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Abstract: Colorectal cancer (CRC) is a devastating disease that ranks third in diagnosis and as
the second leading cause of cancer-related deaths. The early detection of CRC has been shown
to be the most effective strategy to improve treatment outcomes and patient survival. Therefore,
current lines of research focus on the development of reliable diagnostic tools. Targeted therapies,
in combination with standard chemotherapy and immune checkpoint inhibitors, have emerged
as promising treatment protocols in CRC. However, their effectiveness is linked to the molecular
characteristics of each patient. The importance of discovering biomarkers that help predict response to
therapies and assess prognosis is evident as they allow for a fundamental step towards personalized
care and successful treatments. Among the ongoing efforts to identify them, mass spectrometry-
based translational proteomics presents itself as a unique opportunity as it enables the discovery and
application of protein biomarkers that may revolutionize the early detection and treatment of CRC.
Our objective is to show the most recent studies focused on the identification of CRC-related protein
markers, as well as to provide an updated view of advances in the field of proteomics and cancer.

Keywords: colorectal cancer; proteomics; biomarkers; personalized medicine; targeted treatment

1. Introduction

A biomarker constitutes a measurable indicator of a specific biological state, especially
related to the risk of developing a disease, its presence, or its stage of development. While
in the past, the concept commonly referred to physical traits or physiological metrics,
nowadays, the term is more frequently used to describe its molecular nature. Molecu-
lar biomarkers can manifest in various ways, leading to the implementation of diverse
strategies for their discovery.

Although transcriptomic and DNA methylation profiling studies have proven highly
effective in discovering biomarkers in the context of cancer [1], information derived from
DNA or RNA alone is not entirely suitable for determining the best cancer drugs. This is be-
cause most drugs against this disease target specific proteins. For this reason, metabolomic
approaches are showing promising results in the study of metabolic diseases, drugs, and
associated toxicity [2]. In this regard, it is not always straightforward to relate a genetic
mutation to the expected change in the corresponding protein. With this pretext, proteomics
has positioned itself in recent years as a particularly promising tool for biomarker discovery.

Biomarkers can have fundamental clinical applications, including the detection, diag-
nosis, or monitoring of disease activity, as well as guiding molecularly targeted therapies
or evaluating therapeutic responses. In the biopharmaceutical industry, biomarkers define
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molecular classifications of patients and diseases and act as surrogate criteria in the early
phases of clinical trials for drugs.

The current demand for new proteomic biomarkers has sparked a special interest in
developing new technologies to understand the proteome. Currently, high-complexity
proteomic technologies, both conventional and innovative, include mass spectrometry [3],
reverse-phase protein arrays [4], antibody/antigen/bead arrays [5], proximity extension
assays [6], and aptamer assays [7] (Figure 1).
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Figure 1. High-Complexity Proteomic Technologies: (A) proximity detection assays are based on the
binding of the analyte through two proximity probes to the target [6]; (B) antibody–antigen arrays—
antibodies are printed on a solid support, and, subsequently, the sample is applied to them where the
antigen–antibody interaction can be achieved through various methods [5]; (C) mass spectrometry
combined with other techniques is used to retrieve peptide masses and high-precision fragment
spectra from digestion products specific to protein sequence [3]; (D) aptamer-based detection assays
rely on their ability to bind to almost any protein specifically [7]; (E) reverse-phase protein arrays
combine microdissection of histologically relevant cell populations with probing using antibodies
that can be detected through fluorescent, colorimetric, or chemiluminescent assays [4]. Images were
created using Biorender.com (accessed on 12 February 2024).

Each of them has an analytical scope to characterize hundreds to thousands of pro-
tein targets simultaneously from a single sample, along with a set of advantages and
disadvantages outlined in Table 1.

In the last ten years, there has been an exponential increase in the number of scientific
articles published related to the identification of biomarkers using each of these techniques,
especially through mass spectrometry, a technique for which up to 1500 publications per
year are reported, accumulating up to 21,800 since 2004. Given the importance of staying
informed about advances in the field of molecular analyses and the potential identification
of biomarkers, a literature review was conducted on possible specific biomarkers for CRC.
Articles published between 2000 and 2023 were sought with the keyword “biomarkers
in CRC” in databases that store original scientific articles, such as PubMed or Scopus
databases. The last search was performed on 9 February 2024.

Biorender.com
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Table 1. Characteristics of High-Complexity Proteomic Technologies.

Basis Principles Advantages Disadvantages

Mass spectrometry (MS) [3]
Targeted samples, digestion,

peptide ionization, and
tandem MS scans

De novo process suitable for
exploratory research

Low throughput, complex
depletion process, limitations
for analyzing protein PTMs

Reverse-phase protein arrays
(RPPA) [4]

Samples immobilized on solid
substrates and

antibody-detected targets

Large scale analysis of
samples

Relatively long turnaround
time

Antibody/antigen arrays [5]

Protein-targeted immobilized
samples on solid substrates in

antibody/antigen-captured
samples

Flexible experimental design
and PTM profiling

Inter-assay reproducibility
and quantification limit,
inter-assay variation and

sample labeling

Proximity extension assays
(PEA) [6]

Sandwich ELISA with labeled
complementary DNA oligos

Small sample for large
dynamic traits

Requires qPCR/NGS for
reading

Aptamer-based assays [7]

Short single-stranded DNA or
RNA folded into tertiary

structures with ability to bind
to targets with high affinity

and specificity

High complexity Reliance on DNA microarrays
for readout

2. Molecular Complexity of Colorectal Cancer

Colorectal cancer (CRC) ranks third in incidence, accounting for approximately 10%
of all cases worldwide, trailing only breast cancer and lung cancer [8]. Overall, its inci-
dence varies by geographical region and population risk factors, being more prevalent
in developed countries, although its incidence is rising in developing countries [8]. Risk
factors can be lifestyle and health-related, such as alcohol consumption, smoking, a diet
high in fats and low in vegetables, obesity, and lack of physical activity, or intrinsic and
non-modifiable factors, such as age, ethnicity, and genetic predisposition [9]. It is estimated
that between 15% and 30% of CRC cases have a hereditary component, occurring more
frequently in individuals with first- and second-degree affected relatives [10]. Inflammatory
bowel diseases, such as Crohn’s disease and ulcerative colitis, also increase the risk of CRC,
especially when inflammation is chronic and long-lasting [11].

CRC is classified into different stages based on the extent of the tumor and the presence
of metastasis (Figure 2) [12]. In stage 0 (carcinoma in situ), cancer cells are confined to the
innermost layer of the lining of the colon or rectum, without invading nearby tissues or
spreading to lymph nodes or other parts of the body. In stage I, the cancer grows beyond
the inner lining but is not spread to lymph nodes or distant organs. In stage II, it grows
through the lining but does not reach lymph nodes or distant organs. In stage III, it invades
nearby lymph nodes but does not reach distant organs. In stage IV, cancer spreads to
distant organs. The prognosis and treatment vary at each stage and may include surgery,
radiotherapy, chemotherapy, and targeted or immunotherapy.

In terms of mortality, CRC holds the second position, with a survival rate of approxi-
mately 65% [13,14]. Unfortunately, approximately 25% of patients have been observed to
delay seeking medical attention [15,16], resulting in 60% of patients being in an advanced
stage of the disease, and an alarming 22% presenting distant metastasis at the time of
diagnosis in 2019 [17]. This leads to lower survival rates, as they have been found to be
significantly better when detected early, with a 91% rate at 5 years in stage I, decreasing to
72% in advanced stages and dropping dramatically to 14% in stage IV [17].

CRC involves various pathophysiological mechanisms, such as cell differentiation,
abnormal cell proliferation, resistance to apoptosis, invasion of adjacent structures, and
distant metastasis (Figure 2) [18,19], as well as molecular alterations involving certain genes
and the interaction of multiple signaling pathways with a complex mechanism that is not
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yet well understood [20]. Understanding these pathways is crucial for the development of
targeted therapies and more effective treatment strategies.

A significant portion of CRC cases is sporadic and develops slowly over several years
following an adenoma–carcinoma sequence, perfectly described by what is known as the
Vogelstein model [21]. In this model, mutations accumulate in the WNT, MAPK, TGFβ,
and p53 signaling pathways, marking the initiation and progression of CRC sequentially.
Mutations in the APC (Adenomatous Polyposis Coli) gene occur in 70% of colorectal
adenoma cases, which progress to carcinoma by acquiring activating mutations in KRAS
and inactivating mutations in SMAD4 and TP53 (Tumor Protein 53). The hyperactivation
of the WNT signaling pathway usually arises from mutations in the APC gene. APC is a
negative regulator of the WNT pathway, part of the Axin–APC complex promoting the
proteasomal degradation of B-catenin, a WNT effector. If the complex is defective due to
APC inactivation, excess B-catenin accumulates in the cytoplasm and translocates to the
nucleus, where it activates MYC and other genes. This disruption leads to the dysregulation
of cell proliferation and differentiation, favoring the development of dysplastic crypts and
the progression of adenomas to carcinomas, usually associated with mutations in the tumor
suppressor gene TP53 [22,23].
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Figure 2. Evolution of CRC. The evolution of CRC involves two pathways. Firstly, the adenoma-
carcinoma pathway, characterized by the accumulation of mutations in the WNT, MAPK, PI3K, TGFβ,
and p53 signaling pathways, leading to a sequential progression from adenoma to carcinoma. On
the other hand, there is the serrated pathway, featuring specific mutations in the KRAS or BRAF
genes, resulting in hyperactivation of the MAPK signaling pathway [21,24]. The stages of CRC are
determined by the extent of the tumor and the presence of metastases. The TNM staging system
assesses cancer, focusing on Tumor (T), which describes the depth of primary tumor growth into
the intestinal lining (ranging from T0 to T4b, indicating invasion of other organs or structures). The
evaluation of Lymph Nodes (N) and Metastases (M) is combined with T to assign a stage to the cancer,
ranging from 0 to IV [12]. Images were created using Biorender.com (accessed on 12 February 2024).

In addition to the described adenoma–carcinoma sequence, an estimated 10% to 20% of
colorectal carcinomas develop through a different pathway known as the serrated pathway.
While most serrated polyps are typically considered benign lesions, a subset of serrated
lesions can progress to carcinoma. A distinctive feature of serrated pathways is mutations
in the KRAS or BRAF genes, leading to the hyperactivation of the MAPK kinase signaling
pathway [24].

Another subset of sporadic CRC cases develops through different molecular pathways:

• Microsatellite Instability (MSI): Microsatellites are DNA sequences consisting of 1
to 6 base pair repeats distributed throughout the human genome, representing ap-
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proximately 3% of the human genome and highly susceptible to mutations. The
determination of their status is commonly used for tumor diagnosis and classifica-
tion, as well as predicting and assessing treatment response [25]. MSI is a molecular
alteration involving high mutability and affecting genes related to DNA mismatch
repair (MMR), subdivided into high (MSI-H), low (MSI-L), or stable (MSI-S). MSI-H
is observed in approximately 15–20% of CRC cases and is attributed to the hyper-
methylation of the promoters of the hMSH2 (human homolog of the DNA mismatch
repair gene 2) and hMLH1 (human homolog of the DNA mismatch repair MutL gene)
genes and germline mutations in DNA mismatch repair (MMR) genes [26]. MSI-H
is commonly associated with Lynch syndrome, an inherited condition with a high
risk of developing CRC [27,28]. Although MSI-H status does not show a benefit with
adjuvant treatment with 5-fluorouracil in stage II disease, it is a positive prognostic
biomarker in early stages of CRC and in patients with advanced or metastatic disease
treated with immunotherapy [29].

• Chromosomal Instability (CIN): This results in changes in the number and structure of
chromosomes and is the most common pathogenic pathway in CRC, contributing to
approximately 84% of sporadic cases [30]. Most tumors originating in this pathway
are primarily due to mutations in DNA repair genes, activation of oncogenes such as
PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha) or
K-RAS (Kirsten rat sarcoma virus), or inactivation of tumor suppressor genes such as
TP53 and APC. Mutations in the APC gene are characteristic of sporadic tumors and
are present in over 80% of CRC cases, promoting initial clonal expansion and tumoral
progression by activating the Wnt signaling pathway [31]. This pathway controls
the proliferation, differentiation, and renewal of intestinal stem cells, leading to the
formation of dysplastic crypts that can progress to adenomas [20]. Chromosomal
instability can give rise to the Vogelstein model of adenoma–carcinoma–metastasis in
70–90% of CRC cases, characterized by mutations in APC, TP53, and DCC (deleted
in CRC), resulting in the inhibition of apoptosis, increased cell proliferation, and
reduced cell adhesion [32]. Additionally, approximately 10% of colorectal tumors
evolve through morphological changes in a pathway known as serrated neoplasia [33].

• CpG Island Methylator Phenotype (CIMP): Involves hypermethylation of cytosine-
guanine base pair repeats connected by phosphate (CpG sites or CpG islands) in
gene promoter regions and has been associated with genomic imprinting, X chro-
mosome inactivation, gene silencing, and carcinogenesis, especially when affecting
tumor suppressor genes [34]. It is thought that CRC tumors with CIMP promoter
methylation characteristics originate through the serrated neoplasia pathway and
show markedly different histology compared to tumors derived from the traditional
adenoma–carcinoma pathway [33,35–37].

In 2015, due to the complexity and variability of CRC, an international consortium, the
Centers for Medicare and Medicaid Services (CMS), proposed a significant advancement
in the molecular classification of this disease. This new classification system was based
on information collected from 4000 CRC patients and considered not only molecular and
genetic characteristics but also clinical and prognostic data of the disease [38]. As a result,
four consensus molecular subtypes (CMS) were established. CMS1, termed “Immune MSI”,
is found in 14% of cases and is characterized by microsatellite instability, hypermethylation,
and immune cell infiltration. CMS2, called “Canonical”, occurs in 37% of cases and is
associated with the activation of the WNT and MYC signaling pathways. CMS3, called
“Metabolic”, is present in 13% of cases and is characterized by epithelial and metabolic
dysregulation, KRAS gene mutations, and a combination of microsatellite instability and a
CpG island methylator phenotype. Finally, CMS4, known as “Mesenchymal”, is found in
23% of cases and is associated with the activation of the TGF-β signaling pathway, stromal
infiltration, and angiogenesis [39]. This molecular classification system is essential for better
understanding CRC and guiding treatment decisions based on the specific characteristics
of each subtype.
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In this regard, the application of proteomics in the study of key molecular pathways,
such as WNT, MAPK, TGFβ, and p53, has expanded our understanding of the mechanisms
driving the initiation and progression of CRC [40–42]. The identification of specific proteins
involved in these pathways has led to the development of more targeted therapies, offering
new treatment options for patients. Additionally, the molecular classification of CMS, based
on proteomic data, has improved patient stratification, allowing for a more precise and
personalized approach to treatment [39,43].

3. Search and Validation of Protein Biomarkers in CRC
3.1. Diagnostic Biomarker

A diagnostic biomarker is a biological characteristic that indicates the presence of a
disease or condition [44]. In the case of CRC, early diagnosis is key to reducing mortal-
ity [45], as a 5-year survival rate of approximately 90% is observed when detected at early
stages, decreasing to around 14% at advanced stages [17].

Despite advances in diagnostic strategies, including imaging tests, colonoscopy, or
fecal occult blood tests, there are associated barriers such as a lack of public participation in
screenings and the discomfort associated with invasive diagnostic methods [46]. For this
reason, non-invasive approaches, such as fecal immunochemical tests (FITs) and fecal DNA
tests, have been explored, but their effectiveness still depends on a confirmation through
colonoscopy [47]. This highlights the urgent need to identify early, specific, and sensitive
biomarkers to enhance CRC screening strategies, where proteomic studies play a crucial
role (Table 2).

Table 2. Potential biomarkers identified, sample type, and proteomic technology used.

Utility Protein Sample Proteomic Technologies References

Diagnostic

ACTBL2 and DPEP1 Fresh tissues
Two-dimensional gel

electrophoresis and mass
spectrometry

[48,49]

C1QBP, ERGIC1, and ORMDL1 FFPE tissues
Mass spectrometry-based

proteomics combined with
machine learning analysis

[50]

Leucine-rich alpha-2 glycoprotein 1,
epidermal growth factor receptor,

inter-alpha-trypsin inhibitor heavy-chain
family member 4, hemopexin, and

superoxide dismutase 3

Serum
Targeted liquid

chromatography-tandem mass
spectrometry

[51]

Mannan binding lectin serine protease 1,
osteopontin, serum paraoxonase lactonase

3, and transferring receptor protein 1
Plasma

Liquid
chromatography/multiple
reaction monitoring-mass

spectrometry (LC/MRM-MS)
and PEA

[52]

CD79B, DDR1, EFNA4, FLRT2, LTA4H,
and NCR1 Plasma PEA assay [53]

FGF-21 and PPY Plasma PEA assays [54]
COROC1C, RAD23B, and ARPC3 Urine LC/MS-MS [55]

CD147 and A33 Extracellular vesicles
derived from the feces Western blot [56]

APOE, AGT, and DBP Serum LC/MS-MS [57]

Fatty acid synthase and elongation factor 2 Protein folding stability
profiling techniques [58]

IFIT1, FASTKD2, PIP4K2B, ARID1B, and
SLC25A33 FFPE tissue MS [59]

PSMA1, LAP3, ANXA3, and Maspin Tissue MS [60,61]

STK4 Tissue Magnetic beads and mass
spectrometry [62]

MRC1 and S100A9 Serum LC/MS-MS [63]

Prognostic

HLAB, 14-2-3β, ADAMTS2, LTBP3, NME2,
and JAG2 Tissue SELDI and iTRAQ [64]

Collagen type XII Urine LC/MS-MS [65]
HSP47 Tissue iTRAQ [66]

Collagen VI, inositol
polyphosphate-4-phosphatase, and Maspin Tissue Reverse-phase protein array [67]
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Two-dimensional gel electrophoresis and mass spectrometry have been used to ana-
lyze CRC tissue samples, revealing the overexpression of proteins such as ACTBL2 and
DPEP1 [48,49]. Additionally, the use of formalin-fixed paraffin-embedded (FFPE) tis-
sues has expanded access to larger cohorts [68]. In this regard, mass spectrometry-based
proteomics combined with machine learning analysis of FFPE tissues has been able to
distinguish groups of proteins capable of predicting the future appearance of high-grade
adenomas or CRC development [50].

On the other hand, the trend of searching for biomarkers through non-invasive ap-
proaches has emphasized the role of blood samples due to their accessibility and low risk.
Different proteomic studies have identified panels of four to five proteins that show very
good performance in early disease detection [51–53]. Similarly, Harlid and colleagues have
identified that fibroblast growth factor 21 (FGF-21) and pancreatic prohormone (PPY) are
associated with the risk of colon and rectal cancers, respectively, in plasma samples from
asymptomatic patients and in a pre-diagnostic setting [54]. The most relevant aspect of
this study is the authors’ emphasis on adding protein markers to basic CRC risk prediction
models to increase their performance, since small protein biomarkers or panels alone may
not be sufficient for effective precision detection.

In line with the search for non-invasive approaches, promising protein biomarkers
in urine have also been identified, allowing for reliable detection and diagnosis of CRC,
either alone or in combination with FIT [55]. Similarly, metastatic signatures that serve to
stratify the risk have been identified, as they can predict over 50% of metastatic patients
with a negative serum carcinoembryonic antigen (CEA) [55]. Likewise, two transmembrane
proteins, CD147 and A33, have been identified in extracellular vesicles derived from the
feces of CRC patients, which are inherently associated with the disease and could serve as
protein biomarkers for non-invasive large-scale CRC detection [56].

Despite these advances, none of the identified protein biomarkers has reached clinical
practice, possibly due to the difficulty of validation in large cohorts and comparison with
current detection methods. Another common reason why biomarkers fail to achieve clinical
use is that, unless confusing comorbidities are included in research studies, it is easy for
researchers to mistakenly identify general markers of disease as specific markers for the can-
cer in question, especially when conducting simple case–control studies. This is true both
at the metabolomic level [69] and at the proteomic level [70]. However, proteomic research
in this field remains essential to fill the gap in CRC detection with reliable biomarkers and
improve the early detection of this disease [71].

3.2. Predictive Biomarker

Predictive biomarkers are essential for personalizing and improving CRC treatment, es-
pecially with the increasing therapeutic options [72], and proteomics emerges as a valuable
tool for their identification (Table 2).

In this regard, chemotherapy resistance poses a significant challenge in CRC treatments.
Wang and colleagues compared proteomic, genomic, and transcriptomic profiles in CRC
cells and tumors, finding that proteomic data have better potential to predict sensitivity
to various drugs compared to genomic or transcriptomic data [73]. Others, such as Guo
and his team, have investigated resistance, especially to oxaliplatin, a frontline treatment
for metastatic CRC, identifying an overexpression of the PCBP1 protein in samples from
resistant tumors [74]. The response to bevacizumab, a vascular endothelial growth factor
inhibitor, has also been evaluated, where three proteins (APOE, AGT, and DBP) were
identified, and their expression was correlated with better survival outcomes in patients
treated with a combination of chemotherapy and bevacizumab [57]. Furthermore, the
evaluation of the response to EGFR-targeted therapies, such as cetuximab, revealed that the
plasma level of phosphorylated EGFR (pEGFR) was associated with therapy sensitivity [75].

Proteomic studies have also identified, through three protein folding stability profiling
techniques, 10 proteins related to cancer chemoresistance, of which 2 have been validated
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in vitro, fatty acid synthase, and elongation factor 2 as pharmacological targets with biolog-
ical functions that can be modulated to improve the efficacy of CRC chemotherapy [58].

In the context of neoadjuvant chemoradiation for rectal cancer, predicting the response
is crucial. Proteomic studies have identified protein signatures in tumor biopsies that
correlated with complete or non-responsive responses to therapy, providing valuable
information for treatment planning [59].

In the field of immunotherapy, the antitumor immune response is under investigation.
Tumors with MSI-H and mismatch repair deficiency respond better to immunotherapy.
However, not all patients with MSI-H tumors respond, emphasizing the need for more spe-
cific biomarkers [29,76]. An immunoproteomic study using mass spectrometry identified
potential immunotherapeutic targets. Yang and colleagues found a differential expression
of proteins such as PSMA1, LAP3, ANXA3, and Maspin in CRC patients, suggesting an
immunogenic proteomic profile associated with cancer [60,61].

Additionally, Redondo et al. demonstrated that an increase in clusterin protein expres-
sion is implicated in malignant progression, so its expression can help identify patients
with more aggressive tumors who may benefit from targeted therapy [77].

Other studies, such as that of Yu et al., used magnetic beads and mass spectrometry
to analyze sera from CRC patients, identifying the protein STK4 as a potential predictive
marker for distant metastasis [62]. In this line of research, the positive regulation of proteins
such as MRC1 and S100A9 in the serum of CRC patients has also been revealed, highlighting
the diversity of potential biomarkers [63].

Despite advances in identifying predictive biomarkers, translating them into clinical
practice faces the same challenges as diagnostic biomarkers. Ongoing research in this field
is crucial to improve treatment response and move towards more personalized therapies
for CRC patients.

3.3. Prognostic Biomarker

Similarly, prognostic biomarkers play a crucial role in managing CRC, providing
information about overall outcomes regardless of therapy [78]. Although CEA remains the
most widely used biomarker, its specificity is limited [79]. Other parameters, such as MSI
and BRAF mutation, have been explored, but additional biomarkers are urgently needed to
improve CRC treatment and monitoring [80].

The occurrence of metastases, especially in the liver, is an unfavorable prognostic factor
in CRC [81]. Proteomic studies using techniques like SELDI and iTRAQ have identified
specific proteins, such as HLAB, 14-3-3β, ADAMTS2, LTBP3, NME2, and JAG2, related to
tumor progression and metastasis [82]. Additionally, collagen proteins, such as collagen
type XII, have been shown to be promising candidates in the metastatic context [64]. In
the detection of hepatic metastases, collagen peptides in urine and the measurement of
the PGE-M metabolite are presented as promising and non-invasive approaches [65,83].
Studies have shown that these methods can be correlated with the risk of CRC [84,85].

To predict nodal status, protein biomarkers have been investigated. HSP47 and ezrin
have proven to be relevant in identifying metastasis in lymph nodes [66,86], which could
improve the guidance of chemotherapy and the extent of surgery.

Detecting postoperative recurrence is another significant challenge, and some studies
using a reverse-phase protein array have identified eight proteins, including collagen VI,
inositol polyphosphate-4-phosphatase, and Maspin, as significant prognostic factors for
tumor recurrence [67]. Maspin has also been highlighted as an early recurrence marker in
stage IV CRC [87].

Although several promising biomarkers have been identified (Table 2), CEA remains
the only established prognostic biomarker in clinical practice. The search, validation,
and clinical application of new biomarkers are essential to address current limitations in
predicting nodal status, distant metastases, and postoperative recurrence in CRC.
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4. Relevance of Samples in Proteomics and CRC

During the last two decades, global proteomic studies have witnessed a significant
surge in protein identification, especially in serum and plasma, facilitated by liquid chro-
matography coupled with mass spectrometry (LC-MS) [88]. Although progress has been
made in identifying blood biomarkers, their clinical validation has been limited. Technical
and physiological complexities, such as the high complexity of blood samples and the
predominance of certain proteins, have hindered the detection of less abundant biomark-
ers [89]. Despite the availability of advanced technologies, the discovery of new blood
biomarkers has had limited success, and the gap between discovery and clinical utility
remains a challenge [90]. As a result, some researchers have opted to focus on identifying
tissue-level biomarkers before searching for them in the blood. In this context, formalin-
fixed paraffin-embedded (FFPE) tissues have gained popularity as a viable alternative.

Although FFPE tissues were initially considered challenging for proteomic analysis,
recent research has demonstrated the opposite. Between 2005 and 2007, studies revealed
that it was possible to identify hundreds of proteins in FFPE tissues using mass spectrometry
(MS) [91,92]. Long-term stability, widespread availability, and lower storage costs have
contributed to the growing acceptance of FFPE tissues in proteomic analysis [93]. Protein
extraction from FFPE tissues for proteomic analysis involves the use of buffers, detergents,
heat, and, in some cases, pressure [94]. These methods have effectively been shown to
reverse formalin cross-links, enabling protein identification. Pressure has demonstrated
significant improvements in protein extraction from FFPE tissues, enhancing efficiency
and the quantity of extracted proteins [95]. Despite advances, challenges persist, such
as the need for standardization in sample preparation and concerns about the complete
reversal of formalin cross-links. Although kits and technologies have been developed to
simplify protein extraction from FFPE tissues, further research is still required to optimize
and standardize these processes [96,97].

The proteomic analysis of FFPE tissues has gained popularity in biomedical research,
marking a significant shift in the understanding and application of these samples. As
the viability of FFPE tissues for proteomic analysis became recognized, there was an
increase in the scale of biomarker studies [98]. The number of quantifiable proteins in FFPE
tissues went from hundreds to thousands, and post-translational modifications such as
phosphorylation and glycosylation were explored [99]. Until December 2022, 432 articles
related to “FFPE” and “mass spectrometry” were registered in PubMed, compared to 52 at
the end of 2010 [100].

The SP3-CTP method (single-pot solid-phase-enhanced clinical tissue proteomics
sample preparation) emerged as a high-throughput approach to quantitatively compare
proteins in hundreds of FFPE tissues. This method involves tissue deparaffinization,
followed by enzymatic lysis, protein reduction, and alkylation. Proteins bind to mag-
netic beads, undergo washing, and undergo enzymatic digestion. The resulting peptides
are quantified using tandem mass tag (TMT) labels, enabling comparison between sam-
ples [101]. A study applied SP3-CTP to profile the proteomes of 300 FFPE breast tumors
and 38 normal tissues. The goal was to improve the classification of tumors according to
PAM50 subtypes. The analysis identified four groups with distinctive characteristics, such
as specific metabolisms and immune responses. For triple-negative breast cancer (TNBC),
four subgroups with unique proteomic profiles were identified, related to immune response,
extracellular matrix, lipid metabolism, and DNA replication [102]. The correlation between
proteomic groups and PAM50 classifications suggests potential clinical applications. It was
highlighted that tumors with an abundance of immune proteins exhibited higher survival
rates, emphasizing the importance of these biomarkers in therapeutic guidance [101].

Immunohistochemical analysis (IHC), although the standard for tissue classification,
has limitations in terms of subjectivity and a low resolution [103]. In contrast, the Liquid
Tissue-SRM (selected reaction monitoring mass spectrometry) method offers advantages
by not requiring antibodies and allowing objective quantification of biomarkers, as demon-
strated in the measurement of MET and Her2 in FFPE tumors [104–106]. Despite advances,
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challenges persist, such as the lack of standardization in FFPE tissue preparation, affecting
the representativeness of proteomes. Variability in fixation time and the lack of stan-
dardized protocols are key concerns. Additionally, the precise identification of peptides
modified through formalin fixation remains a technical challenge [98].

5. Conclusions

Research related to colorectal cancer has experienced significant advances in recent
years owing to the application of proteomics, a discipline that allows for the systematic
study of proteins and their interactions within biological systems. Progress in this field has
transformed the understanding of the complex molecular alterations associated with CRC,
providing valuable insights for diagnosis, prognosis, and the development of personalized
treatments.

In this regard, proteomics has enabled a more detailed characterization of molecular
alterations in CRC, creating proteomic profiles associated with different stages of the
disease. Likewise, potential biomarkers have been identified, opening new avenues for
early diagnosis and patient stratification, crucial for improving survival rates. Moreover,
the ability to analyze biological samples from tumor tissue or bodily fluids using these
techniques has allowed for a better differentiation of CRC subtypes and identification of the
influence of various factors, providing valuable information for clinical decision-making.

However, the contribution of proteomics goes beyond diagnosis, extending to progno-
sis and predicting treatment response, as specific biomarkers have been identified, enabling
more personalized treatment strategies, minimizing exposure to ineffective therapies, and,
thus, supporting the transition to precision medicine.

Despite possible achievements, CRC research still faces significant challenges such
as the complexity of biological samples, method standardization, and the management of
large datasets, requiring multidisciplinary collaboration and more innovative approaches.
Additionally, the clinical validation of biomarkers and therapeutic targets identified through
proteomics is necessary for their successful implementation in clinical practice. Therefore,
it is essential to emphasize the importance of continuing proteomic research in CRC, as the
constant evolution of proteomic technologies, combined with a deeper understanding of
the molecular complexities of CRC, will open new opportunities for innovation and the
development of more effective strategies.
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69. Julkunen, H.; Cichońska, A.; Tiainen, M.; Koskela, H.; Nybo, K.; Mäkelä, V.; Nokso-Koivisto, J.; Kristiansson, K.; Perola, M.;
Salomaa, V.; et al. Atlas of plasma NMR biomarkers for health and disease in 118,461 individuals from the UK Biobank. Nat.
Commun. 2023, 14, 604. [CrossRef] [PubMed]

70. Spick, M.; Muazzam, A.; Pandha, H.; Michael, A.; Gethings, L.A.; Hughes, C.J.; Munjoma, N.; Plumb, R.S.; Wilson, I.D.; Whetton,
A.D.; et al. Multi-omic diagnostics of prostate cancer in the presence of benign prostatic hyperplasia. Heliyon 2023, 9, e22604.
[CrossRef] [PubMed]

71. Alves Martins, B.A.; de Bulhões, G.F.; Cavalcanti, I.N.; Martins, M.M.; de Oliveira, P.G.; Martins, A.M.A. Biomarkers in Colorectal
Cancer: The Role of Translational Proteomics Research. Front. Oncol. 2019, 9, 1284. [CrossRef]

72. Chauvin, A.; Boisvert, F.-M. Clinical proteomics in colorectal cancer, a promising tool for improving personalised medicine.
Proteomes 2018, 6, 49. [CrossRef] [PubMed]

73. Wang, J.; Mouradov, D.; Wang, X.; Jorissen, R.N.; Chambers, M.C.; Zimmerman, L.J.; Vasaikar, S.; Love, C.G.; Li, S.; Lowes, K.;
et al. Colorectal cancer cell line proteomes are representative of primary tumors and predict drug sensitivity. Gastroenterology
2017, 153, 1082–1095. [CrossRef] [PubMed]

74. Guo, J.; Zhu, C.; Yang, K.; Li, J.; Du, N.; Zong, M.; Zhou, J.; He, J. Poly(C)-binding protein 1 mediates drug resistance in colorectal
cancer. Oncotarget 2017, 8, 13312–13319. [CrossRef] [PubMed]

75. Katsila, T.; Juliachs, M.; Gregori, J.; Macarulla, T.; Villarreal, L.; Bardelli, A.; Torrance, C.; Elez, E.; Tabernero, J.; Villanueva,
J. Circulating pEGFR is a candidate response biomarker of cetuximab therapy in colorectal cancer. Clin. Cancer Res. 2014, 20,
6346–6356. [CrossRef] [PubMed]

76. Llosa, N.J.; Cruise, M.; Tam, A.; Wicks, E.C.; Hechenbleikner, E.M.; Taube, J.M.; Blosser, R.L.; Fan, H.; Wang, H.; Luber, B.S.;
et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory
checkpoints. Cancer Discov. 2015, 5, 43–51. [CrossRef] [PubMed]

77. Redondo, M.; Rodrigo, I.; Alcaide, J.; Tellez, T.; Roldan, M.J.; Funez, R.; Diaz-Martin, A.; Rueda, A.; Jiménez, E. Clusterin
expression is associated with decreased disease-free survival of patients with colorectal carcinomas. Histopathology 2010, 56,
932–936. [CrossRef] [PubMed]

78. Oldenhuis, C.N.A.M.; Oosting, S.F.; Gietema, J.A.; de Vries, E.G.E. Prognostic versus predictive value of biomarkers in oncology.
Eur. J. Cancer. 2008, 44, 946–953. [CrossRef]

79. Campos-da-Paz, M.; Dórea, J.G.; Galdino, A.S.; Lacava, Z.G.M.; de Fatima Menezes Almeida Santos, M. Carcinoembryonic
Antigen (CEA) and hepatic metastasis in colorectal cancer: Update on biomarker for clinical and biotechnological approaches.
Recent Pat. Biotechnol. 2018, 12, 269–279. [CrossRef]

80. Bhalla, A.; Zulfiqar, M.; Bluth, M.H. Molecular diagnostics in colorectal carcinoma. Clin. Lab. Med. 2018, 38, 311–342. [CrossRef]
81. O’Connell, J.B.; Maggard, M.A.; Ko, C.Y. Colon cancer survival rates with the new american joint committee on cancer sixth

edition staging. J. Natl. Cancer Inst. 2004, 96, 1420–1425. [CrossRef]
82. Kirana, C.; Peng, L.; Miller, R.; Keating, J.P.; Glenn, C.; Shi, H.; Jordan, T.W.; Maddern, G.J.; Stubbs, R.S. Combination of laser

microdissection, 2D-DIGE and MALDI-TOF MS to identify protein biomarkers to predict colorectal cancer spread. Clin. Proteom.
2019, 16, 3. [CrossRef]

83. Lalmahomed, Z.S.; Bröker, M.E.; van Huizen, N.A.; Coebergh van den Braak, R.R.J.; Dekker, L.J.; Rizopoulos, D.; Verhoef, C.;
Steyerberg, E.W.; Luider, T.M.; Ijzermans, J.N. Hydroxylated collagen peptide in urine as a biomarker for detecting colorectal
liver metastases. Am. J. Cancer Res. 2016, 6, 321–330. [PubMed]

84. Altobelli, E.; Angeletti, P.M.; Latella, G. Role of urinary biomarkers in the diagnosis of adenoma and colorectal cancer: A
systematic review and meta-analysis. J. Cancer 2016, 7, 1984–2004. [CrossRef] [PubMed]

https://doi.org/10.1038/s41598-017-14539-x
https://doi.org/10.3233/CBM-150560
https://doi.org/10.1074/jbc.RA118.005087
https://doi.org/10.1093/annonc/mdt203.282
https://doi.org/10.1002/ijc.30557
https://doi.org/10.1245/s10434-017-6054-5
https://www.ncbi.nlm.nih.gov/pubmed/28936799
https://doi.org/10.1007/s13277-016-5275-8
https://www.ncbi.nlm.nih.gov/pubmed/27468721
https://doi.org/10.1038/s41467-023-36231-7
https://www.ncbi.nlm.nih.gov/pubmed/36737450
https://doi.org/10.1016/j.heliyon.2023.e22604
https://www.ncbi.nlm.nih.gov/pubmed/38076065
https://doi.org/10.3389/fonc.2019.01284
https://doi.org/10.3390/proteomes6040049
https://www.ncbi.nlm.nih.gov/pubmed/30513835
https://doi.org/10.1053/j.gastro.2017.06.008
https://www.ncbi.nlm.nih.gov/pubmed/28625833
https://doi.org/10.18632/oncotarget.14516
https://www.ncbi.nlm.nih.gov/pubmed/28076324
https://doi.org/10.1158/1078-0432.CCR-14-0361
https://www.ncbi.nlm.nih.gov/pubmed/25324142
https://doi.org/10.1158/2159-8290.CD-14-0863
https://www.ncbi.nlm.nih.gov/pubmed/25358689
https://doi.org/10.1111/j.1365-2559.2010.03565.x
https://www.ncbi.nlm.nih.gov/pubmed/20497247
https://doi.org/10.1016/j.ejca.2008.03.006
https://doi.org/10.2174/1872208312666180731104244
https://doi.org/10.1016/j.cll.2018.02.008
https://doi.org/10.1093/jnci/djh275
https://doi.org/10.1186/s12014-019-9223-7
https://www.ncbi.nlm.nih.gov/pubmed/27186406
https://doi.org/10.7150/jca.16244
https://www.ncbi.nlm.nih.gov/pubmed/27877214


Int. J. Mol. Sci. 2024, 25, 2283 14 of 14

85. Colbert Maresso, K.; Vilar, E.; Hawk, E.T. Urinary PGE-M in colorectal cancer: Predicting more than risk? Cancer Prevent. Res.
2014, 7, 969–972. [CrossRef] [PubMed]

86. Mori, K.; Toiyama, Y.; Otake, K.; Ide, S.; Imaoka, H.; Okigami, M.; Okugawa, Y.; Fujikawa, H.; Saigusa, S.; Hiro, J.; et al. Successful
identification of a predictive biomarker for lymph node metastasis in colorectal cancer using a proteomic approach. Oncotarget
2017, 8, 106935–106947. [CrossRef] [PubMed]

87. Snoeren, N.; Emmink, B.L.; Koerkamp, M.J.G.; van Hooff, S.R.; Goos, J.A.C.M.; van Houdt, W.J.; de Wit, M.; Prins, A.M.; Piersma,
S.R.; Pham, T.V.; et al. Maspin is a marker for early recurrence in primary stage III and IV colorectal cancer. Brit. J. Cancer 2013,
109, 1636–1647. [CrossRef]

88. Müller, J.B.; Geyer, P.E.; Colaço, A.R.; Treit, P.V.; Strauss, M.T.; Oroshi, M.; Doll, S.; Virreira Winter, S.; Bader, J.M.; Kohler, N.; et al.
The proteome landscape of the kingdoms of life. Nature 2020, 582, 592–596. [CrossRef] [PubMed]

89. Lee, P.Y.; Osman, J.; Low, T.Y.; Jamal, R. Plasma/serum proteomics: Depletion strategies for reducing high-abundance proteins
for biomarker discovery. Bioanalysis 2019, 11, 1799–1812. [CrossRef]

90. Ren, A.H.; Fiala, C.A.; Diamandis, E.P.; Kulasingam, V. Pitfalls in cancer biomarker discovery and validation with emphasis on
circulating tumor DNA. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2568–2574. [CrossRef]

91. Hwang, S.-I.; Thumar, J.; Lundgren, D.H.; Rezaul, K.; Mayya, V.; Wu, L.; Eng, J.; Wright, M.E.; Han, D.K. Direct cancer tissue
proteomics: A method to identify candidate cancer biomarkers from formalin-fixed paraffin-embedded archival tissues. Oncogene
2007, 26, 65–76. [CrossRef] [PubMed]

92. Hood, B.L.; Darfler, M.M.; Guiel, T.G.; Furusato, B.; Lucas, D.A.; Ringeisen, B.R.; Sesterhenn, I.A.; Conrads, T.P.; Veenstra, T.D.;
Krizman, D.B. Proteomic analysis of formalin-fixed prostate tissue. Mol. Cell. Proteom. 2005, 4, 1741–1753. [CrossRef] [PubMed]

93. O’Rourke, M.B.; Padula, M.P. Analysis of formalin-fixed, paraffin-embedded (FFPE) tissue via proteomic techniques and
misconceptions of antigen retrieval. Biotechniques 2016, 60, 229–238. [CrossRef] [PubMed]

94. Addis, M.F.; Tanca, A.; Pagnozzi, D.; Crobu, S.; Fanciulli, G.; Cossu-Rocca, P.; Uzzau, S. Generation of high-quality protein
extracts from formalin-fixed, paraffin-embedded tissues. Proteomics 2009, 9, 3815–3823. [CrossRef] [PubMed]

95. Uchida, Y.; Sasaki, H.; Terasaki, T. Establishet ad validation of highly accurate formalin-fixed paraffin-embedded quantitative
proteomics by heat-compatible pressure cycling technology using phase-transfer surfactant and SWATH-MS. Sci. Rep. 2020, 10,
11271. [CrossRef]

96. Mantsiou, A.; Makridakis, M.; Fasoulakis, K.; Katafigiotis, I.; Constantinides, C.A.; Zoidakis, J.; Roubelakis, M.G.; Vlahou, A.;
Lygirou, V. Proteomics analysis of formalin fixed paraffin embedded tissues in the investigation of prostate cancer. J. Proteome Res.
2020, 19, 2631–2642. [CrossRef]

97. Fu, Z.; Yan, K.; Rosenberg, A.; Jin, Z.; Crain, B.; Athas, G.; Heide, R.S.; Howard, T.; Everett, A.D.; Herrington, D.; et al. Improved
protein extraction and protein identification from archival formalin-fixed paraffin-embedded human aortas. Proteom. Clin. Appl.
2013, 7, 217–224. [CrossRef]

98. Obi, E.N.; Tellock, D.A.; Thomas, G.J.; Veenstra, T.D. Biomarker Analysis of Formalin-Fixed Paraffin-Embedded Clinical Tissues
Using Proteomics. Biomolecules 2023, 13, 96. [CrossRef] [PubMed]

99. Friedich, C.; Schallenberg, S.; Kirchner, M.; Ziehm, M.; Niquet, S.; Haji, M.; Beier, C.; Neudecker, J.; Klauschen, F.; Mertins, P.
Comprehensive micro-scaled proteome and phosphoproteome characterization of archived retrospective cancer repositories. Nat.
Commun. 2021, 12, 3576–3591. [CrossRef] [PubMed]

100. Hinneburg, H.; Korac, P.; Schirmeister, F.; Gasparov, S.; Seeberger, P.H.; Zoldos, V.; Kolarich, D. Unlocking cancer glycomes
from histopathological formalin-fixed paraffin-embedded (FFPE) tissue microdissections. Mol. Cell. Proteom. 2017, 16, 524–536.
[CrossRef]

101. Moggridge, S.; Sorenson, P.H.; Morin, G.B.; Hughes, C.S. Extending the compatibility of the SP3 paramagnetic bead processing
approach for proteomics. J. Proteome Res. 2018, 4, 1730–1740. [CrossRef] [PubMed]

102. Asleh, K.; Negri, G.L.; Miko, S.E.S.; Colborne, S.; Hughes, C.S.; Wang, X.Q.; Goa, D.; Gilks, C.B.; Chia, S.K.L.; Nielsen, T.O.; et al.
Proteomic analysis of archival breast cancer clinical specimens identifies biological subtypes with distinct survival outcomes. Nat.
Commun. 2022, 13, 896–905. [CrossRef] [PubMed]

103. Shi, S.R.; Key, M.E.; Kalra, K.L. Antigen retrieval in formalin-fixed, paraffin-embedded tissues: An enhancement method for
immunohistochemical staining based on microwave oven heating of tissue sections. J. Histochem. Cytochem. 1991, 39, 741–748.
[CrossRef]

104. Yang, X.; Liao, H.-Y.; Zhang, H.-H. Roles of MET in human cancer. Clin. Chem. Acta. 2022, 525, 69–83. [CrossRef]
105. Catenacci, D.V.T.; Liao, W.-L.; Thyparambil, S.; Henderson, L.; Xu, P.; Zhao, L.; Rambo, B.; Hart, J.; Xiao, S.-Y.; Bengali, K.; et al.

Absolute quantitation of Met using mass spectrometry for clinical application: Assay precision, stability, and correlation with
MET gene amplification in FFPE tumor tissue. PLoS ONE 2014, 9, e100586. [CrossRef]

106. Do, M.; Kim, H.; Yeo, I.; Lee, J.; Park, I.A.; Ryu, H.S.; Kim, Y. Clinical application of multiple reaction monitoring-mass
spectrometry to human epidermal growth factor receptor 2 measurements as a potential diagnostic tool for breast cancer therapy.
Clin. Chem. 2020, 66, 1339–1348. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1158/1940-6207.CAPR-14-0215
https://www.ncbi.nlm.nih.gov/pubmed/25070664
https://doi.org/10.18632/oncotarget.22149
https://www.ncbi.nlm.nih.gov/pubmed/29291001
https://doi.org/10.1038/bjc.2013.489
https://doi.org/10.1038/s41586-020-2402-x
https://www.ncbi.nlm.nih.gov/pubmed/32555458
https://doi.org/10.4155/bio-2019-0145
https://doi.org/10.1158/1055-9965.EPI-20-0074
https://doi.org/10.1038/sj.onc.1209755
https://www.ncbi.nlm.nih.gov/pubmed/16799640
https://doi.org/10.1074/mcp.M500102-MCP200
https://www.ncbi.nlm.nih.gov/pubmed/16091476
https://doi.org/10.2144/000114414
https://www.ncbi.nlm.nih.gov/pubmed/27177815
https://doi.org/10.1002/pmic.200800971
https://www.ncbi.nlm.nih.gov/pubmed/19637237
https://doi.org/10.1038/s41598-020-68245-2
https://doi.org/10.1021/acs.jproteome.9b00587
https://doi.org/10.1002/prca.201200064
https://doi.org/10.3390/biom13010096
https://www.ncbi.nlm.nih.gov/pubmed/36671481
https://doi.org/10.1038/s41467-021-23855-w
https://www.ncbi.nlm.nih.gov/pubmed/34117251
https://doi.org/10.1074/mcp.M116.062414
https://doi.org/10.1021/acs.jproteome.7b00913
https://www.ncbi.nlm.nih.gov/pubmed/29565595
https://doi.org/10.1038/s41467-022-28524-0
https://www.ncbi.nlm.nih.gov/pubmed/35173148
https://doi.org/10.1177/39.6.1709656
https://doi.org/10.1016/j.cca.2021.12.017
https://doi.org/10.1371/journal.pone.0100586
https://doi.org/10.1093/clinchem/hvaa178
https://www.ncbi.nlm.nih.gov/pubmed/33001186

	Introduction 
	Molecular Complexity of Colorectal Cancer 
	Search and Validation of Protein Biomarkers in CRC 
	Diagnostic Biomarker 
	Predictive Biomarker 
	Prognostic Biomarker 

	Relevance of Samples in Proteomics and CRC 
	Conclusions 
	References

