanical
reinforcer and antimicrobial additive for polyesters, facilitating the fabrication of elec-
troactive layered formulations that modulate physiological events in stem and progenitor
cells, thus showing great promise for hard [100,101] and soft [102,103] tissue engineering
applications. nGO-loaded conductive polymer constructs have been particularly vali-
dated as advanced interfaces (or so-called “smart materials”) for guided tissue repair and
regeneration [104–106].

Reconstruction surgery of knee ligaments with tendon autografts generally requires
the use of fixation devices (such as plates, wires, screws, nails, pins, bands, and flexi-
ble/adaptable fixation systems), for which the need to improve their post-operative biome-
chanical performance and overcome their intrinsic bioinertness and microbial susceptibility
is thoroughly investigated. For instance, bioresorbable magnesium-based fixators (screws,
rods, and wires) have been developed to improve the intra-tunnel bone-to-tendon inter-
face [107,108]. Following their in vivo degradation, such devices promote and stimulate
osteogenic events (osteogenic differentiation, mineralization, early new bone formation, late
fibrocartilage-like tissue formation, and accelerated intra-tunnel ossification), while alloying
and reinforcing elements determine boosted performances in terms of mechanical proper-
ties, corrosion behavior, local stability, and controllable degradability. Though comparable
tunnel widening has been reported when using bioactive glass or PLA/hydroxyapatite
interference screws, the use of bioglass fixation devices results in less aggressive foreign
body reaction, superior translational stability, and higher osteointegration and resorption
rates [109]. Improving the biomechanics and healing rate of tendon-reconstructed knee lig-
aments by modulating intra-tunnel ossification has also been reported by using PLA-based
tubular interface implants [110,111] and polytetrafluoroethylene-sheathed core bones [112].

Impressive outcomes have been reported when tuning the surface of ligament al-
lografts with nanostructured coatings. By up-regulating the osteogenic and angiogenic
differentiation of stem/stromal cells, polyethylene terephthalate (PET) artificial grafts
modified with pulsed laser-deposited copper-containing bioglass nanocoatings [113] or
plasma-sprayed nano-hydroxyapatite coatings [114] have been validated as biofunctional
implants for knee ligament surgery. Besides exhibiting improved hydrophilicity and en-
hanced biomechanics, the nanocoated ligament implants stimulate new bone formation and
neo-vascularization, resulting in faster healing rates. Owing to the multiple roles of silicon
and strontium in modulating complex events during bone homeostasis (by stimulating pro-
osteoblast action and mineralization, inducing osteogenic differentiation and angiogenesis,
and suppressing osteoclastogenesis) [115,116], strontium-enriched silicate nanocoatings
have been fabricated for inducing osteogenic activity in PET artificial grafts [117].

2.4. Anti-Biofilm Efficiency of PLA-nGO-Zin Coatings

Herein, the ability of PLA-nGO-Zin coatings to alter the development of bacterial
biofilms has been evaluated at different time intervals (24, 48, and 72 h) against Gram-
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negative (E. coli, Ps. aeruginosa) and Gram-positive (S. aureus) pathogens, the results being
included in Figure 7.
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incubation periods with PLA-nGO-Zin coatings, expressed as CFU/mL values.

PLA-nGO-Zin-coated samples determine an important decrease in the bacterial popu-
lations of S. aureus (Figure 7c) and E. coli (Figure 7a) compared to control specimens, with
a sustained diminution of the CFU/mL values of ~2 orders of magnitude (logs). These
results confirm the preserved antimicrobial efficiency of the intravenous ceftaroline fosamil
(a fifth-generation cephalosporin prodrug with broad-spectrum activity) [35,118] following
MAPLE processing. Further, a comparable and sustained inhibition of biofilms is noticed
for both bacteria, indicating the prolonged efficiency of PLA-nGO-Zin nanostructured
coatings to alter the development of bacterial biofilms at different stages.

Still, the most important effect in inhibiting biofilm development is observed for the Ps.
aeruginosa strain (Figure 7b), in the case of short-time contact, with an inhibitory efficiency
of close to 4 logs. After 48 h, the bacterial population is reduced by only one order of
magnitude, and PLA-nGO-Zin coatings eventually lose their anti-biofilm ability after 72 h.
These results demonstrate the enhanced ability of PLA-nGO-Zin coatings to interfere with
Ps. aeruginosa biofilm during the contamination, colonization, and early maturation phases.

Our findings are compliant with other studies that report the early-stage efficiency
of Zinforo™ against bacterial biofilms [41,119]. More than that, we report the prolonged
anti-biofilm efficiency of PLA-nGO-Zin coatings against S. aureus and E. coli, which may be
related to the synergistic antimicrobial effects of Zinforo™ and nGO. Like other nanomateri-
als, GO exhibits important size-related antimicrobial effects by mechanically disrupting the
integrity of bacterial cell membranes [45]. Moreover, due to the functional groups present
on its surface, GO can electrostatically interact with the phospholipids forming the bacterial
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cell membrane [120,121]. Also, GO-mediated physical demolition and chemical oxidation
lead to the generation of reactive species, which cause microbial death and decreased
microbial resistance [54].

Incorporating graphene derivatives into PLA matrices results in reinforcing the
polyester’s mechanical behavior, inducing antibacterial effects by the inhibition of Gram-
negative and Gram-positive bacterial proliferation, while lacking cytotoxicity and im-
proving the adhesion and spreading of healthy normal cells, being thus evaluated as a
promising solution for biomedical applications [59]. Also, the addition of GO within PLA–
polyurethane [122,123] and CS-PLA [124,125] composites has also led to the successful
fabrication of bioactive nanostructured constructs with excellent biocompatibility, strong
antimicrobial effects, and good thermomechanical features.

Our results align with other studies regarding the development of unconventional
strategies to modulate the microbial susceptibility of fixation devices used in knee ligament
reconstruction. Resorbable hyaluronan/PLA hydrogel loaded with vancomycin has been
reported as an effective and safe coating for tendon autografts, acting as a prophylactic
solution for periprosthetic infections [126]. Also, electroactive nanofibrous scaffolds of
PLA/graphite nanoplatelets modified with silver nanoparticles, exhibiting good thermome-
chanical behavior and reduced degradation, have been developed as a functional ligament
substitute that exerts local antibacterial effects [127].

3. Materials and Methods
3.1. Materials

Sigma-Aldrich (Merck Group, Darmstadt, Germany) was the supplier of all reagents
used during the synthesis of nanosheets and nanostructured coatings, namely H2SO4,
K2S2O8, P2O5, KMnO4, H2O2, HCl, dimethyl sulfoxide (DMSO), and polylactic acid (PLA).
Analytical-grade pure chemicals were used throughout the experiments.

The same supplier (Sigma/Merck) provided most reagents used for the in vitro eval-
uation of obtained coatings (otherwise, the provider was accordingly specified during
the protocol). Bacterial strains were obtained from the American Type Culture Collection
(ATCC, Manassas, VA, USA).

3.2. Synthesis Methods
3.2.1. Synthesis of Graphene Oxide (GO) Nanomaterial

Pre-oxidized graphite was firstly obtained by dispersing the graphite powder in
concentrated sulfuric acid mixed with potassium persulfate and phosphorous pentoxide
under stirring at 80 ◦C. After reaching room temperature (RT), the mixture was washed
several times (until it achieved a neutral pH), then subjected to filtration and dried at 80 ◦C
for 24 h. The as-obtained pre-oxidized graphite powder was re-dispersed in concentrated
H2SO4 solution by stirring in an ice bath, then potassium permanganate was slowly added
in the beaker at a temperature close to 0 ◦C. Further, the mixture was magnetically stirred
at 35 ◦C for 2 h and stirred at 80 ◦C for 2 h, washed by stirring for 15 min, and finally stirred
for 2 h with 30% hydrogen peroxide solution. The as-resulted precipitate was subjected to
vacuum filtration, washed with 3% hydrochloric acid solution until it reached a neutral
pH, then air-dried at 60 ◦C for 24 h. A modified Hummers method [128,129] was used to
synthesize the graphene oxide nanosheets (nGOs).

3.2.2. Synthesis of PLA-nGO-Zin Coatings

For the deposition of coatings based on polylactic acid (PLA), graphene oxide nanosheets
(nGOs), and ceftaroline fosamil cephalosporin (Zinforo™, Zin), substrates with 1 cm2

area of double-side-polished (1 0 0) silicon (for physicochemical investigation), glass, and
titanium (for in vitro evaluation) were used. Before surface modification by means of
matrix-assisted pulsed laser evaporation (MAPLE) [49,130], all substrates were successively
cleaned with acetone, ethanol, and deionized water in an ultrasonic bath (15 min each step),
then dried under a high-purity nitrogen jet.
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Suspensions with 5% concentration of PLA, nGOs, and Zin (10:5:1 wt.%) prepared
in DMSO were transferred in copper holders and immersed in liquid nitrogen for 30 min.
The as-obtained solid targets were irradiated with a COMPexPro 205 Lambda Physics
source (KrF* excimer laser beam with λ = 248 nm, τFWHM = 25 ns, and 10 Hz repetition
frequency), purchased from Coherent (Göttingen, Germany). During MAPLE experiments,
the following parameters were constant: RT and 0.1 Pa pressure inside the deposition
chamber, 5 cm target-to-substrate distance, and 0.4 Hz target rotation. For each experiment,
50,000 laser pulses were applied at different laser fluences (300, 400, and 500 mJ/cm2).

3.3. Physicochemical Investigation Methods
3.3.1. Characterization of GO Nanosheets (nGOs)

The purity, crystalline nature, and microstructure of the as-synthesized powdery sam-
ple were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM).

For XRD analysis, an Empyrean diffractometer with CuKα radiation from PANalytical
(Almelo, The Netherlands), equipped with a hybrid monochromator for Cu and a PIXcel3D
detector, was used. Scans were collected on the mildly ground powder, using Bragg–
Brentano geometry between 5–80◦ diffraction angles, with 0.5◦ incidence angle, under step
scan mode (0.04◦ scanning step size and 3 s acquisition time per scanning step).

TEM investigation was performed using the TecnaiTM G2 F30 S-TWIN high-resolution
equipment from Thermo Fischer Scientific (former FEI, Hillsboro, OR, USA). Data collection
was performed in transmission mode, with point and line resolutions of 2 Å and 1 Å,
respectively. Before analysis, small amounts of the as-synthesized powdery sample were
dispersed in ethanol under sonication for 15 min, then placed onto the carbon-coated
copper grid and dried at RT.

3.3.2. Characterization of PLA-nGO-Zin Coatings

Relevant compositional, structural, and morphological aspects of the MAPLE-processed
samples were provided by complementary infrared microscopy (IRM) and scanning elec-
tron microscopy (SEM) investigations.

A Nicolet iN10 MX FT-IR microscope from Thermo Fischer Scientific (Waltham, MA,
USA) was used for IRM analysis to collect IR spectra and IR maps. The scans (32 mea-
surements per sample) were recorded in the transmission mode in the 4000–750 cm−1

wavenumber range (with 4 cm−1 resolution), and then processed with the OmincPicta 8.0
software (Thermo Fischer Scientific).

For SEM investigation, Inspect S equipment from FEI Company (Thermo Fischer
Scientific, Hillsboro, OR, USA) was used. Micrographs were collected using the secondary
electron beam with 30 keV after capping all samples with a thin conductive layer.

3.4. Biological Evaluation of PLA-nGO-Zin Coatings

Peripheral blood samples were used to investigate the blood response to PLA-nGO-
Zin-coated samples. The blood samples were collected by qualified medical personnel
using EDTA blood collection vacutainers (Becton Dickinson, Franklin Lakes, NJ, USA) from
healthy donors after obtaining their written informed consent. Fresh blood samples were
used for all experiments within the first hour after withdrawal.

To reveal if PLA-nGO-Zin-coated samples triggered hemolysis, blood samples were
centrifuged to recover erythrocytes, which were further washed in 150 mM NaCl (Sigma/
Merck). The obtained pellet was re-suspended in PBS (Sigma/Merck) to reach a final
volume of 5 mL, and the obtained solution was further diluted to 1:50 with PBS. Pristine
(uncoated) glass slides and PLA-nGO-Zin-coated samples were transferred to 24-well
plates, incubated for 1 h at 37 ◦C on a plate shaker, and centrifuged. Then, 20% Triton X-100
(Sigma/Merck) was added to the positive control wells, while the negative control wells
were represented by simple erythrocyte solutions. After 1 h, samples were centrifuged, and
the resulting supernatants were transferred to 96-well plates and measured at 492 nm to
determine their optical densities (ODs) using the FlexStation III multimodal reader from
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Molecular Devices (San Jose, CA, USA). To express hemolysis as a percentage, the following
formula was used [131,132], with the OD of the negative control being the sample with
minimal lysis, and the OD of the positive control being the sample where the maximal lysis
was registered:

hemolysis(%) =
OD sample − OD negative control

OD positive control − OD negative control
× 100

The pro-inflammatory potential of PLA-nGO-Zin-coated samples was explored by
measuring at different post-contact time points (6 h and 24 h) the levels of the follow-
ing pro-inflammatory cytokines in blood samples: Interleukin-8 (IL-8), Interleukin-1β
(IL-1β), Interleukin-6 (IL-6), Interleukin-10 (IL-10), Tumor Necrosis Factor (TNF-α), and
Interleukin-12p70 (IL-12p70). In this view, the tested materials (both uncoated and PLA-
nGO-Zin-coated samples) were immersed for 6 h and 24 h in fresh blood samples on a
shaker at 37 ◦C. At the pre-set experimental time points, tested materials were retrieved
from the blood samples, which were then centrifuged to recover blood serum that was
subsequently employed for cytokine quantification. Clear blood samples were used as
negative controls, while blood samples stimulated with 10 µg/mL of lipopolysaccharide
(LPS) from Escherichia coli O111:B4 (Sigma/Merck) were employed as positive controls.
To quantify the cytokine levels in all experimental samples, the BD™ Cytometric Bead
Array (CBA) Human Inflammatory Cytokines Kit (Becton Dickinson) was used [131,133].
Briefly, the capture bead mix was prepared as described by the manufacturer, and 50 µL of
this solution was mixed with 50 µL of the tested samples, and then incubated for 1.5 h at
RT in the dark. After a wash step, samples were further mixed with 50 µL of the Human
Inflammatory Cytokines PE Detection Reagent and additionally incubated for 1.5 h at RT
in the dark. The bead pellets were recovered by centrifugation, re-suspended in 300 µL of
wash buffer provided in the kit, and immediately analyzed using a Cytoflex flow cytometer
(Beckman Coulter, Brea, CA, USA). Data were acquired and analyzed by CytExpert v2.3,
while GraphPad Prism software v6.07 (GraphPad, San Diego, CA, USA) was employed to
represent the obtained results graphically and statistically (as the mean value of triplicate
experiments ± standard deviation, S.D., with two-way ANOVA algorithm).

3.5. Microbiological Evaluation of PLA-nGO-Zin Coatings

To evaluate the efficiency of MAPLE-processed coatings against monospecific biofilms,
the development of Gram-positive (Staphylococcus aureus ATCC® 25923) and Gram-negative
(Escherichia coli ATCC® 15224, Pseudomonas aeruginosa ATCC® 27853) bacterial biofilms in
the presence of PLA-nGO-Zin-coated samples was assessed for different time points (24 h,
48 h, and 72 h).

UV-sterilized uncoated (pristine) and PLA-nGO-Zin-coated substrates were trans-
ferred to sterile 24-well plates containing 1 mL of Luria–Bertani (LB) broth (Thermo Fischer
Scientific), then inoculated with 10 µL of 0.5 McFarland standard density microbial sus-
pensions. The prepared plates were incubated at 37 ◦C for 24 h, then the culture media
was removed, and the samples were washed with sterile phosphate-buffered saline (PBS,
Sigma/Merck). The as-treated samples were further placed in new sterile plates containing
fresh nutritive broth and incubated at 37 ◦C for 24 h, 48 h, and 72 h. After incubation, sam-
ples were gently washed with PBS and transferred in 1.5 mL centrifuge tubes containing
sterile PBS. All specimens were successively vortexed (30 s) and sonicated (10 s) to detach
the biofilms and obtain the biofilm-embedded microbial cell suspensions. Serial ten-fold
dilutions were further performed, and the final microbial suspensions were seeded on LB
agar plates (Thermo Fischer Scientific) to evaluate the colony-forming units (CFU/mL) by
viable cell count assay [49,134]. Antimicrobial results were processed with the GraphPad
Prism software (GraphPad v6.07), using the one-way ANOVA statistical tool.
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4. Conclusions

Fabricating biocompatible nanosized or nanostructured coatings is an attractive and
flexible strategy to modulate the microbial susceptibility of implantable medical devices.
More than providing protection to metallic surfaces, the thermomechanical and barrier
properties, bioactivity, and pathogenic susceptibility of polylactide (PLA)-based coatings
can be tuned by reinforcement with graphene oxide (GO) nanomaterials. Also, the versatile
biochemistry and thermomechanics of PLA films provide indisputable advantages for
fabricating active coatings that induce or potentiate local antimicrobial effects.

Herein, biodegradable coatings based on PLA, GO nanosheets (nGOs), and Zinforo™
(Zin-a broad-spectrum cephalosporin prodrug) were developed by laser processing. Fol-
lowing a comparative IRM analysis, the 400 mJ/cm2 laser fluence was selected for the
transfer of PLA-nGO-Zin coatings. Continuous and compact thin coatings with irregular
surfaces were thus obtained, the nGOs preserving the initial wrinkled aspect and folded
structure while being uniformly embedded within the PLA matrix.

Following interactions with fresh blood samples, biological results have evidenced the
excellent hemocompatibility of PLA-nGO-Zin coatings, the hemolytic index being 1.15%
(corresponding to a non-hemolytic material). The anti-inflammatory activity of as-proposed
original coatings has also been reported after a 24 h contact with blood samples, as the
PLA-nGO-Zin-coated specimens significantly lowered the basal levels of IL-1β, IL-6, and
IL-8 pro-inflammatory cytokines.

The microbiological data demonstrate the sustained and extended (up to 3 days)
anti-biofilm efficiency of PLA-nGO-Zin coatings against S. aureus and E. coli biofilms,
while a more drastic inhibitory action was shown during the incipient development of Ps.
aeruginosa biofilm.

The highly hemocompatible PLA-nGO-Zin nanostructured coatings, exhibiting anti-
inflammatory activity and important anti-biofilm efficiency, are suitable candidates for the
surface modification of implantable metallic devices, representing an attractive strategy for
the local prevention and limitation of biofilm-associated periprosthetic infections.
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