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Abstract: Chloroquine has been used as a potent antimalarial, anticancer drug, and prophylactic.
While chloroquine is known to interact with DNA, the details of DNA–ligand interactions have
remained unclear. Here we characterize chloroquine–double-stranded DNA binding with four
complementary approaches, including optical tweezers, atomic force microscopy, duplex DNA
melting measurements, and isothermal titration calorimetry. We show that chloroquine intercalates
into double stranded DNA (dsDNA) with a KD ~ 200 µM, and this binding is entropically driven. We
propose that chloroquine-induced dsDNA intercalation, which happens in the same concentration
range as its observed toxic effects on cells, is responsible for the drug’s cytotoxicity.

Keywords: chloroquine; intercalation; DNA binding; single molecule; optical tweezers; AFM; DNA
melting; isothermal titration calorimetry

1. Introduction

Chloroquine (also known as chloroquine phosphate) has been widely employed in
both the treatment and prevention of malaria [1]. Chloroquine has also been used to treat
other diseases, including rheumatoid arthritis and cancer [2]. It was also suggested as an
effective antiviral during the COVID-19 pandemic, though the effectiveness of chloroquine
in this role has not been effectively proven [3]. Furthermore, there are significant side
effects to this treatment, as chloroquine active doses for COVID-19 treatment are higher
than for antimalarial treatment, while its cytotoxicity for the antiviral application is more
significant [4,5]. While most of chloroquine’s medicinal activities as a drug are related to its
ability to penetrate cellular organelle membranes and to change their pH [6,7], leading to
the alkalinization of parasite lysosomes [8] and binding to hemin [9], the molecular basis for
chloroquine’s high cytotoxicity remains unclear. As shown in Figure 1, chloroquine consists
of a pair of aromatic rings and a longer, unstructured tail, which is weakly positively
charged at pH 7.5. Despite the interest in and the known toxicity of this compound, few
studies have systematically probed DNA–chloroquine interactions since the 1940s, when
this drug was first introduced and studied. It was established that chloroquine is a DNA
intercalator, as binding increases DNA viscosity and rigidity while changing its spectral
properties [10]. A recent study examined chloroquine–DNA intercalation with optical
tweezers (OTs). However, the applied stretching forces were too low (<1.5 pN) to observe
significant chloroquine intercalation under the conditions studied [11].
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Figure 1. Structure of chloroquine, showing aromatic rings that may intercalate into DNA and a 
basic tail. 

Here, we performed stretching experiments with our OT instrument under a much 
broader force and chloroquine concentration range. We find that chloroquine behaves as 
a classic double-stranded DNA (dsDNA) intercalator at high concentrations, increasing 
the contour and persistence length in a force-dependent manner. At low concentrations, 
we also observe an increase in DNA persistence length without DNA lengthening. To un-
derstand this behavior, we use the OT approach developed previously for other interca-
lators, including planar intercalators such as ethidium [3] and more complex structures 
[12–15] to fully characterize binding both in the presence and absence of DNA tension 
while also demonstrating binding using AFM. We find that chloroquine intercalates 
dsDNA at ~200–300 µM in physiological salt, extending the dsDNA duplex by ~0.29 
nm/bound ligand. This intercalation is weakly salt-dependent and is entropically driven. 
We also show that saturated chloroquine intercalation increases the dsDNA melting tem-
perature by ~15 °C. Intercalation stabilizes B-DNA; this can potentially interfere with 
dsDNA function in cells and lead to cytotoxicity in anti-COVID-19 treatment protocols. 

2. Results 
2.1. Force Extension of dsDNA + Chloroquine in Optical Tweezers 

The schematic for stretching DNA in an OT assay is shown in Figure 2A. Tethered 
DNA is stretched and released as described in the Methods. Pulling dsDNA follows a 
well-studied trajectory. After initial enthalpic and entropic stretching regimes, described 
by the worm-like chain (WLC) polymer model (Equation (1) in Section 4 ), dsDNA ab-
ruptly increases in length. At an almost constant force of ~60 pN, lengthening signifies the 
cooperative transition into the ~1.7-fold longer DNA state [16]. Depending upon the solu-
tion and other experimental conditions, base pairing may or may not be lost, leading to 
the formation of single stranded DNA (ssDNA) or double-stranded S-form DNA. Under 
the conditions of these experiments, this transition is fully reversible upon the release of 
tension, suggesting a rapid transition between the two dsDNA forms, i.e., a B-to-S transi-
tion rather than dsDNA melting [17,18]. 

Figure 1. Structure of chloroquine, showing aromatic rings that may intercalate into DNA and a
basic tail.

Here, we performed stretching experiments with our OT instrument under a much
broader force and chloroquine concentration range. We find that chloroquine behaves as a
classic double-stranded DNA (dsDNA) intercalator at high concentrations, increasing the
contour and persistence length in a force-dependent manner. At low concentrations, we
also observe an increase in DNA persistence length without DNA lengthening. To under-
stand this behavior, we use the OT approach developed previously for other intercalators,
including planar intercalators such as ethidium [3] and more complex structures [12–15]
to fully characterize binding both in the presence and absence of DNA tension while
also demonstrating binding using AFM. We find that chloroquine intercalates dsDNA
at ~200–300 µM in physiological salt, extending the dsDNA duplex by ~0.29 nm/bound
ligand. This intercalation is weakly salt-dependent and is entropically driven. We also
show that saturated chloroquine intercalation increases the dsDNA melting temperature by
~15 ◦C. Intercalation stabilizes B-DNA; this can potentially interfere with dsDNA function
in cells and lead to cytotoxicity in anti-COVID-19 treatment protocols.

2. Results
2.1. Force Extension of dsDNA + Chloroquine in Optical Tweezers

The schematic for stretching DNA in an OT assay is shown in Figure 2A. Tethered
DNA is stretched and released as described in the Methods. Pulling dsDNA follows a
well-studied trajectory. After initial enthalpic and entropic stretching regimes, described by
the worm-like chain (WLC) polymer model (Equation (1) in Section 4), dsDNA abruptly
increases in length. At an almost constant force of ~60 pN, lengthening signifies the
cooperative transition into the ~1.7-fold longer DNA state [16]. Depending upon the
solution and other experimental conditions, base pairing may or may not be lost, leading
to the formation of single stranded DNA (ssDNA) or double-stranded S-form DNA. Under
the conditions of these experiments, this transition is fully reversible upon the release of
tension, suggesting a rapid transition between the two dsDNA forms, i.e., a B-to-S transition
rather than dsDNA melting [17,18].

Titrating increasing concentrations of chloroquine from 1 µM through 50 µM
(Figure 2B–F) reveals that the measured DNA length (the contour length) increases, as
does the height of the overstretching transition force plateau. At 100 µM and above
(Figure 2G,H), the overstretching plateau disappears entirely. Furthermore, these changes
are fully reversible (i.e., extension and release data nearly overlap), indicating that the
chloroquine-dsDNA force-induced binding and unbinding during the stretch–release cycle
(~20 s) happen in equilibrium. At least 3 consecutive cycles were collected at each concen-
tration to verify reproducibility and estimate uncertainty. Observed chloroquine–dsDNA
stretching curves closely resemble the analogous curves for the ethidium–dsDNA com-
plex, although at about ~100-fold lower ligand concentrations. We, therefore, analyze our
chloroquine–dsDNA data with the previously developed approach [19].
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Figure 2. Force extension of λ DNA in the absence and presence of chloroquine (red diamonds). (A) 
Schematic of λ DNA tethering in optical tweezers experiment. Representative force extension and 
release data (blue solid circles and open circles, respectively) for λ DNA stretched in the presence 
of (B) 1 µM, (C) 3 µM, (D) 10 µM, (E) 30 µM, (F) 50 µM, (G) 100 µM, and (H) 200 µM chloroquine 
(red circles). 
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Figure 2. Force extension of λ DNA in the absence and presence of chloroquine (red diamonds).
(A) Schematic of λ DNA tethering in optical tweezers experiment. Representative force extension and
release data (blue solid circles and open circles, respectively) for λ DNA stretched in the presence
of (B) 1 µM, (C) 3 µM, (D) 10 µM, (E) 30 µM, (F) 50 µM, (G) 100 µM, and (H) 200 µM chloroquine
(red circles).

2.2. Characterizing Chloroquine Binding to dsDNA

At fixed forces, the DNA extension was measured as a function of ligand concentration.
The chloroquine–dsDNA titration curves are plotted in Figure 3A. Each titration curve
was fit to a model of ligand–polymer binding (Equations (2) and (3) in Section 4), yielding
the contour length of the chloroquine–dsDNA complex, its dissociation constant, KD,
and the binding site size in base pairs, N, as a function of the stretching force F. Fitting
the KD(F) dependence to the exponential (Equation (4) in Section 4), we obtained the
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dsDNA elongation per chloroquine intercalation event, ∆x = 0.29 ± 0.04 nm (Figure 3B).
The extrapolated chloroquine dissociation constant in the absence of force, KD(F = 0),
was determined to be 170 ± 90 µM (Figure 3C). This fitting procedure involves non-
linear, iterative steps (Equations (2) and (3), Section 4), allowing us to determine all three
parameters (Figure 3B–D). The dissociation constant and the binding site size (Figure 3C,D)
both decrease with force, suggesting facilitation of intercalation by the stretching force. In
the absence of force and at chloroquine saturation, the ligand intercalates every 5th base
pair stack (N ~ 5 at low force).
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Figure 3. Chloroquine titration with DNA determines binding parameters. (A) Chloroquine titration
with DNA (from Figure 2) reveals the change in DNA length versus ligand concentration across
forces ranging from 15 pN (red) through 70 pN (purple), including the ligand-free length below
overstretching (note the break ‘//’ in the x axis). Solid lines are χ2 minimized fits to the binding
isotherms, as described in the Methods. (B) Values of the measured chloroquine induced DNA end
to end (contour) length (red) compared to models of DNA elasticity (blue), as described in the text.
High force (>60 pN) yields a change of ∆x = 0.29 ± 0.04 nm. (C) Fitted equilibrium dissociation
constant (KD) and (D) binding site size (N) at each force, as described in the text. The equilibrium
dissociation may be extrapolated to find a value in the absence of any external force of KD(F = 0) =
170 ± 90 µM (Equation (4), Section 4). The force and extension errors are standard errors from three
DNA stretches. Uncertainties in KD, ∆x, and N are all deduced from values of χ2 + 1.

2.3. Chloroquine Binding to ssDNA Is Weaker Than to B-DNA

To complement force extension data on dsDNA, tethered DNA constructs were chemi-
cally denatured and then exposed to saturating concentrations of chloroquine. Figure 4A
shows force extension data for the same molecule before and after denaturation. Flowing
in a saturating concentration of chloroquine and repeating the cycle of extension and re-
lease reveals a slight increase in the measured force during extension (Figure 4B). This is
attributed to the secondary structure (hairpin formation) formed when ssDNA is relaxed,
which is modestly stabilized by chloroquine binding during introduction into the flow
cell. After a few cycles, this stabilization disappeared (Figure 4C), with no other effects on
the ssDNA force–extension curve. The secondary structures initially observed have been
pulled out and do not reform under these conditions. This result suggests that at 200 µM
chloroquine, when binding to dsDNA is almost saturated, no effect on ssDNA is observed.
We conclude that chloroquine binding to ssDNA is much weaker than to dsDNA.
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Figure 4. ssDNA stretching curves in the presence of 200 µM of chloroquine. (A) Representative
stretch and release curves for 8.1 kbp dsDNA in dark blue ((A), 1). After returning to its original
position, 20 µL of 5 M NaOH is added to the flow cell to melt the DNA. A representative ssDNA
stretch curve is shown in light blue ((A), 2). (B) Representative curve for the first stretch of ssDNA
in the absence (blue) and presence of 200 µM chloroquine at 20 nm step size, with total time for
extension and release of ~10 s (red closed and open circles, respectively). (C) The same DNA molecule
on its nineteenth stretch in the absence (blue) and presence (red) of chloroquine.

2.4. Chloroquine Intercalation Stabilizies B-DNA

The free energy of the DNA overstretching transition is calculated as the work done by
the force to stretch dsDNA through the transition and to return as one or two melted ssDNA
strands. This work can be estimated by integrating the area between the force extension data
for dsDNA and ssDNA, as in Figure 5A. Both the integrated area (see Equation (5), Section 4)
and the measured transition force increase with increasing chloroquine concentration
(Figure 5B–F). The calculated transition free energy change and transition force change as a
function of the ligand are presented in Figure 5G,H, respectively. At these concentrations,
chloroquine intercalation nearly doubles both the energy and the melting force.

2.5. AFM Measures Distinct Binding Modes

The conformation of DNA and the resulting changes due to chloroquine binding were
also measured using AFM imaging (Figure 6). DNA substrates (500 bp) alone appear as
semiflexible polymers with variable curvature but consistent length (Figure 6A). Addition of
high concentrations of chloroquine visibly straightens and elongates the DNA (Figure 6B).
To measure the conformation of the DNA, each individual molecule was traced using
segments of uniform length (5 nm) and defined angular orientation. The contour length of
each molecule was calculated by summing the total segment length; the persistence length
was calculated by the angular correlation of consecutive segments. The average value of
the cosine of the change in angle between two segments decays exponentially with their
separation length, with the persistence length as a decay constant [20]. Using this method,
we found the persistence length of the free DNA to be ~45 nm (Figure 6C). The addition
of 100 µM chloroquine nearly doubles this persistence length (Figure 6D). Increasing the
chloroquine concentration further, to 1 mM, does not result in further persistence length
changes (Figure 6D). This substantial increase happens at chloroquine concentrations about
10-fold lower than required for intercalation, which requires ~1 mM chloroquine under
the AFM measurement conditions, with little effect at 0.1 mM (Figure 6D). The presence
of Spermidine3+ is required for DNA/ligand complex attachment to the mica surface
for the AFM measurements. Therefore, concentrations of chloroquine ligand are about
10-fold higher for the AFM measurements compared to the solution measurements, as the
chloroquine has to compete with Spermidine3+ for DNA binding. The fact that a lower
concentration of chloroquine leads to dsDNA rigidification but not elongation suggests
that a non-intercalative electrostatic groove binding mode may be responsible for changes
in the persistence length [21,22].
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Figure 5. Free energy of DNA overstretching increases with chloroquine binding. The energy of
converting dsDNA to ssDNA, or base melting, is shown as the shaded, integrated area between
the force extension data for dsDNA (blue without chloroquine, red with chloroquine) and ssDNA
(purple), below the critical melting force (Fm, dotted line). This value may be found for each ligand
concentration where melting is observed; in the absence of (A) and in the presence of (B) 1 µM,
(C) 3 µM, (D) 10 µM, (E) 30 µM, and (F) 50 µM chloroquine. (G) The resulting integrated free energy
change per base pair and (H) the change in the critical melting force both increase with ligand
concentration. Errors represent the standard error from three DNA stretches, where larger than the
symbols used.
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Figure 6. AFM measurement of chloroquine-mediated changes to DNA properties. AFM images
of 500 bp dsDNA constructs in the absence (A) and presence (B) of 1 mM chloroquine. (C) DNA
molecules are traced to acquire the orientation of the molecule over its entire length. The relative
angle change (θ) between every two points separated by contour length ranging from 5 to 150 nm is
calculated. The average cosine of this value, averaged over all observed molecules, decays as this
length is increased (diamonds with standard error bars). Best fits (solid lines) to the DNA only (blue)
and DNA with chloroquine (purple and red) are obtained to determine the persistence length. (D) The
measured persistence length (yellow) and contour length (green) of DNA–chloroquine complexes.
Error bars represent the standard error.

2.6. Chloroquine Increases dsDNA Melting Temperature

Thermal melting experiments were performed to determine the effect of chloroquine
on dsDNA duplex stability. For these studies, a 20-bp duplex consisting of dA20 annealed
to dT20 was used. An ~10 ◦C increase in the Tm was measured in the presence of 200 µM
ligand, indicating an increase in the stability of the duplex with ligand bound over DNA
alone (Figure 7A–C). The ∆Tm as a function of chloroquine concentrations measured in
20 mM and 100 mM NaCl (in 10 mM HEPES buffer) are plotted in Figure 7C. The maximum
chloroquine concentration used in these studies was limited by the fact that chloroquine
emits in the same wavelength range as DNA. By fitting these data to a binding isotherm
(see Equation (7), Section 4), chloroquine binding at 20 mM NaCl yields a maximum
temperature shift ∆Tm(csat) of 16 ± 2 ◦C and a Kd = 90 ± 10 µM. In 100 mM Na+, we
estimate a Kd of 650 ± 150 µM. Using these two Kd values at two salt concentrations, we
estimate a very approximate effective charge of chloroquine intercalating into dsDNA of
Zeff = +0.98 (Equation (7), Section 4). This is a reasonable result for a small molecule with a
total charge of +2 (at pH 7.5), as not all of the charges may be affecting the molecule’s ability
to displace Na+ cations from DNA. This result is consistent with the effective charge of +1
to +2 previously measured for chloroquine [23] and other divalent cationic small-molecule
DNA intercalators [24]. As with chloroquine, the intercalators quinacrine and methylene
blue stabilized dsDNA with respect to melting by 23 ◦C and 9 ◦C, respectively. A similar
Tm increase of ~15 ◦C was also measured for the dsDNA intercalator ethidium [25].
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Figure 7. Measuring the effect of chloroquine on DNA stability. (A) Thermal melting profiles in
20 mM NaCl of A20:T20 duplex DNA (4 µM dsDNA) in the absence (black) and presence of 50 µM,
100 µM, 150 µM, and 200 µM (from navy to sky blue, following the grey arrow) of chloroquine
diphosphate. (B) First derivative of melting profiles used to determine Tm at each concentration
of chloroquine diphosphate. (C) ∆Tm values versus added chloroquine, in 20 mM Na+ (blue) and
100 mM Na+ (red). Errors (bars) are standard deviations from three independent replicates in 20 mM
Na+ and estimated from individual profiles in 100 mM Na+. Reduced chi-squared fits (dotted lines)
determined KD = 90 ± 10 µM (20 mM Na+) and KD = 650 ± 150 µM (100 mM Na+), as described in
the text.

Figure 7C also illustrates the result of fitting to a binding isotherm (Equation (7),
Section 4). Chloroquine binding at 20 mM NaCl yields the maximum temperature shift,
∆Tm(csat) = 16 ± 2 ◦C and KD = 90 ± 10 µM. In 100 mM Na+, we estimate the approximate
KD = 650 ± 150 µM in this 5-fold higher salt. Using just these two Kd values at two salts,
we can estimate very approximately Zeff = +0.98 (Equation (7), Section 4). The effective
cationic charge of chloroquine intercalating into dsDNA is Zeff ~ +1. This is a reasonable
result for a small molecule with a total charge of +2 (at pH 7.5), as not all of the charges may
be affecting the molecule’s ability to displace Na+ cations from DNA upon its particular
type of binding. This result is consistent with the effective charge of +1 to +2 previously
measured for chloroquine (ref) and other divalent cationic small molecule intercalative
binding (such as quinacrine and methylene blue) to dsDNA [24]. As with chloroquine,
quinacrine and methylene blue stabilized dsDNA with respect to melting by 23 ◦C and 9 ◦C,
respectively. This Tm increase of ~15 ◦C was also measured for the widely used dsDNA
intercalator ethidium [25].

2.7. Chloroquine-B DNA Binding Is Entropically Driven and Endothermic

We also studied the nature of chloroquine—dA20:T20 duplex DNA binding using
isothermal titration calorimetry (ITC). Chloroquine was titrated into a solution containing
10 µM DNA. We observed heat absorption upon chloroquine binding (Figure 8A for an
example). The titration was fit to a binding curve (Figure 8B) yielding the following
parameters (averaged over three trials): KD = 360 ± 20 µM, ∆H = 21 ± 1 kcal/mol, –T∆S
= –26 ± 1 kcal/mol, ∆G = –4.7 ± 0.3 kcal/mol, and a binding site size of 5, similar to the
value obtained from the OT experiments.
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Thus, the rather weak chloroquine intercalative binding to dsDNA is driven primarily
by the release of entropy and opposed by an almost equally large absorption of heat, i.e.,
increase in the system’s enthalpy. Entropy-driven dsDNA binding was previously observed
for several intercalators [24,26,27]. However, entropy increase is not a universal feature
of intercalative binding, as many other dsDNA intercalators were observed to decrease
entropy upon binding [28]. Table 1 summarizes the values of KD obtained in this study
from several approaches and in different salts.

Table 1. Equilibrium dissociation constant (KD) for chloroquine intercalation into dsDNA determined
by thermal melting, ITC, and OT, as described in results.

Na+ Concentration
(mM)

KD
(µM) Experimental Method

20 90 ± 10 thermal melting
30 360 ± 20 isothermal titration calorimetry

100 650 ± 150 thermal melting
100 170 ± 90 optical tweezers

3. Discussion

Chloroquine was long used as an effective and relatively safe antimalaria and an-
ticancer drug [1]. It is a protonated, weakly basic molecule that exerts its antimalarial
and anticancer effects mainly by increasing pH and accumulating in the vacuoles of the
parasites [3] and in the internal organelles of cancer cells [29]. The half-maximal effective
concentration of chloroquine for malaria and cancer treatment is EC50 ~ 1 µM [30]. Im-
portantly, chloroquine was shown to have a rather narrow therapeutic index, meaning
that its cytotoxic concentration (CC50) of ~10–100 µM is close to its EC50 [31]. The initial
studies of chloroquine’s anti-COVID-19 activity suggested a similar EC50 of ~1 µM [32]
and a CC50 of ~100 µM [33]. The mechanism of chloroquine’s anti-COVID-19 (as well as
general anti-viral) action in altering the intracellular pH was shown to be similar to its
antimalarial activity. However, these studies were largely discontinued, as chloroquine
was found to be much less effective in COVID-19 treatment, with an EC50 of ~10 µM, and
more cytotoxic, with a CC50 of ~10–100 µM [5,34]. Also, chloroquine was found to have
multiple long-lasting side effects in the treatment of COVID-19, likely due to the drug’s
long lifetime and accumulation in the organism. The reason for this cytotoxicity, leading to
its narrow therapeutic index in COVID-19 treatment, remains unknown.

A recent study [11] has suggested that dsDNA binding by chloroquine may be the rea-
son for its toxicity. Costa et al. used OT stretching experiments to characterize chloroquine–
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DNA intercalative binding. However, the low forces (<1.5 pN) used in these OT experiments
were insufficient to stretch the chloroquine/dsDNA complex to observe its elongation upon
chloroquine intercalation in a high-salt buffer; changes in DNA persistence length were
observed at low forces and concentrations, consistent with the DNA stiffening we observed
using AFM in the present study.

In this work, OT stretching, AFM imaging, chloroquine–DNA melting, and ITC experi-
ments were used to more fully characterize chloroquine–dsDNA binding. Using OT, we find
that chloroquine binds dsDNA in a single intercalative mode with a KD ~ 200 ± 100 µM in
physiological salt. We hypothesize that the quinoline moiety is responsible for this inter-
calation, while the tail does not contribute to this mode (see Figure 1). This is consistent
with previous work on pure intercalators such as ethidium [19], indole rings found in
cyanine dyes [14,35], and proteins containing intercalating motifs [36]. Saturated chloro-
quine/dsDNA intercalation occurs every ~5 bp and leads to DNA duplex elongation by
0.29 nm/ligand molecule. This intercalative chloroquine binding is weakly salt-dependent,
with an effective charge of Zeff ~ +1. Our ITC experiments suggest a comparable KD of
~360 µM and a similar binding site size. The intercalative nature of chloroquine–dsDNA
binding is reflected in the positive enthalpy ∆H = 21 ± 1 kcal/mol coupled with an even
larger release of entropy –T∆S = –26 ± 1 kcal/mol and a relatively small binding free
energy ∆G = –4.7 ± 0.3 kcal/mol, suggesting relatively weak intercalation.

The Tm of duplex DNA increased by ~15 ◦C upon saturated chloroquine intercalation,
consistent with the fact that the ligand binds ssDNA much weaker than dsDNA. In addition,
in the presence of chloroquine, force-induced stretching results in the transition of B-
DNA into S-DNA rather than the energetically more favorable B-DNA strand separation.
Because of chloroquine’s ability to stabilize dsDNA, it is likely to slow down dsDNA
strand separation, thereby interfering with cellular dsDNA function. Indeed, early studies
reported the ability of chloroquine to halt DNA replication and transcription [37], as
was also observed for ethidium, although at ~100-fold lower concentrations of the latter.
We propose that the intercalative activity of chloroquine observed at ~100 µM may be
responsible for the cytotoxicity observed in cells in the same range of drug concentration,
and which becomes more pronounced over the time of treatment, likely due to chloroquine
accumulation [34].

4. Materials and Methods
4.1. Samples and Solutions

For single-molecule dsDNA stretching experiments, biotinylated λ-phage dsDNA
was tethered between two 3.13 µm streptavidin-coated polystyrene beads (Spherotech,
Lake Forest, IL, USA). Biotinylated dsDNA was produced by ligating 5′ and 3′ labels to
linearized 48.5 kb λ-phage DNA (Roche, Basel, Switzerland), based on an adapted protocol
by Candelli et al. [38]. Similarly, the DNA substrates for the ssDNA stretching experiments
were prepared by biotinylating both ends of the linearized baculovirus transfer plasmid
pBACgus11 (gift from Borja Ibarra, IMDEA Nanosciencia, Madrid, Spain) [39]. A new stock
solution of 10 mM chloroquine diphosphate salt (Sigma, St. Louis, MO, USA) in AmbionTM

nuclease-free water (Thermo Fisher Scientific, Waltham, MA, USA) was prepared weekly.
The stock solution was further diluted in 100 mM NaCl and 10 mM HEPES at 7.5 pH to
different concentrations, as detailed in the figures.

4.2. Optical Tweezers

Stretching experiments were performed on a custom-built optical tweezer system [16,39].
Biotinylated λ-phage dsDNA was stretched between two streptavidin beads, with one bead
held in the dual-beam laser trap and the other on a glass micropipette tip. A piezoelectric
stage moved the micropipette tip while its position provided the controls for DNA extension.
The deflection of the trapping laser was used to determine the DNA tension. A custom-built
flow cell was connected to four different inlet tubes, allowing for exchange of buffers. First,
the streptavidin beads were caught on the tip and the trap. Then, dsDNA was flowed
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and caught between the beads. DNA was first extended to verify a single tether and
confirm the strength of the biotin–streptavidin bond, which should remain at these loading
rates up to 100 pN [40,41]. Furthermore, multiple biotins are incorporated on each DNA
end; thus, more than one attachment may anchor each end. An excess of chloroquine
solution (300–500 µL) was used to exchange the buffer. Standard errors from multiple
stretches of dsDNA in buffer and chloroquine solution (≥3) are shown in the figures, unless
otherwise noted.

The pBAC dsDNA construct (8.1 kb) was tethered between two streptavidin beads as
described above. To melt the dsDNA to ssDNA, 20 µL of 5 M NaOH was flowed over the
dsDNA, followed by flushing with 1 mL of buffer. Once the caught strand was confirmed to
be single-stranded, chloroquine solution was flowed over the DNA, and multiple stretches
on different DNA molecules were recorded.

4.3. Models of Polymer Elasticity

The elasticity of dsDNA has been previously characterized by a model that combines
entropic flexibility with observed enthalpic elasticity. The extensible worm-like chain
(eWLC) model may not be exactly solved, but a high-force limit is known [42]:

L(F) = L ·
[

1 − 1
2

(
kBT
F · P

)1/2
+

F
S

]
. (1)

Here, L(F) is the force-dependent measurement of the DNA length, typically the length
measured between the beads in force extension data. This length is commonly divided by
the number of base pairs, and thus the contour length of any construct is well known to
be L = 0.34 nm/bp at 30 pN [16]. The persistence length and the stiffness are measures of
the entropic and enthalpic elasticity, respectively. Typical values for long DNA in optical
tweezers experiments exhibit well-known dependencies on solution conditions, but in the
experiments here (10 mM HEPES, pH 7.5, and 100 mM Na+), P = 45 nm and S = 1200 pN.

4.4. Deducing Binding Affinity

As an intercalating ligand is introduced, the measured length of DNA increases and
continues to increase until ligand binding saturates the double strand, as all binding sites
are occupied. This measured change in the length may be expressed as a function of the
force-dependent binding site occupancy at a given ligand concentration (Θ(F,c)):

Θ(F, c) =
LChl(F, c)− L(F)

L(F)
. (2)

The force-dependent length in the absence of ligand (L(F)) is known from Equation (1),
while the length induced by ligand binding is measured at varying concentrations of
chloroquine Lchl(F,c). Ligand concentration is also related to the occupancy though a simple
isotherm, via the binding site size (N) and the equilibrium dissociation constant (KD):

c = KD · NΘ
1 − NΘ

. (3)

Thus, fitting the ligand-induced change in the measured length across several forces to
Equations (2) and (3) provides both the binding site size and the binding affinity.

Points shown in Figure 3A were taken directly from the average of 3 force–extension
curves at every 5th force from 15 pN to 70 pN (for clarity, the figure only shows points for
every 10th force). The extension at each selected force for the range of concentrations of
chloroquine was fit to the binding isotherms described above. To initiate the fits, N was
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fixed at one while fitting LChl and KD. We obtained KD and the dsDNA elongation per CHL
intercalation event, ∆x, by fitting the KD(F) dependence to:

KD(F) = KD(F = 0) · e
−F∆x
kBT . (4)

Values of KD(F = 0) and ∆x were used to find an improved value for N according to N(F)
= ∆x/(LChl(F) − LDNA(F)). N(F) was fixed, and fits of LChl and KD were re-minimized, and
KD and ∆x were found again. All errors were propagated from the standard error of three
DNA + ligand stretches. These errors were propagated into the chi-squared minimization
fits to the binding isotherms. The uncertainties in KD, ∆x, and n are determined from
χ2 + 1 values.

4.5. Calculating the Energy of Overstretching

The change in melting transition free energy was determined as the area in the me-
chanical cycle between the DNA + Chl stretching curve (xdsDNA−Chlq(F)) and the ligand
free ssDNA (xssDNA(F)) curve from 0 force to the melting force (Fm) [19]:

∆GDNA−Chl =
∫ Fm

0
(xssDNA(F)− xdsDNA−Chl(F)) · ∆F. (5)

4.6. Atomic Force Microscopy

Double-stranded DNA (500 bp) constructs were produced through PCR using a pUC19
plasmid template and then gel purified to ensure uniform length. The DNA was diluted to
a concentration of 1 nM in a buffer containing 100 mM NaCl, 10 µM spermidine, and 10 mM
HEPES (pH 7.5). Chloroquine was added to the sample at a concentration of 100 nM or
1 mM and allowed to equilibrate for 5 min. The solution (5 µL) was deposited on a freshly
cleaved mica surface and then rinsed with deionized water and blown dry after 1 min.
The sample was imaged with a MultiMode 8 AFM and Nanoscope V controller (Bruker,
Billerica, MA, USA) using the peak force tapping mode with ScanAsyst silicon nitride
probes (Bruker, Billerica, MA, USA) and analyzed using Gwyddion software (version 2.55).
Custom Matlab (version R2023b, MathWorks, Natick, MA, USA) software was used to trace
the DNA molecules following the increased intensity of the DNA backbone relative to the
mica surface. Traces were segmented into 5 nm steps with a defined angular orientation.
The change in orientation for all segment pairs separated by fixed increments of contour
length ranging from 5 nm to 150 nm were averaged to determine persistence length. Total
contour length was calculated by summing the total number of segments. Errors in fitted
parameters are derived from χ2 + 1 values.

4.7. Thermal Melting Studies

Thermal melting experiments were performed in quartz cuvettes. Absorbance at 260 nm
was monitored using an Agilent UV–visible spectrophotometer (Cary 3500) equipped with
thermoelectrically-controlled cell holders. A 20-bp A:T DNA duplex was formed by heat-
ing a dA20 oligonucleotide with a dT20 oligonucleotide (100 µM each, purchased from
Integrated DNA Technologies, Coralville, IA, USA) to 80 ◦C for 3 min, cooled slowly to
room temperature, and placed on ice. The sample was heated in 10 mM HEPES (pH 7.5)
and 20 mM or 100 mM NaCl in the absence or presence of varying concentrations of chloro-
quine diphosphate. The temperature was increased from 15 ◦C to 95 ◦C at a heating rate of
1 ◦C/min. Tm values were determined by taking the first derivative of each melting curve.

Assuming that each chloroquine molecule binds dsDNA independently, we fit the
temperature shift vs. chloroquine concentration ∆Tm(c) to the simple binding isotherm:

∆Tm(c) = ∆Tm(csat) ·
c/KD

1 + c/KD
. (6)
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Fits to the data determine the temperature shift at saturating concentrations of ligand,
∆Tm(csat), and the equilibrium binding affinity (KD). While full titration was possible in low
salt, the melting signal was too noisy at high salt and at high chloroquine concentrations.
Thus, fitting of the data determined both ∆Tm(csat) and KD in 20 mM Na+. We made the
assumption that ∆Tm(csat) remained the same in 100 mM Na+, allowing determination of
KD at higher salt, although with greater uncertainty.

Measuring KD in two salt concentrations allowed us to estimate the effective charge of
the intercalator (Zeff):

Ze f f = − d(ln(KD))

d
(
ln
[
Na+

]) . (7)

4.8. Isothermal Titration Calorimetry

Binding of chloroquine to a 20-bp A:T DNA duplex was measured using a MicroCal
PEAQ-ITC (Malvern Panalytical, Malvern, United Kingdom). Chloroquine (7 mM stock
in 20 mM NaCl, 10 mM NaPO4 (pH 7.5)) was titrated into a sample cell containing 10 µM
DNA in a matched buffer in 18 injections of 2 µL at 25 ◦C. Injections were spaced 150 s
apart to allow the cell to return to equilibrium. The titration experiment took 45 min. Raw
data was analyzed using the MicroCal PEAQ-ITC analysis software (version 1.41), and the
data was fit using the Levenberg–Marquardt algorithm to determine values for KD, ∆H,
and ∆G. The number of binding sites (N) was constrained to N = 4 during fitting.
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