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Abstract: Single-cell RNA sequencing (scRNA-seq) data reveal the complexity and diversity of
cellular ecosystems and molecular interactions in various biomedical research. Hence, identifying
cell types from large-scale scRNA-seq data using existing annotations is challenging and requires
stable and interpretable methods. However, the current cell type identification methods have
limited performance, mainly due to the intrinsic heterogeneity among cell populations and extrinsic
differences between datasets. Here, we present a robust graph artificial intelligence model, a multi-
view graph convolutional network model (scMGCN) that integrates multiple graph structures from
raw scRNA-seq data and applies graph convolutional networks with attention mechanisms to learn
cell embeddings and predict cell labels. We evaluate our model on single-dataset, cross-species,
and cross-platform experiments and compare it with other state-of-the-art methods. Our results
show that scMGCN outperforms the other methods regarding stability, accuracy, and robustness to
batch effects. Our main contributions are as follows: Firstly, we introduce multi-view learning and
multiple graph construction methods to capture comprehensive cellular information from scRNA-
seq data. Secondly, we construct a scMGCN that combines graph convolutional networks with
attention mechanisms to extract shared, high-order information from cells. Finally, we demonstrate
the effectiveness and superiority of the scMGCN on various datasets.

Keywords: graphical neural networks; multi-view graphs; cell type identification; single-cell
RNA sequencing

1. Introduction

Single-cell RNA sequencing (scRNA-seq) is a technology that measures the gene ex-
pression of individual cells using high-throughput sequencing. It can analyze millions of
cells from different biological samples and conditions [1–5]. This technology can reveal the
diversity and characteristics of cells and help identify their types [6]. It can also provide new
insights into how cells interact and function in complex systems [7–9]. Moreover, scRNA-
seq can support research in healthcare, drug development, and biotechnology [10–13].
Single-cell RNA sequencing (scRNA-seq) has enabled powerful and straightforward access
to the transcriptomes of individual cells [1]. With the help of scRNA-seq technology, it has
become easier to understand individual cell organizations, leading to a better understand-
ing of immunity and various diseases. Cancer is often considered the most heterogeneous
and complex of all diseases [14]. The presence of cancer stem cells is a significant source of
tumor formation, drug resistance, and metastasis [15]. The early detection of cancer stem
cells is crucial to ensuring the adequate diagnosis and treatment of cancer. scRNA-seq aids
in detecting genetic information and controlling genes and differences in gene expression
within individual cells [16]. Therefore, with the support of scRNA-seq technology, it is easy
to understand the heterogeneity within tumors, analyze cancer stem cells, and map clones

Int. J. Mol. Sci. 2024, 25, 2234. https://doi.org/10.3390/ijms25042234 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25042234
https://doi.org/10.3390/ijms25042234
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-9872-4821
https://doi.org/10.3390/ijms25042234
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25042234?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 2234 2 of 15

in the tumor. scRNA-seq can provide valuable information for cancer research. Due to all
these characteristics, scRNA-seq is increasingly used in the study of cancers. As scRNA-seq
becomes more advanced and affordable, more and more scRNA-seq data are generated
and used in various biomedical fields. This differs from traditional methods that analyze
the average expression of thousands of cells in a sample, which can miss the variability and
details of single cells.

Identifying cell types from single-cell transcriptomics data is an important goal in
helping to explain the diversity and complexity of tissues and organisms. There are
several methods to obtain single-cell sequencing data, such as Drop-seq [17], inDrop [18],
Chromium [19], and smart-seq2 [20]. However, these methods can produce different kinds
of noise [21,22] and batch effects [23] in the data, which can affect the accuracy of cell
identification. Batch effects can also arise from different platforms [24,25], omics types [26],
and species [4,27] in the data. Cross-species single-cell analysis is a new field that can study
how cells evolve and develop across different species [28]. However, cross-species data can
have more severe batch effects. Reducing these batch effects is a significant challenge for
cell identification methods.

One way to analyze scRNA-seq data is to cluster cells into different groups [29].
However, many clustering methods have limitations, such as needing to know the number
of groups in advance or taking too much time and memory [30]. Some methods can identify
cell types from various scRNA-seq data, such as Seurat (https://satijalab.org/seurat/,
accessed on 26 August 2022) [31], Conos (https://www.nature.com/articles/s41592-019-0
466-z, accessed on 26 August 2022) [32], scmap (https://www.nature.com/articles/nmeth.
4644, accessed on 26 August 2022) [33], and CHETAH (https://academic.oup.com/nar/
article/47/16/e95/5521789, accessed on 26 August 2022) [34]. Seurat [31] is a software
tool for single-cell RNA sequencing data analysis, which provides functions such as data
quality control, single-cell clustering, differential expression gene identification, gene
function annotation, and pathway analysis, as well as visualization analysis. In addition,
Seurat v3 proposes a cell-type identification method based on anchors that can be applied
to different single-cell datasets. Conos [32] is a method for integrating multiple single-
cell RNA-seq datasets, focusing on aligning homologous cell types across heterogeneous
sample collections. It generates a joint graph representation through pairwise alignments,
enabling the propagation of labels from one sample to another. Scmap [33] is a method
for projecting cells obtained from scRNA-seq experiments onto cell types identified in
different experiments. It learns cell types by measuring the maximum similarity between
a reference dataset with good cell annotations and an unknown dataset. CHETAH [34],
guided by existing reference data, defines a classification tree for top-down classification in
data lacking annotations. Although these methods can be effective in various scenarios,
they still have limitations. One problem is that they only use the information from each
cell and ignore the connections between cells. Graph convolutional networks (GNNs) are a
new way to analyze data, such as cells and their connections, with a graph structure [35].
GNNs can learn the features and relationships of cells and improve the performance of
different tasks. Graph convolutional networks (GCNs) are GNNs applied to single cells and
diseases [36–40]. GNNs have also been used to analyze scRNA-seq data, such as imputation
and clustering [41–43]. These results inspire us to use GNNs for cell identification, a new
and promising direction.

Most methods for cell identification use the information from each cell, but scGCN [44]
uses graph convolutional networks (GCN) to use the connections between cells. This im-
proves the performance of cell identification and shows the potential of graph convolutional
networks (GNNs) for this task. Different graph structures can capture different information
from scRNA-seq data, but scGCN depends on one graph structure. Multi-view learning can
use multiple graph structures to reduce the batch effects from different sequencing methods.
In this article, we use a multi-view graph convolutional network model (scMGCN) for cell
identification on scRNA-seq data. Figure 1 provides a simplified workflow of our approach.

The main contributions of this article are the following:
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1. We use multi-view learning and multiple graph construction methods to create dif-
ferent graph structures from raw scRNA-seq data. We then use graph convolutional
networks to learn from these graphs and get complete information about the cells.
This also helps us reduce the batch effects from different sequencing methods in the
cell identification task.

2. We develop scMGCN, a multi-view graph convolutional network that uses graph
convolutional networks and attention mechanisms. scMGCN can learn the common
and specific information from each cell and the relationships between cells.

3. Through benchmarking with other state-of-the-art cell type identification methods
on single-species, cross-species, and cross-platform datasets, scMGCN consistently
demonstrates superior accuracy in different tissues, platforms, and species.

Figure 1. Architecture diagram of scMGCN for cell type identification.

This paper is structured as follows: In the Section 4, we describe the data, the data
preprocessing, the graph construction, and the model details. In the Section 2, we report
the performance evaluations. In the Discussion section, we discuss the strengths and
limitations of our method. In the Conclusions section, we summarize our main findings
and contributions.

2. Results
2.1. Performance of Cell Type Identification on Single Dataset

We compare the performance of scMGCN with the other five methods for cell type
identification on single-cell RNA sequencing (scRNA-seq) data from five datasets, which
have various challenges in cell type recognition, such as heterogeneity, batch effects, and
rare cell types. The compared methods contain Seurat v3 [31], Conos [32], scmap [33],
CHETAH [34], and scGCN (https://www.nature.com/articles/s41467-021-24172-y, ac-
cessed on 26 August 2022) [44]. We use accuracy as the primary evaluation metric and
perform five-fold cross-validation, reporting the average results. We also calculate the
F1-macro scores to measure the performance of minority cell types. We find that scGCN
outperforms the other methods regarding accuracy and F1-macro scores. The results of
both metrics are shown in Tables 1 and S1.

Our model achieves the highest mean accuracy (90.61) across all datasets, slightly
better than Seurat v3 (89.84) and scGCN (87.44). scMGCN also outperforms Conos (83.85),
scmap (77.33), and CHETAH (76.84) by a more significant margin. In a few datasets, such as
GSE98638 and SRP073767, scMGCN achieved the second best performance. The F1-macro
scores of scMGCN vary more than the other methods across the datasets, but scMGCN still
shows good stability in terms of performance. These results demonstrate that scMGCN can
effectively integrate multiple graphs and complement the missing information in a single
graph for cell type identification.

https://www.nature.com/articles/s41467-021-24172-y
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Table 1. Accuracy and F1 score of cell identification task for single dataset.

Seurat v3 Conos scmap CHETAH scGCN scMGCN

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

GSE115746 100 100 100 100 100 100 96.27 56.72 99.93 95.81 99.94 95.81
GSE118389 93.97 89.98 93.97 89.08 88.16 69.68 73.21 49.06 94.19 90.21 96.43 90.63
GSE72056 92.15 87.30 82.80 78.48 72.00 54.41 90.03 89.54 92.74 89.44 93.61 90.79
GSE98638 73.16 74.50 70.21 70.76 37.71 34.81 62.53 35.91 74.49 76.83 73.55 75.01
PHS001790 99.82 97.70 99.94 99.95 99.66 98.55 97.38 58.35 99.94 99.67 99.95 99.39
GSE85241 98.87 98.38 98.56 98.08 97.60 97.40 96.47 55.14 97.91 97.06 99.68 99.39
GSE109774 93.25 70.25 73.99 47.27 92.25 77.26 70.13 39.09 89.25 51.63 94.20 79.77
SRP073767 66.38 53.90 64.36 50.52 49.71 43.79 28.61 17.32 63.35 40.21 66.12 51.15
GSE120221 91.01 89.91 70.80 65.74 58.92 49.78 76.95 41.36 75.20 45.67 92.03 90.37

Mean 89.84 84.66 83.85 77.76 77.33 69.52 76.84 49.17 87.44 76.28 90.61 85.81

For each dataset, we split the cells into training (60%) and test (40%) sets according to their true labels. We further
divide the training set into a training subset (80%) and a validation subset (20%) within each cell type. Then, we
perform five-fold cross-validation. All of the above results are derived from the test set. The bold text in each row
of the table indicates the maximum value among all the data in that specific row.

2.2. Cell Type Identification across Datasets of Different Species

We evaluate the performance of scMGCN and other four methods, Seurat v3, Conos,
scmap, and scGCN, for cross-species cell type identification on two pairs of human and
mouse scRNA-seq datasets. We exclude CHETAH from this experiment because it does not
perform data integration across species. We split the training set into a training subset (80%)
and a validation subset (20%) within each cell type. We use accuracy and F1-macro scores as
the evaluation metrics and perform five-fold cross-validation, reporting the average results.

Tables 2 and S2 show a performance comparison between our method and the com-
pared methods on the cross-species datasets. The results show that scMGCN achieves
the highest mean accuracy (75.12) across both pairs of datasets, much better than Seurat
v3 (62.43), Conos (65.57), scmap (62.83), and scGCN (66.84). This indicates that scMGCN
can extract and aggregate the shared high-order cell relationships from multi-view graph
data. scMGCN also has the highest mean F1-macro score (71.95), indicating its ability to
handle rare cell types across species. These results demonstrate the superior performance
of scMGCN in cross-species cell type identification.

Table 2. Accuracy and F1 score of cell identification task for cross species datasets.

Seurat v3 Conos scmap scGCN scMGCN

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

PHS001790 (human)–GSE115746 (mouse) 100 100 100 100 99.71 84.92 99.76 98.33 99.90 99.22
GSE115746 (mouse)–PHS001790 (human) 72.94 74.78 97.37 71.97 97.29 70.74 99.92 99.48 99.98 98.40
GSE120221 (human)–GSE107727 (mouse) 40.33 36.95 37.39 37.75 33.75 21.01 29.44 30.57 49.69 45.92
GSE107727 (mouse)–GSE120221 (human) 36.44 17.82 27.51 18.85 20.57 20.57 38.24 28.76 53.91 44.26

Mean 62.43 57.39 65.57 57.14 62.83 49.31 66.84 64.29 75.12 71.95

For each dataset, we split the cells into training (60%) and test (40%) sets according to their true labels. We further
divide the training set into a training subset (80%) and a validation subset (20%) within each cell type.Then, we
perform five-fold cross-validation. All of the above results are derived from the test set. The bold text in each row
of the table indicates the maximum value among all the data in that specific row.

2.3. Cell Type Identification across Datasets of Different Platforms

We perform cross-platform analysis on six human peripheral blood mononuclear
cell (PBMC) datasets and four human pancreatic cell datasets from diverse platforms
and sequencing methods. We split the data from different platforms into training and
testing sets to ensure rigorous evaluation. Moreover, we further divide the validation
set in each cluster based on a 20% ratio in the training set. Using the same evaluation
criteria, we compare the accuracy and F1-macro scores of scMGCN with other methods on
cross-platform datasets.

Table 3 shows the specific comparison results. Our results demonstrate that scMGCN
outperforms other methods in identifying cells across different experimental platforms.
Specifically, in the PBMC datasets, scMGCN (88.52) achieves the highest mean accuracy,
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followed by Seurat v3 (83.46), Conos (81.92), scGCN (85.45), and scmap (64.03). ScMGCN
performs well even when the training set contains less than 100 cell samples in PBMC
(CEL-Seq2 (https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0938-
8, accessed on 26 August 2022))-PBMC (10× v3 (https://www.10xgenomics.com/, accessed
on 26 August 2022)) datasets. From Table 4, we can observe that scMGCN (98.98) also
achieves the highest mean accuracy, followed by scGCN (98.87), Conos (43.74), scmap
(86.75), and Seurat v3 (98.79). scMGCN also outperforms other methods regarding mean
F1 score in the classification of human pancreatic cell datasets. These results indicate that
scMGCN can handle batch effects across platforms better than other methods. The detailed
results are shown in Table S3.

Table 3. Accuracy and F1 score of cell identification task for PBMC datasets.

Seurat v3 Conos scmap scGCN scMGCN

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

PBMC(10× v2)-PBMC(Smartseq2) 84.58 63.58 84.98 61.93 44.26 34.33 87.35 71.29 90.12 70.52
PBMC(CEL-Seq2)-PBMC(10× v3) 79.29 57.58 79.86 60.27 79.39 61.62 86.90 73.62 89.70 74.28

PBMC(InDrop)-PBMC(10× v3) 81.28 59.60 79.08 58.57 70.91 51.93 86.13 64.39 90.50 76.85
PBMC(Seqwell)-PBMC(Smartseq2) 92.49 59.52 87.35 57.10 44.66 37.69 82.60 53.04 86.96 72.61

PBMC(10× v3)-PBMC(InDrop) 79.70 54.17 78.36 67.42 80.94 68.93 83.42 69.31 85.32 76.86
Mean 83.46 58.89 81.92 61.05 64.03 50.90 85.45 68.07 88.52 74.22

For each dataset, we split the cells into training (60%) and test (40%) sets according to their true labels. We further
divide the training set into a training subset (80%) and a validation subset (20%) within each cell type. Then, we
perform five-fold cross-validation. All of the above results are derived from the test set. The bold text in each row
of the table indicates the maximum value among all the data in that specific row.

Table 4. Accuracy and F1 score of cell identification task for human pancreatic cell datasets.

Seurat v3 Conos scmap CHETAH scGCN scMGCN

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

GSE81608-GSE85241 97.17 96.41 44.07 27.40 96.85 95.54 47.36 32.28 97.87 97.06 98.01 97.18
GSE85241-GSE81608 99.65 98.76 40.57 23.82 73.56 46.14 18.35 29.83 99.23 98.60 99.10 97.44

E-MTAB-5061-GSE85241 97.55 97.12 43.05 29.06 96.65 94.00 95.23 54.90 98.06 97.40 98.20 97.23
GSE85241-E-MTAB-5061 99.51 99.43 39.16 24.75 67.91 39.51 0.21 0.51 98.88 98.54 99.31 98.96
GSE81608-E-MTAB-5061 99.23 98.89 47.70 27.08 86.31 71.38 37.70 30.62 99.37 99.21 99.51 99.36
E-MTAB-5061-GSE81608 99.65 98.90 47.89 28.18 99.24 97.56 98.61 56.13 99.79 99.50 99.72 99.72

Mean 98.79 98.25 43.74 26.72 86.75 74.02 49.58 34.05 98.87 98.39 98.98 98.32

For each dataset, we split the cells into training (60%) and test (40%) sets according to their true labels. We further
divide the training set into a training subset (80%) and a validation subset (20%) within each cell type. Then, we
perform five-fold cross-validation. All of the above results are derived from the test set. The bold text in each row
of the table indicates the maximum value among all the data in that specific row.

2.4. Ablation Experiments

To further evaluate the performance of scMGCN, we compare the performance of
multi-view fusion and different network modules in different types of experiments.

2.4.1. The Performance of Multi-View Fusion

To validate the advantage of multi-view fusion, we compared the performance of
models using multi-view and single-view in the single dataset, cross-species, and cross-
platform experiments. The following steps obtained the single-view results: First, the graph
structures of the reference dataset and query dataset were obtained using the corresponding
graph construction methods. Then, the graph convolutional network was used to train
the single-view, and the feature embeddings of cells with different graph construction
methods were obtained. Finally, the cell types of the query dataset were predicted by the
classification module. The experimental results are shown in Figures 2 and S1–S4. The
figures show that the model using multi-view fusion had a consistently higher performance
than the model using single-view in the single dataset, cross-species, and cross-platform
experiments, and the performance had good stability in different datasets.

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0938-8
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0938-8
https://www.10xgenomics.com/
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Figure 2. Mean performance of multi-view and single-view methods in single dataset, cross-species,
and cross-platform experiments with respect to Accuracy and Macro-F1.

2.4.2. The Performance of Different Network Modules

To validate the effectiveness of each module of scMGCN, we compared the perfor-
mance of scMGCN and two other existing graph neural network-based multi-view fusion
models in the single dataset, cross-species, and cross-platform experiments. These models
are heterogeneous graph attention networks (HAN) and Multi-Omics Graph Convolutional
NETworks (MOGONET). HAN is a model for analyzing heterogeneous graph data, which
uses multiple GATs to process the semantic information of different meta-path graphs
and then uses the Attention mechanism to fuse different semantics. The structure of this
model can be directly applied to multi-view fusion. MOGONET is a model that uses
multiple GCNs to extract information from different views, and further uses a view cor-
relation discovery network View Correlation Discovery Network (VCDN) to aggregate
them. The experimental results are shown in Figures 3 and S5–S8. From the figures, it can
be seen that scMGCN had a consistently higher performance than the other two models in
the single dataset, cross-species, and cross-platform experiments, and the performance had
good stability in different datasets.
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Figure 3. Mean performance comparison of scMGCN and two other existing graph neural network-
based multi-view fusion models in single dataset, cross-species, and cross-platform experiments with
respect to Accuracy and Macro-F1.

2.5. Model Details and Computational Resources

The specific implementation of the scMGCN model consists of three main components:
the Graph Convolutional Layer module, the Attention module, and the MLP module.
The Graph Convolutional Layer module comprises six GCNs, with each GCN containing
three layers of GraphConv and a dropout layer. The Attention module consists of two
linear layers and a tanh activation function. Finally, the MLP module comprises a single
linear layer. For specific parameters, please refer to the code.

We compared the time and memory consumption of Seurat v3, Conos, scmap, CHETAH,
scGCN, and scMGCN on the single dataset on a system with 128GB memory, an i7-13700F
(8-core, 24-thread) CPU, and a 4090 GPU. Seurat v3, Conos, scmap, and CHETAH are all
executed on the CPU, while scGCN and scMGCN are executed on the GPU. The results are
summarized in Table 5.
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Table 5. Memory consumption and Time of cell identification task for single dataset.

Seurat v3 Conos scmap CHETAH scGCN scMGCN

Memory Time Memory Time Memory Time Memory Time Memory Time Memory Time

GSE115746 1944 M 56.37 s 2105 M 50.76 s 1668 M 15.28 s 1503 M 46.63 s 6042 M 929.82 s 3626 M 6.62 s
GSE118389 940 M 5.71 s 1014 M 8.36 s 1180 M 2.71 s 1423 M 37.05 s 1450 M 46.66 s 2278 M 5.66 s
GSE72056 1218 M 23.24 s 1423 M 29.74 s 1620 M 9.24 s 1919 M 37.81 s 2970 M 276.4 s 2894 M 11.44 s
GSE98638 1478 M 28.11 s 1616 M 34.01 s 1480 M 13.50 s 1439 M 37.34 s 2970 M 238.87 s 2980 M 32.50 s

PHS001790 2640 M 119.89 s 2183 M 103.92 s 2188 M 41.33 s 1628 M 50.34 s 9114 M 1291.09 s 4730 M 9.20 s

3. Discussion

Some methods are available for identifying cell types from various scRNA-seq data,
such as Seurat, Conos, scmap, and CHETAH. However, these methods ignore the higher-
order relationships among cells. Graph neural networks (GNNs) are a new method that
uses graph structures to analyze data, such as cells and their connections. A representative
GNN model is scGCN, which has learned higher-order relationships among cells but is
limited by single-graph learning. We propose scMGCN, a model that uses multi-view
graph convolutional neural networks to identify cell types in single-cell RNA sequencing
data. The model adopts multi-view learning, generates different data views using various
graph construction methods, and then uses graph convolutional neural networks to learn
node representations. Finally, the attention-based multi-view embedding aggregation layer
combines the learned node representations for cell type identification. We conducted com-
parative experiments on individual datasets and data from different species and platforms.
The experimental results show that scMGCN performs well in single-cell identification
tasks, especially in cross-species and cross-platform scenarios. The experimental results
show that, although scMGCN had a smaller improvement compared with other methods in
a few cases, such as the single dataset cell type recognition task compared with the scGCN
method, in most cases, the scMGCN method achieved a better performance compared with
other methods.

As an efficient cell type identification method, scMGCN will have widespread appli-
cations. Efficient cell type identification techniques are crucial in clinical diagnosis, cell
development and differentiation research, and drug development efforts. For example,
we can extend scMGCN to the diagnosis of blood diseases. By using scMGCN to clas-
sify blood cells from patients, we can determine their pathological types and provide a
basis for clinical treatment. We can also use scMGCN to conduct in-depth research on
specific cell types, helping researchers understand the role of different cell types in disease
development and progression and thus providing new targets and strategies for drug
development. In summary, the proposed cell type identification model, scMGCN, has
broad and profound applications in medicine, biology, and related fields. It is of great
significance for understanding the processes of life and preventing and treating diseases.

Although our method achieved good results on different datasets, there are still some
limitations to our approach. Regarding dataset quality, our method is still influenced by the
reference dataset. The quality of the reference dataset directly affects the effectiveness of our
final model, so in the future, we can introduce some preprocessing methods for the dataset
to improve its quality. Secondly, our method currently only processes single-cell RNA-seq-
related data. Our model achieved different results on different single-species, cross-species,
and cross-platform datasets, demonstrating high sensitivity to different datasets. In the
future, we can further adjust the relevant parameters and the number of network layers
in the model to overcome our model’s sensitivity to data variations. Regarding data
learning and interpretation, our model adopts an attention-based multi-view aggregation
method to learn and interpret data from different perspectives. Although this improves
the performance of our model, scMGCN currently does not assign explicit edge weights
to the relationships between units in each graph. It only reflects correlation but cannot
reflect the strength of relationships. In the future, the introduction of edge weights may
be considered. However, it is necessary to consider how to handle the differences in edge
weight definitions between different graph construction methods.



Int. J. Mol. Sci. 2024, 25, 2234 8 of 15

Finally, with technological advancements, the analysis of single-cell RNA sequencing
data (scRNA-seq) also faces challenges. Firstly, the amount of data generated by scRNA-
seq technology is vast, and there is much noise. Secondly, analyzing cell heterogeneity,
incredibly accurately identifying and distinguishing different cell subpopulations, remains
challenging. Furthermore, differences in experimental conditions, platforms, and batches
make it difficult to compare different datasets directly. In this context, new algorithms
and technologies like the scMGCN model provide new opportunities and possibilities
for addressing these challenges. scMGCN utilizes different graph construction methods
and graph convolutional networks to analyze single-cell data, enabling it to capture the
similarities and differences among cells better and to be used for cell type identification and
classification. However, despite the many advantages of the scMGCN model, it still faces
some challenges. An example of a challenge in machine learning is improving the model’s
generalization ability to handle more extensive and higher-dimensional data. Another
challenge is integrating the model with other advanced machine learning techniques to
enhance the accuracy and reliability of cell type identification.

4. Materials and Methods
4.1. Data Collection

The rapid development of single-cell technologies has led to a significant increase in
single-cell omics data. As more single-cell datasets become available, there is an urgent
need to leverage existing and newly generated data in a reliable and reproducible manner,
learn from well-established single-cell datasets with clearly defined labels, and transfer
these labels to newly generated datasets to assign cell-level annotations. However, existing
and newly generated datasets are often collected from different tissues and species under
various experimental conditions, through different platforms, and across different omics
types. Therefore, to meet the demands of practical applications, we conducted three
types of experiments to evaluate the performance of scMGCN on individual datasets
and datasets from different species and platforms. These datasets represent different
scenarios and challenges for cell label transfer. To highlight the comparison of specific
cell types, we evaluated the performance of scMGCN on individual datasets. Next, we
evaluated the performance of scMGCN on datasets from different species. Since different
experimental platforms generate emerging single-cell datasets, we tested whether scMGCN
can accurately transfer labels between datasets from different platforms.

All datasets were obtained from public databases, as shown in Table 6. For evaluating
the performance of the single-dataset experiment, we used five datasets as follows: the
dataset GSE115746 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115746,
accessed on 26 August 2022), which contains 9035 cells from the mouse anterior lat-
eral motor cortex (ALM); the dataset PHS001790, which contains 12,552 human cells
from the middle temporal gyrus; the dataset GSE118389 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE118389, accessed on 26 August 2022), which contains
1534 cells from six human triple-negative breast cancer (TNBC) tumors; the dataset GSE72056
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72056, accessed on 26 Au-
gust 2022), which contains 4645 human melanoma cells; the dataset GSE98638 (https:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE98638, accessed on 26 August 2022),
which contains 5063 T cells from patients with hepatocellular carcinoma; the dataset
GSE85241 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85241, accessed
on 26 August 2022), which contains 2122 pancreatic cells from human cadavers; the dataset
GSE109774 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109774, accessed
on 26 August 2022), which contains 54,865 single cells from 20 tissues of 3-month-old
mice; the dataset SRP073767 (https://www.ncbi.nlm.nih.gov/Traces/index.html?view=
study&acc=SRP073767, accessed on 26 August 2022), which contains 65,943 human pe-
ripheral blood mononuclear cells; and the dataset GSE120221 (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE120221, accessed on 26 August 2022), which con-
tains 10,495 bone marrow mononuclear cells. We used two pairs of data sets to eval-

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115746
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118389
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118389
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72056
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE98638
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE98638
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85241
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109774
https://www.ncbi.nlm.nih.gov/Traces/index.html?view=study&acc=SRP073767
https://www.ncbi.nlm.nih.gov/Traces/index.html?view=study&acc=SRP073767
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE120221
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE120221
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uate the performance across data from different species. The first data pair is from
the GSE115746 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115746, ac-
cessed on 26 August 2022) and PHS001790 (https://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id=phs001790.v2.p1, accessed on 26 August 2022) datasets,
which contain 9035 mouse and 12,552 human brain cells. The second data pair is from
the GSE120221 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE120221, ac-
cessed on 26 August 2022) and the GSE107727 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE107727, accessed on 26 August 2022), which contain 10,495 hu-
man bone marrow mononuclear cells and 30,494 mouse bone marrow mononuclear cells.
We used one species as the training set and the other as the testing set for each pair.
We used two data types to evaluate the performance across data from different plat-
forms. One type is human peripheral blood mononuclear cell (PBMC) data, which are se-
quenced by different methods: PBMC (10× v2), PBMC (Smartseq2), PBMC (InDrop), PBMC
(10× v3), PBMC (CEL-Seq2), and PBMC (Seqwell). The six PBMC data are available
from the Broad Institute Single Cell portal (https://portals.broadinstitute.org/single_cell/
study/SCP424/single-cell-comparison-pbmc-data, accessed on 26 August 2022) and the
Zenodo repository (https://zenodo.org/, accessed on 26 August 2022). The other is human
pancreatic cell data, which are also sequenced by different methods: GSE85241 (CEL-
Seq2) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85241, accessed on
26 August 2022), GSE81608 (Smart-seq2) (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE81608, accessed on 26 August 2022), and E-MTAB-5061 (Smart-seq2)
(https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5061, accessed on 26 August
2022). We choose these single-cell datasets because they are often used to evaluate the
performance of cell type identification through different methods [31,33,44–46].

Table 6. The detailed information of various datasets for different experiment types.

Dataset Tissue Cell Number Protocol Sample Count

GSE81608 Human Pancreas 1449 SMARTer 1600
GSE85241 Human Pancreas 2122 CEL-Seq2 32

E-MTAB-5061 Human Pancreas 2133 Smart-Seq2 3514
GSE115746 Mouse Brain 12,832 Smart-Seq2 140
GSE109774 Mouse 54,865 10× Genomics 46
SRP073767 Human PBMC 65,943 10× Genomics 29
GSE108989 Human PBMC 8530 Smart-Seq2 12
GSE120221 Human Bone_Marrow 10,495 10× Genomics v2 25
GSE107727 Mouse Bone_Marrow 30,494 10× Genomics v2 8
PHS001790 Human Brain 12,552 Smart-seq2 8
GSE118389 Human Breast 1534 Smart-seq2 1534
GSE72056 Human Melanoma 4645 Smart-seq2 4645
GSE98638 Human Liver 5063 Smart-seq2 6

PBMC Human PBMC 3222 10× Genomics v2 3222
PBMC Human PBMC 253 Smart-seq2 253
PBMC Human PBMC 3222 inDrop 3222
PBMC Human PBMC 3222 10× Genomics v3 3222
PBMC Human PBMC 253 CEL-Seq2 253
PBMC Human PBMC 3176 Seqwell 3176

4.2. Data Preprocessing

We need to preprocess the data to construct graphs and use models from sequencing
data to reduce noise. We followed these steps for preprocessing. Firstly, we removed
doublet cells in droplet-based methods like drop-seq and inDrop. Doublets are cases where
more than one cell is in a droplet. We used Scanpy to calculate and filter out doublet scores.
Next, we only kept genes with at least one read and matched the reference and query
sets. This made sure that both sets had the same gene dimensions. Then, we selected
highly variable genes using ANOVA for multi-category differential analysis. This helped
us find the most variable genes across different cell types. We used Bonferroni correction to

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115746
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001790.v2.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001790.v2.p1
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE120221
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107727
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107727
https://portals.broadinstitute.org/single_cell/study/SCP424/single-cell-comparison-pbmc-data
https://portals.broadinstitute.org/single_cell/study/SCP424/single-cell-comparison-pbmc-data
https://zenodo.org/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85241
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81608
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81608
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5061
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choose 2000 genes in the reference set with the lowest adjusted p-values. We removed all
non-variable genes in both sets.

4.3. Graph Construction

After data preprocessing, we constructed graphs using different methods to calculate
cell relationships, build adjacency matrices, and generate mixed graph adjacency matrices
for use as inputs in graph convolutional layers. We used the Scanpy library to normalize to-
tal counts for each cell, ensuring that each cell had the same total count after normalization,
which helped to minimize the error in similarity calculations due to cell heterogeneity.

In this study, we used six graph construction methods for multi-view aggregation,
representing six edges in the multi-view graph. These methods included Approximate
Nearest Neighbors Oh Yeah (ANNOY), CCA_MNN, Harmony, Scanorama, Scmap, and
Autoencoder-KNN. The relevant details of these six graph construction methods are shown
in Supplementary Materials. Each method first constructed a data inter-graph ginter contain-
ing the cell relationships within the reference and query datasets, followed by constructing
a data intra-graph gintra containing the cell relationships within the query dataset. Both
graphs were represented as adjacency matrices, Aintra ∈ R(nq×nq) and Ainter ∈ R(nq×nq) ,
where nr and nq are the numbers of cells in the reference and query datasets, respectively.
These two graphs were combined to form an adjacency matrix AH ∈ R(nr+nq)×(nr+nq),
where AH

ij represented the relationship between the ith and jth cells, with AH
ij =0 indicating

the absence of a relationship. In addition to the adjacency matrix, we used a feature matrix

X=
[

XR
XQ

]
∈ R(nr+nq)×m , composed of the preprocessed reference and query matrices, as

the starting input features for the graph convolutional layer. Each row represented the
starting feature vector of the corresponding node. The starting feature matrix input was
the same for all graph construction methods.

4.4. Related Comparative Methods

We compared five commonly used methods for cell type identification based on single-
cell RNA sequencing data, including Seurat v3 [31], Conos [32], scmap [33], CHETAH [34],
and scGCN [44]. Seurat v3 is a widely used and well-validated toolkit for single-cell
genomics. Recently, Seurat v3 introduced an anchor-based label transfer method that has
broad applicability and can be used with various single-cell samples. Conos utilizes the
pairwise arrangement of samples to construct a joint graph representation, allowing label
information to be transferred from one sample to another. Scmap learns and infers the cell
types in an unknown dataset by comparing its maximum similarity with a reference dataset
that has good cell annotations. With the guidance of reference data, CHETAH constructs
a classification tree for the top-down classification of unannotated data. scGCN utilizes
graph convolutional neural networks to learn complex relationships between cells from
constructed graph data in order to complete the task of cell type recognition.

4.5. Model Design and Model Training

In this paper, we utilized a graph convolutional neural network for feature learning
and employed multiple graph construction methods to describe the same cell data. By
leveraging different graphs that capture information from diverse perspectives and can
be represented as distinct types of edges, we consider the entire model as a multi-view
graph convolutional network. To aggregate different embedding information, we adopt an
attention mechanism.

4.5.1. Input Data for scMGCN

For the training of the graph convolutional layer, the gi, i ∈ {1, 2, . . . , P}, constructed
by different graph methods, are used as inputs, where P corresponds to the number
of graph construction methods and views. Each input graph comprises the adjacency



Int. J. Mol. Sci. 2024, 25, 2234 11 of 15

matrix and feature matrix, obtained as previously described, with the initial feature matrix
input being identical.

4.5.2. Graph Convolutional Layer of scMGCN

During training, the graph-structured data are fed into the graph convolutional layer,
where nodes receive information from their neighbors and update their representation,
leading to learning the nodes’ underlying features. Graphs generated by different graph
construction methods are separately fed into the graph convolutional layer, resulting in
corresponding node embedding information. The initial layer of a Graph Convolutional
Neural Network (GCN) is intended to accept graph data that have undergone preprocess-
ing, and the processing procedure is shown in Equation (1):

H(1) = f (X, Ã) = σ(ÃXW(0)) (1)

The output of the first layer graph convolution is represented by H(1), which is
obtained by applying a non-linear activation function σ to the product of the weight matrix
W(0) and the input feature matrix X. During training, the weight matrix W(0) is updated
using stochastic gradient descent. Ã is the modification of the adjacency matrix for efficient
training in the Graph Convolutional Network (GCN). The specific modification method is
shown in Equation (2):

Ã = D− 1
2 ÂD− 1

2 = D− 1
2 (AH + I)D− 1

2 (2)

In Equation (2), AH represents the adjacency matrix of the original input graph, a
square matrix with dimensions equal to the sum of the number of cells in the reference set
and query set. I denotes the identity matrix with dimensions identical to the adjacency
matrix. It represents the one-hot encoded vectors of all nodes in the graph. D is the diagonal
angle matrix of Â. As the number of layers in Graph Convolutional Neural Networks
(GCN) increases, the model learns higher-order neighbor information and aggregates it
into node representations. The specific process is shown in Equation (3):

H(l+1) = f (H(l), Ã) = σ(ÃH(l)W(l)) (3)

Here, l represents the number of graph convolutional layers, and Hl represents the
node feature representation output by the lth layer, specifically H(0)=X. As the number of
graph convolutional layers increases, the learned node embedding becomes more abstract.
However, our experiments show no significant improvement in the experimental results
when the number of graph convolutional layers exceeds two. On the contrary, it increases
the time cost of the program and causes overfitting problems in some datasets. Hence, our
experiments are based on a two-layer GCN.

4.5.3. Multi-View Aggregation of scMGCN

Next, we need to fuse the information generated by different graphs. In this pa-
per, we propose an attention-based method to accomplish this task. We take P sets of
node embedding information (E1, . . . , EP), learned in the graph convolutional layers, as
input and obtain the weights (β1, . . . , βP) for different node embedding information using
Equation (4):

(β1, . . . , βP) = att(E1, . . . , EP) (4)

In Equation (4), P represents the number of graph construction methods and the
number of views and types of edges. The function att(·) denotes a deep neural network
capable of performing the attention mechanism. E ∈ R(nr+nq)×h represents the output of
the final layer of the graph convolutional layers, where h is the output feature dimension of
the graph convolutional layers. To learn the importance of each graph, we first perform
nonlinear transformations on different embedding information. We then calculate the
importance of different embedding information wi, i ∈ {1, 2, . . . , P} by measuring the
similarity between the transformed embedding information and the attention vector. Addi-
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tionally, the importance of embedding information for all nodes is averaged. The specific
process is shown in Equation (5):

wp =
1
v ∑

i∈v
qT · tanh(W · ep

i + b) (5)

Here, v denotes the set of all nodes in graph p, W represents the weight matrix,
b represents the bias vector, q represents the attention vector used to calculate similarity,
and ep

i ∈ EP represents the embedding information after nonlinear transformation. In
order to enable a fair comparison, the variables mentioned above are shared among various
node embeddings. We use softmax to normalize the importance of embedding information
for all groups of nodes and obtain the weight of different node embeddings, representing
the weight of different graph construction methods. The specific process is shown in
Equation (6):

βi =
exp(wp)

∑P
p=1 exp(wp)

(6)

Here, β represents the weight of different graph construction methods. The higher
the β, the more critical the corresponding graph construction method. The weights of
different graph construction methods also vary for different types of tasks. Using these
weights as coefficients, we can fuse the node embedding information of different graph
construction methods to obtain the final embedding result E. The specific process is shown
in Equation (7):

E =
P

∑
p=1

βp · ep (7)

4.5.4. Result Output of scMGCN

As shown in Equation (8), after aggregating the node embedding information of
multiple views, we use a multilayer perception (MLP) to obtain the predicted labels.

ỹi = MLP(Ei) (8)

We calculate the cross-entropy between the predicted and true cell types and minimize
the cross-entropy to calculate the model loss. The loss function of the model is shown in
Equation (9):

Lc = − ∑
l∈yL

Ylln(C · El) (9)

Among them, C is the parameter of the Multilayer Perceptron classifier, yL is the index
set of labeled nodes, and Yl is the label of labeled nodes, which is also the cell type. El

is the final node embedding of labeled nodes. We can optimize the model and learn the
node embedding by utilizing backpropagation. The multi-view aggregation output is the
embedding vector of nodes, so the loss function is highly adaptable. It can be customized
for different tasks, such as link prediction.

The scMGCN model adopts a multi-view approach to transform the problem into a
multi-view graph convolutional network. This allows us to integrate cell relationships from
different perspectives and improve the accuracy of cell recognition. The result is a more
stable and effective cell recognition system.

4.6. Performance Metrics

The model predicts labels for cells, which represent the cell types. In this paper, the
primary metrics used to assess the model’s performance in predicting cell labels are the F1
score and accuracy. Accuracy refers to the proportion of correctly predicted samples out of
the total samples.
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Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

Equation (10) represents the calculation process for precision, while Equation (11)
represents the calculation process for recall. In this context, FP stands for false positives,
FN represents false negatives, and TP denotes true positives. In general classification tasks,
Precision and Recall are calculated for each sample separately based on the cell type, while
accuracy is calculated across all samples. The calculation process of F1 score is shown
in Equation (12):

F1 = 2 · Precision · Recall
Precision + Recall

(12)

Regarding cell type identification, each task is a binary classification task. To calculate
the overall F1 score, the F1 scores of negative and positive samples need to be combined.
The sub-library metrics in the sklearn module of Python provide two different ways of
combining, namely macro and micro. Macro first calculates the precision and recall by
cell type, then takes the average of all F1 scores. This approach can reflect the model’s
performance in predicting cell types that comprise a small proportion of the total population.
Micro, on the other hand, does not explicitly distinguish between types when calculating.

5. Conclusions

We propose a novel approach that uses multi-view graph convolutional neural net-
works and multi-view learning to identify cell types in single-cell RNA sequencing data.
Our method consists of four steps. First, we construct graphs from single-cell transcrip-
tomics data using different graph construction methods. Second, we pass the graphs
through different graph convolutional layers to obtain different node embeddings. Third,
we fuse the node embeddings using an attention mechanism to obtain new cell node embed-
dings. Fourth, we input the new cell node embeddings into a multi-layer perceptron-based
classifier for cell type classification. Our experiments on single-species, cross-species, and
cross-platform datasets show that our model can achieve good classification results.
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