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kgaweda@imdik.pan.pl (K.G.-W.)

* Correspondence: izabela.grzegorczyk@umed.lodz.pl

Abstract: Methyl jasmonate (MJA), a signaling molecule in stress pathways, can be used to induce
secondary metabolite synthesis in plants. The present study examines its effects on the growth
of Salvia viridis hairy roots, and the accumulation of bioactive compounds, and correlates it with
the expression of genes involved in the phenylpropanoid pathway. To our knowledge, this study
represents the first exploration of elicitation in S. viridis culture and the first comprehensive analysis
of MJA’s influence on such a wide array of genes within the polyphenol metabolic pathway in
the Salvia genus. Plants were treated with 50 and 100 µM MJA, and samples were collected at
intervals of one, three, five, and seven days post-elicitation. HPLC analysis revealed that MJA
stimulated the accumulation of all tested compounds, with a 30% increase (38.65 mg/g dry weight)
in total polyphenol content (TPC) on day five. Quantitative real-time polymerase chain reaction
(RT-PCR) analysis demonstrated a significant increase in the expression of the phenylpropanoid
pathway genes—TAT (tyrosine aminotransferase), HPPR (4-hydroxyphenylpyruvate reductase), PAL
(phenylalanine ammonia-lyase), C4H (cinnamic acid 4-hydroxylase), 4CL (4-coumarate-CoA ligase),
and RAS (rosmarinic acid synthase)—following MJA treatment. For the majority of the genes, this
increase was observed after the first day of treatment. Importantly, our present results confirm
strong correlations of the analyzed gene expression with polyphenol biosynthesis. These findings
support the notion that hairy roots provide a promising biotechnological framework for augmenting
polyphenol production. Additionally, the combination of elicitor treatment and transgenic technology
emerges as a viable strategy to enhance the biosynthesis of these valuable metabolites.

Keywords: elicitation; hairy roots; HPLC; organ culture; phenylpropanoid pathway; rosmarinic acid;
real-time PCR (RT-PCR) analysis; gene expression

1. Introduction

Jasmonic acid (JA) and its derivatives, including the methyl ester (MJA), are signaling
molecules formed from α-linolenic acid in different branches of the lipoxygenase pathway.
They regulate many aspects of plant growth and development, such as seed germination,
root and whole plant growth, stamen development, flowering, and senescence [1,2]. In
addition, jasmonates activate the defense mechanisms of plants in response to various
pathogens and environmental stressors, such as water deficit, low temperature, nutrient
deficiency, and salinity. Exogenously applied JA and its methyl ester, MJA, are capable of
triggering transcriptional reprogramming. In a wide range of plant species, they coordinate
the activation of genes associated with the formation of secondary metabolites that allow
cells to cope with such stresses [3,4]. Some studies suggest that mitigating the negative
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impact of various types of stress factors using MJA allows plants to increase their tolerance
to unfavorable environmental conditions [5].

Many studies have examined the effect of MJA on various metabolic pathways in a
range of plant species. It has also been shown to induce the production of antioxidant
defense enzymes and secondary metabolites in plant organ and cell cultures. For example,
MJA has demonstrated a positive effect on ginsenoside production in ginseng cell suspen-
sion and hairy root cultures [6], glycyrrhizin production in Glycyrrhiza inflata hairy root
culture [7], and tropane alkaloids in transgenic Hyoscyamus niger hairy root culture [8].

Numerous studies have also found this elicitor to increase the accumulation of polyphe-
nols, including rosmarinic acid (RA), in plants. Due to the great importance of RA [9,10],
there has been great interest in better understanding its production both in vivo and
in vitro. Successful commercial production depends on the metabolic response to the type
and concentration of the elicitor, and the exposure time. It has been shown that MJA appli-
cation increases the accumulation of RA in Lithospermum erythrorhizon cell suspension [11].
Elicitation with MJA enhanced RA production 2.4-fold in Lavandula culture compared to
non-elicited cells [12], and 3.4-fold in Coleus forskohlii hairy roots compared to controls [13].

Sage species can also accumulate RA upon MJA treatment, providing an excellent
model to investigate polyphenol biosynthesis and the regulation of genes within this
metabolic pathway. Methyl jasmonate treatment has been reported to stimulate the biosyn-
thesis of caffeic acid (CA) and RA in the hairy roots of Salvia przewalskii [14], and the
regenerated shoots of Salvia virgata accumulated 70% more RA on day 3 after exposure to
MJA compared to a control group [15]. Although studies have confirmed the effect of MJA
on RA biosynthesis in several sage species, the transcription levels of genes involved in
RA biosynthesis have not been extensively studied. A few reports have shown that the
exogenous application of MJA induced the expression of genes associated with polyphe-
nol biosynthetic pathways; for example, it has been found that increased PAL expression
induced by MJA preceded an increase in RA accumulation [11,16,17].

Different Salvia species may exhibit diverse expression patterns of genes in the phenyl-
propanoid pathway, leading to variations in the production of secondary metabolites like
flavonoids, lignins, and phenolic acids. For this reason, this study examines the effects of
MJA on the biosynthesis of RA and other polyphenols in Salvia viridis hairy root culture.
S. viridis is an annual herb which grows in the Mediterranean area. Its aerial parts have
been used in Turkish medicine for their anti-inflammatory and antiseptic properties [18].
Among its secondary metabolites, phenolic acids, phenylpropanoids, and terpenoids are
believed to predominate [19], and S. viridis hairy roots have been found to be a promising
potential source of phenolic acids [20]. In this study, we also evaluate the transcriptional
expression profiles of six genes involved in polyphenol accumulation in the presence of
MJA. We correlate these profiles with the production of individual compounds, aiming to
further elucidate the key mechanisms within the polyphenol synthesis pathway, which are
currently understood only at a basic level. The identification of key regulatory genes across
Salvia sp. can provide targets for genetic engineering interventions aiming to boost the
production of metabolites. To our knowledge, this is the first study to employ elicitation in
S. viridis culture and the first one to analyze the impact of MJA on such a wide range of
genes controlling the polyphenol metabolic pathway in a member of the Salvia genus.

2. Results and Discussion
2.1. Effect of MJA on Biomass Accumulation and Phenolic Content in Salvia viridis Hairy Roots

Two concentrations of methyl jasmonate were selected for application: 50 and 100 µM.
These values have been highly effective in previous studies [12,21,22]. The elicitor was
added on day 29 of passage, in the plateau phase; this day was established according
to previous studies [23]. The dry weight (DW) of culture was measured every two days
from day 1 to 7 after introducing the elicitor to the growth medium. The addition of MJA
was found to generally have no negative effect on culture growth (Figure 1). The roots
continued to grow over the next seven days, ultimately reaching from 0.727 to 0.739 g DW
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(depending on the treatment) on the 36th day of cultivation. No differences in culture
growth were observed between treatments, apart from root dry weight on the first day
after supplementation with 50 µM MJA (Figure 1).
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Figure 1. Growth of Salvia viridis culture 1, 3, 5, and 7 days after treatment with 50 µM and 100 µM
MJA. Transformed roots treated with only 10 µL of ethanol were used as controls; the values are given
as mean ± standard error of three independent experiments. If at least one letter is the same between
two treatments, the difference is not statistically significant (p < 0.05); the results were obtained via
one-way ANOVA analysis, followed by a post hoc Tukey’s test.

Many studies have reported the inhibition of plant growth under the influence of
elicitors; indeed, experiments on Taxus media and Lavandula cultures indicate the inhibition
of cell growth under MJA treatment [12,24], and Raphanus sativus growth was slowed
during MJA treatment compared to untreated controls [25]. In addition, the fresh weight of
Salvia castanea hairy root culture was lower in the presence of exogenous MJA [26]. This
inhibitory effect most likely occurs as a result of signaling from MJA, informing the plant
to focus on defense against stress factors at the expense of growth, thus increasing the
chances of survival in the natural environment [2]. As such, it is necessary to determine
the appropriate moment of MJA supplementation so as not to significantly interfere with
culture growth.

To assess the effects of MJA elicitation on polyphenol biosynthesis, their contents in
the hairy root samples were measured via HPLC analysis one, three, five, and seven days
after elicitation. Six phenolic acids were tested: rosmarinic acid, salvianolic acid E (SAE),
isomers of salvianolic acid F I and II (SAF I and SAF II), prolithospermic acid (PLS), and
caffeic acid (CA), as well as total phenolic content. It was found that MJA treatment had
a beneficial effect on secondary metabolite production in the hairy roots of Salvia viridis
(Figure 2). However, the influence on individual compounds depended on elicitation time
and elicitor concentration.

The level of PLS in the roots increased two-fold compared to the controls after the
first day of elicitation. This level was maintained for up to seven days after the elicitation
of MJA.

The production of RA, the dominant compound in the phytochemical profile of
S. viridis hairy roots (Figure 2), was also stimulated from the first day after MJA treatment.
However, its level peaked five to seven days after elicitation, with the highest value
(30.1 mg/g DW) occurring on day five with 100 µM MJA, i.e., 27% higher than the control.
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Figure 2. Polyphenol content obtained in Salvia viridis hairy roots 1, 3, 5 and 7 days after elicitation
with 50 µM and 100 µM of MJA. Transformed roots treated with only 10 µL of ethanol were used
as controls; the values are given as mean ± standard error of three independent experiments. If at
least one letter is the same between two treatments for the same compound, the difference is not
statistically significant (p < 0.05); the results were obtained via one-way ANOVA analysis, followed
by a post hoc Tukey’s test. CA—caffeic acid; PLS—prolithospermic acid; SAE—salvianolic acid E;
RA—rosmarinic acid; SAF I and II—salvianolic acid F isomers I and II.

For most metabolites, production was most strongly stimulated five days after MJA
treatment. At this point, all polyphenol levels were higher than in the non-MJA-treated
culture, regardless of the elicitor concentration. Salvianolic acid E was the only metabolite
for which a concentration of 50 µM MJA was insufficient to increase biosynthesis (Figure 2);
however, 100 µM MJA treatment yielded a significant increase in SAE level from day five,
reaching a level of 2.32 mg/g DW in the roots on day seven.

In contrast, optimal biosynthesis of the SAF I isomer was obtained at the lower (50 µM)
MJA concentration (Figure 2). In the 50 µM MJA-treated culture, the content of SAF I isomer
after seven days was almost three times higher than that in the 100 µM MJA treatment and
four times higher than in the control.
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Finally, the highest total phenol content (TPC) (38.65 mg/g DW) was obtained after
five days of elicitation with 100 µM of MJA; the value was 30% greater than in the control
hairy roots (Figure 3). A similar level of phenolic compounds was observed seven days
after supplementation, regardless of the elicitor concentration used.
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Figure 3. Total phenolic content obtained in Salvia viridis hairy roots 1, 3, 5, and 7 days after elicitation
with 50 µM and 100 µM of MJA. Transformed roots treated with only 10 µL of ethanol were used as
controls; the values are given as mean ± standard error of three independent experiments. If at least
one letter is the same between two treatments, the difference is not statistically significant (p < 0.05);
the results were obtained via one-way ANOVA analysis, followed by a post hoc Tukey’s test.

Stimulators such as MJA have been found to increase RA accumulation in Lamiaceae
cell cultures, such as those of Lavandula vera [12], Lithospermum erythrorhizon [11,27], and
Coleus blumei [16]. Some studies have also examined its effect on plant organs, including
transformed roots. Treatment with 10 µM MJA increased RA accumulation in S. miltiorrhiza
hairy roots 1.36-fold [28]. A total of 50 µM MJA induced 1.60-fold and 2.2-fold increases
in RA accumulation in Salvia verticillata and Salvia officinalis leaves, respectively [29]. Both
50 and 100 µM MJA increased RA production in a shoot culture of S. officinalis, with an
optimal elicitation time of five days [22]. Elsewhere, 400 µM MJA promoted 1.3-fold RA
accumulation in S. przewalskii hairy roots, with the content peaking on the third day after
treatment [14]. Whereas 100 and 500 µM MJA increased the RA content in Coleus forskohlii
hairy roots [13].

These data, along with our current findings, indicate that methyl jasmonate is an
effective elicitor for RA and other polyphenols in various in vitro plant cultures, including
the newly tested Salvia viridis. However, the optimal elicitor concentration and time to peak
metabolite accumulation vary according to the species.

2.2. Gene Expression Analysis

Phenolic acids are important bioactive compounds in Salvia species, and their biosyn-
thetic regulation has been the subject of investigation in several studies. [28,30,31]. Their
biosynthesis starts with tyrosine and phenylalanine, and the pathway consists of two
parallel branches involving five enzymes: tyrosine aminotransferase (TAT), 4-hydroxy
phenylpyruvate reductase (HPPR), phenylalanine ammonia-lyase (PAL), cinnamic acid
4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL) (Figure 4). The two pathways
later converge through the reaction of the two resulting compounds, viz., coumaroyl-CoA
and 4-hydroxyphenyllactic acid, catalyzed by rosmarinic acid synthase (RAS) to produce
RA. Most of the genes encoding these enzymes have been reported to be responsive to dif-
ferent elicitors, such as MJA, salicylic acid, yeast, metal ions, and UVB radiation, indicating
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that these genes may be regulated by a similar set of transcription factors participating in
these signaling pathways [14,17,29,32–34]. MJA-driven changes in gene expression in this
pathway may influence the accumulation of polyphenols.
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Figure 4. The biosynthetic pathway of phenolic acids in plants. TAT: tyrosine aminotransferase;
HPPR: 4-hydroxyphenylpyruvate reductase; PAL: phenylalanine ammonia-lyase; C4H: cinnamic acid
4-hydroxylase; 4CL: 4-coumarate-CoA ligase; RAS: rosmarinic acid synthase [28,30,31].

Real-time PCR (RT-PCR) was used to analyze the expression of the six genes (TAT,
RAS, C4H, 4CL, HPPR, PAL) involved in different steps of the phenolic acid biosynthetic
pathway (Figure 4). Since a previous study showed that the level of actin remained stable
in different tissues and organs of S. miltiorhhiza and other Salvia species [14,35], it was used
as a reference gene to normalize gene expression in our study.

It was found that both elicitor concentration and exposure time influenced the level
of gene expression in S. viridis culture (Figure 5). After one day, higher transcript levels
were observed for all tested genes, except for 4CL, in MJA-treated hairy roots compared to
the untreated controls. The greatest increase in gene expression was noted for TAT, which
exhibited a nine-fold increase following treatment with 100 µM MJA, and a seven-fold
increase after treatment with 50 µM MJA, compared to the control cultures (Figure 5).
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Figure 5. The expression levels of polyphenol biosynthetic genes in Salvia viridis hairy roots 1, 3, 5,
and 7 days after elicitation with 50 µM and 100 µM of MJA. Transformed roots treated with 10 µL of
ethanol were used as controls; the values are given as mean ± standard error of three independent
experiments. If at least one letter is the same between two treatments for the same gene, the difference
is not statistically significant (p < 0.05); the results were obtained via one-way ANOVA analysis,
followed by a post hoc Tukey’s test. TAT: tyrosine aminotransferase, HPPR: 4-hydroxyphenylpyruvate
reductase, PAL: phenylalanine ammonia-lyase, C4H: cinnamic acid 4-hydroxylase, 4CL: 4-coumarate-
CoA ligase, RAS: rosmarinic acid synthase.

Likewise, HPPR expression substantially increased after the first day of treatment
with 50 µM (2.7-fold) and 100 µM MJA (2.3-fold). Both MJA concentrations were also
effective in stimulating the expression of CH4, with a 2–3-fold increase in expression on
the first day followed by gradual normalization over the following days. In contrast, the
expression of PAL, the initial enzyme of the phenylalanine pathway, showed a slow but
consistent increase over time, peaking on day five. At this point, its expression was almost
twice as high as that of the control. Interestingly, 4CL demonstrated increased relative
expression only at the lower elicitor concentration (from days three to seven). In the case
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of RAS, a downstream pathway gene, the greatest increase in expression was observed
on day one of elicitation, when MJA treatments reached 3.9- to 4.5-fold higher levels than
the controls, depending on the elicitor concentration. Elevated expression (1.6–1.9-fold)
persisted throughout the following days of the experiment.

TAT is a key enzyme at the beginning of the RA biosynthetic pathway (Figure 4).
Alongside HPPR, it constitutes a branch of the tyrosine-derived pathway. The expression of
TAT after the MJA treatment of S. viridis followed a similar trend to previous observations
for S. miltiorrhiza leaves, with significantly increased transcript levels observed between 4
and 72 h after treatment [36]. Similarly, Yan et al. [33] observed TAT upregulation in YE-
and Ag-treated cultures of S. miltiorrhiza hairy roots after eight hours, with a peak at 12 h
of elicitor treatment; the enzyme activity then declined slightly, but remained higher than
the control values for up to four days. In the elicitor-treated culture, TAT activity peaked
at a value about 1.5 times higher than the control values [33]. In Anchusa officinalis cell
suspension cultures, TAT activity was found to correlate positively with the level of RA
biosynthesis during the linear growth phase of the culture cycle [37].

Moreover, TAT expression was correlated positively with TPC accumulation for S. of-
ficinalis [29] and with TPC and RA production (r = 0.96 and r = 0.87, respectively) in Melissa
officinalis shoot cultures [38]. These data are consistent with our present results, where TAT
expression strongly correlated with TPC levels, including RA and some other polyphenols
(Table 1). The increase in TAT expression on the first day after treatment was most strongly
associated with the accumulation of TPC (0.9876), RA (0.9767), PLS (0.9875), and SAF
II (0.9529) on the fifth day. A similar delay was observed for the majority of the other
polyphenols and could be attributed to the fact that product synthesis takes time. Likewise,
an increase in TAT and PAL expression was found to precede peak RA accumulation by
around four days in Orthosiphon aristatus cell suspension cultures treated with yeast extract
as an elicitor [39]. All these findings point to TAT as an important gene in phenolic acid
production in plants.

Similarly, MJA treatments were found to upregulate the transcription level of HPPR,
the second gene of the tyrosine pathway, in the hairy roots of Salvia przewalski on day 3 after
treatment, i.e., a little later than in the present study [14]. In Lithospermum erythrorhizon cell
suspension cultures activated by MJA, a strong transient increase was observed in HPPR
and PAL activity in the MJA-treated cells, which correlated closely with RA accumulation,
whereas TAT activity exhibited only a slight increase [11]. Fatemi et al. [17] also reported
MJA-dependent stimulation of TAT, PAL, HPPR, and RAS gene expression in nodal segment
cultures of Satureja khuzistanica. Our present results further confirm very strong correlations
of the expression of these four genes and C4H with polyphenol biosynthesis (Table 1). As
in the case of TAT, C4H and RAS demonstrated the strongest correlations with total phenol
and RA accumulation on day five and for HPPR on day seven.

It has previously been found that the expression of genes in the upstream part of the
pathway (PAL, C4H, 4CL, TAT, and HPPR) in hairy roots of S. miltiorrhiza was promoted by
Ag ions; they reached their maximum on the first day after treatment, while RA content
was significantly increased on day 6 after treatment (1.3 times those in the control) [40].
Elsewhere, UVB radiation enhanced the expression of PAL, TAT, and RAS, with the highest
level in leaves of S. verticillata on the 10th day of exposure, and stimulated the accumulation
of phenolic acids such as RA and CA [34]. Moreover, a previous study on Melissa suspension
culture found that 4CL expression correlated with RA content, with gene expression peaking
just before elevated production [32]. In the present study, although both 50 µM and 100 µM
MJA increased total phenolic content (Figure 3), only lower MJA concentration stimulated
4CL expression, which could suggest that this gene is highly sensitive to regulation by
MJA (Figure 5). The low correlation between 4CL expression and polyphenol accumulation
in S. viridis roots (Table 1) may also imply that the conversion of 4-coumaric acid to
4-coumaroyl-CoA catalyzed by 4CL is not a limiting step in elicitor-induced RA biosynthesis,
and the non-elicited gene activity was already sufficient to catalyze the metabolic reaction.
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Table 1. Correlation coefficients between gene expression and phenolic compounds at subsequent control moments (1, 3, 5, and 7 days after elicitation). Blue—strong
(r > 0.7) or very strong (bold) correlation (r > 0.9); red—very strong negative feedback (r < −0.9).

TAT PAL HPPR C4H 4CL RAS

TPC

1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7

1 0.7856 0.4091 0.9528 0.5104 0.9101 0.9956 0.9319 0.9790 0.9856 0.6551 0.3923 −0.731 0.6487 0.8569 0.9602 0.2202 0.0232 0.9377 −0.0917 0.5705 0.6303 0.3792 0.9503 0.8026

3 0.2956 0.9614 0.9337 0.5140 0.2345 0.9542 0.7155 0.8410 0.8810 0.1021 0.6320 0.9242 0.5866 −0.2107 0.5505 0.0783 0.9698 0.9365

5 0.9876 0.9226 0.9221 0.7904 0.7932 0.9947 0.9992 0.9777 −0.7183 0.4463 0.9979 0.9096

7 0.8691 0.9617 0.9998 0.7550 −0.1262 0.7391

RA

1 0.9142 0.5058 0.9332 0.4048 0.9843 0.9999 0.9090 0.9479 0.9968 0.7333 0.3374 −0.8068 0.8168 0.9078 0.9421 0.1029 −0.2248 0.8944 −0.1502 0.6639 0.8028 0.4774 0.9303 0.7263

3 0.3976 0.9435 0.8846 0.6041 0.1768 0.9120 0.7872 0.8077 0.9309 0.2096 0.5853 0.8724 0.4951 −0.2679 0.6457 0.1862 0.9537 0.8883

5 0.9767 0.8704 0.8977 0.8575 0.7559 0.9754 0.9998 0.9957 −0.7581 0.5493 0.9999 0.8538

7 0.8043 0.9224 0.9904 0.6719 −0.0076 0.6539

SAE

1 −0.6799 −0.8209 0.4484 0.7826 −0.8346 0.0922 0.3918 0.0689 −0.9474 −0.6211 −0.3839 0.7754 −0.5226 −0.3478 0.4712 0.9364 −0.1783 0.5152 −0.7765 −0.8912 −0.5021 −0.8391 0.4414 0.4818

3 −0.8840 0.4748 0.2278 −0.7477 −0.5316 0.1666 −0.5539 0.2006 −0.589 −0.9586 −0.1128 0.2527 0.9046 −0.8465 −0.9019 −0.9652 0.5033 0.2201

5 0.5780 0.2567 0.3676 −0.7143 0.1186 −0.0332 0.7270 −0.3415 −0.9996 −0.9473 0.7432 0.2880

7 0.3719 0.1408 −0.1160 0.5470 −0.9656 0.5668

SAF I

1 0.2843 0.8608 0.8761 −0.072 0.0484 0.8672 0.9045 0.6876 −0.2076 0.9711 0.9373 −0.9897 0.4671 0.9973 0.8635 −0.3759 −0.9374 0.5651 0.6592 0.9372 0.4881 0.8438 0.8799 0.3186

3 0.7928 0.8614 0.5624 0.9149 0.8666 0.6129 0.9875 0.9713 0.9935 0.6576 0.9972 0.5410 0.0115 0.5641 0.9285 0.6394 0.8444 0.5688

5 0.7935 0.5375 0.9154 0.9987 0.9877 0.7580 0.6585 0.9228 0.0103 0.8772 0.6404 0.5097

7 0.4314 0.6333 0.8095 0.2457 0.4625 0.2225

SAF II

1 −0.8292 −0.6768 0.8963 0.3962 −0.6726 0.3068 0.8669 0.9449 −0.4620 −0.4355 0.2498 −0.8123 −0.9228 −0.1352 0.9074 0.0936 0.9449 0.6895 −0.2402 0.6709 −0.9318 −0.7004 0.8928 0.7197

3 −0.7610 0.9091 0.8802 −0.5851 0.0859 0.9081 −0.3593 0.7502 0.9343 −0.8736 0.5085 0.8678 0.9757 −0.3551 0.6528 −0.8850 0.9222 0.8839

5 0.9529 0.8657 0.8536 0.8623 0.6928 0.9733 0.9939 0.9965 −0.8146 0.5571 0.9963 0.8489

7 0.7987 0.9188 0.9890 0.6649 0.0017 0.6469

PLS

1 0.9857 0.9680 0.9526 0.8997 0.9975 0.6956 0.9317 0.9294 0.9467 0.9992 0.3917 −0.2342 0.9334 0.9380 0.9600 0.7211 −0.4571 0.3148 −0.0923 0.0237 0.9246 0.9593 0.9501 0.9985

3 0.9305 0.9612 0.9765 0.9909 0.2339 0.9611 0.9925 0.8407 0.4746 0.8404 0.6315 0.9817 −0.2656 −0.2113 −0.0005 0.8272 0.9697 0.9748

5 0.9875 0.9825 0.9219 0.3222 0.7928 0.8869 0.9992 0.7001 −0.7188 −0.1206 0.9980 0.9880

7 0.9978 0.9536 0.8455 0.9913 −0.6518 0.9879

CA

1 0.9264 0.4431 0.9997 0.8452 0.9893 0.9984 0.9962 0.9648 0.9938 0.6830 0.6339 −0.3414 0.8344 0.8757 1 0.6391 −0.2551 0.9240 0.1905 0.1354 0.8210 0.4137 0.9995 0.9860

3 0.3313 0.9999 0.9945 0.5459 0.4970 0.9860 0.7413 0.9588 0.5701 0.1394 0.8236 0.9968 0.5557 0.0711 0.1114 0.1158 0.9993 0.9936

5 0.9921 0.9972 0.9935 0.4261 0.9319 0.9330 0.9480 0.7756 −0.4951 −0.0088 0.9403 0.9991

7 0.9989 0.9813 0.8999 0.9704 −0.5629 0.9644

TPC—total phenolic content; CA—caffeic acid; PLS—prolithospermic acid; SAE—salvianolic acid E; RA—rosmarinic acid; SAF I and II—salvianolic acid F isomers I and II. TAT: tyrosine
aminotransferase, HPPR: 4-hydroxyphenylpyruvate reductase, PAL: phenylalanine ammonia-lyase, C4H: cinnamic acid 4-hydroxylase, 4CL: 4-coumarate-CoA ligase, RAS: rosmarinic
acid synthase.
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In the present study, the expression of the polyphenolic pathway genes showed weak
or no correlation with SAE levels in S. viridis culture; in some cases, a strong negative
correlation was observed (Table 1). This may be caused by a bottleneck in the part of
the pathway from RA to SAE, or the negative coupling of some genes with those of the
final SAE transformations. Although this compound is believed to be formed through
RA dimerization, the exact course of the reaction and the participating enzymes remain
unknown (Figure 4). Therefore, our current findings provide only a preliminary insight
into the regulation of RA biosynthesis by exogenous factors; further reactions involving
conversion to other high-molecular-weight polyphenolic acids, as indicated in Figure 4,
are currently unclear. The biosynthesis of an isomer of SAE—salvianolic acid B, the most
abundant and bioactive form of the salvianolic acids—also remains unknown. Some reports
suggest that it is a product of RA dimerization, while others indicate that it originates
from the side branch of 4-hydroxyphenyllactic acid via an intermediate compound called
danshensu [41].

Because our understanding of additional polyphenol metabolism pathways and the
associated enzymes, as well as the influence of regulatory genes and potential feedback
loops among genes, is limited, further extensive interdisciplinary investigation is required
to establish the connections between all the factors affecting biosynthetic pathways.

3. Materials and Methods
3.1. Plant Material

Hairy roots of Salvia viridis were obtained using Rhizobium rhizogenes strain A4 as
described by Grzegorczyk-Karolak et al. [20]. The K3 clone was selected for this study
on the basis of its growth rate and polyphenolic content. Hairy roots were cultivated in
optimized conditions, in 80 mL of WP [42] liquid medium, in Erlenmeyer flasks, on a rotary
shaker at 70 rpm and 26 ± 2 ◦C, in the dark. Subcultures were carried out every 35 days.

3.2. Elicitor Preparation and Treatment

Methyl jasmonate (MJA) was dissolved in 96% ethanol. Elicitor from stock solutions
was added (10 µL per flask) on day 29 of subculture using a sterile syringe filter (0.22 µm)
to reach a final concentration of 50 or 100 µM. The optimal moment of elicitation was
established based on the growth curve, i.e., when the stationary phase was reached [23]. The
controls were non-elicited hairy roots treated with 10 µL of 96% ethanol. Both treatments
were maintained on a rotary shaker at 70 rpm and 26 ± 2 ◦C, in the darkness. Three flasks
were used for each treatment and the experiment was repeated three times (passage 62–64).

The hairy roots were harvested one, three, five, and seven days after elicitation, and
their growth, expressed as dry weight (DW), and polyphenol accumulation were evaluated.
To determine DW, the culture was drained of the liquid medium, and the plant material
was frozen and lyophilized to a constant weight.

3.3. Preparation of Extracts for Phytochemical Analysis

Samples of lyophilized and micronized plant material (100 mg) were extracted with a
30 mL of methanol/water solution (4:1, v/v) in a sonication bath (Techpan, Warsaw, Poland)
at 40◦ for 15 min. The extraction procedure was repeated twice with 15 mL of the same
solvent. The combined extracts were evaporated to dryness under reduced pressure and
stored at 4 ◦C until further analysis.

3.4. Quantitative Analysis

The phenolic acid content was determined by HPLC. The dry extracts were dissolved
in 2 mL of methanol/water solution (4:1, v/v). The analysis itself was performed on Agilent
Technologies 1290 Infinity HPLC apparatus (Santa Clara, CA, USA) with diode array
detection (DAD) and an Eclipse XDB-C18 column (4.6 × 150 mm, 5 µm). The temperature
was maintained at 35 ◦C, with a flow rate of 1.6 mL/min and an injection volume of 10 µL.
The mobile phase consisted of acetonitrile as solvent A and water with 0.1% formic acid
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as solvent B. The elution profile was as follows: 0–5 min, 10% A and 90% B; 5–20 min,
18% A and 82% B; 20–25 min, 38% A and 62% B; 25–30 min, 100% A (isocratic elution).
Compounds were detected at λ = 325 nm.

Authentic standards of caffeic acid (CA), rosmarinic acid (RA), and salvianolic acid
B (SAB) (ChemFaces, Wuhan, China) were used for calibration. The following regression
equations were obtained: for CA, y = 30.3230x − 20.3788 (R2 = 0.9639); for RA, y = 12.1228x
+ 1281.4666 (R2 = 0.9813); for SAB, y = 3.5352x − 3.3512 (R2 = 0.9957). For the phenolic
acids lacking a standard, quantification was based on the calibration curve of a similar
compound: SAB for PLS, SAE, SAF I, and SAF II. The amounts of the analyzed compounds
were expressed as mg/g DW.

3.5. RNA Extraction and RT-PCR Analysis

RNA was extracted from fresh plant material harvested one, three, five, and seven
days after elicitation according to the standard protocol for Total RNA Midi Kit (A&A
Biotechnology, Gdańsk, Poland). RNA concentration was measured using a NanoDrop spec-
trophotometer (NanoReady Touch, Life Real Biotechnology Co., Ltd., Hangzhou, China).
cDNA was synthesized from 1800 ng of total RNA with an NG dART RT cDNA synthesis
kit (EURx Molecular Biology Products, Gdańsk, Poland) using random hexamer primers.

Quantitative real-time PCR analysis was performed with RT HS-PCR Mix SYBR
(A&A BIOTECHNOLOGY, Gdańsk, Poland) (primers listed in Table 2) using the StepOne
Plus system (Applied Biosystems, Foster City, CA, USA). Changes in gene expression
were determined via the ∆∆Ct method using actin levels for normalization. The reac-
tion used primers for the key genes known to encode the enzymes involved in phenolic
acid biosynthesis, viz., phenylalanine ammonia-lyase (PAL), cinnamic acid 4-hydroxylase
(C4H), hydroxycinnamate coenzyme A ligase (4CL), tyrosine aminotransferase (TAT), 4-
hydroxyphenylpyruvate reductase (HPPR), and rosmarinic acid synthase (RAS). The six
genes for the analysis were chosen based on published studies reporting other closely
related plant species, since they encode known key enzymes controlling the major branches
of the phenylpropanoid biosynthesis pathway [14,40,43]. The primers were synthesized at
the Institute of Biochemistry and Biophysics of the Polish Academy of Sciences (Warsaw,
Poland, https://oligo.ibb.waw.pl/, accessed on 15 July 2022). The results represent the
mean of three biological replicates.

Table 2. Primers used for quantitative real-time PCR analysis.

Gene Name Primers References PCR Product Length (bp)

TAT CGCCGACTACCATCACCATTAAGG
GCAGAGCCTCCACAACACCTTC [14] 151

HPPR GACTCCAGAAACAACCCACATT
CCCAGACGACCCTCCACAAGA [43] 138

PAL GGCGGCGATTGAGAGCAGGA
ATCAGCAGATAGGAAGAGGAGCACC [40] 564

C4H CCAGGAGTCCAAATAACAGAGCC
GAGCCACCAAGCGTTCACCAA [43] 186

4CL CGCCAAATACGACCTTTCCTC
TGCTTCAGTCATCCCATACCCA [43] 133

RAS CGCCCTAGTTGAGTTCTACCCTTACGC
TCGGATAGGTGGTGCTCGTTTGC [40] 282

β-ACTIN AGGAACCACCGATCCAGACA
GGTGCCCTGAGGTCCTGTT [14] 267

3.6. Statistical Analysis

All of the experiments were performed in triplicate and the results were calculated
as the mean ± standard error (SE). The results of the treatments were compared using

https://oligo.ibb.waw.pl/
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ANOVA, followed by Tukey’s post hoc test (Statistica13.1Pl, StatSoft, Krakow, Poland). The
results were considered significant below p = 0.05.

4. Conclusions

S. viridis hairy roots may constitute a promising source for the production of RA and
other polyphenols, which may be stimulated through supplementation with different MJA
concentrations. The approach employed in this study was not only effective in obtaining
higher polyphenol levels in culture, but our data also provided insight into the relationship
between MJA-dependent polyphenolic acid accumulation and gene expression. Five days
after elicitation with 100 µM MJA, the biosynthesis of RA and TPC was enhanced by
around 30% compared to the controls, with no effect on culture growth. The observed
changes in the expression of polyphenol biosynthesis-related genes in MJA-treated hairy
root culture were both dose- and time-dependent. The upregulation of most genes in this
metabolic pathway strongly correlated with an increase in the biosynthesis of the majority
of polyphenols, including RA. Gene upregulation was often followed by an increase in
polyphenolic accumulation after several days. Our findings provide an indication of how
secondary metabolism in S. viridis responds to elicitors, and may help to develop more
precise strategies for remodeling polyphenol pathways to further increase RA production
in sage culture. However, such advances will require more in-depth knowledge of the
regulatory mechanisms, which involve a wide range of factors nested in a complex plant
signal transduction network. As such, further research should aim to comprehensively
analyze the relationships between the different factors in metabolic pathways.
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