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Abstract: Colorectal cancer (CRC), the third most common cancer globally, has shown links to
disturbed gut microbiota. While significant efforts have been made to establish a microbial signature
indicative of CRC using shotgun metagenomic sequencing, the challenge lies in validating this
signature with 16S ribosomal RNA (16S) gene sequencing. The primary obstacle is reconciling the
differing outputs of these two methodologies, which often lead to divergent statistical models and
conclusions. In this study, we introduce an algorithm designed to bridge this gap by mapping
shotgun-derived taxa to their 16S counterparts. This mapping enables us to assess the predictive
performance of a shotgun-based microbiome signature using 16S data. Our results demonstrate a
reduction in performance when applying the 16S-mapped taxa in the shotgun prediction model,
though it retains statistical significance. This suggests that while an exact match between shotgun and
16S data may not yet be feasible, our approach provides a viable method for comparative analysis
and validation in the context of CRC-associated microbiome research.

Keywords: colon cancer; gut microbiota; shotgun; 16S; metagenomics; predictive model; microbial
signature

1. Introduction

Dysbiosis of the human microbiome plays a critical role in various pathologies and
diseases [1,2]. In particular, gut dysbiosis has been linked to colorectal cancer (CRC), which
is the world’s third most common cancer and ranks second in mortality [3]. Understanding
the microbiome is key to unraveling these widespread diseases and could be a potentially
modifiable risk factor. The sequencing of the 16S ribosomal RNA (16S) gene and whole
shotgun metagenomic sequencing are the two main current approaches to investigate
gut microbiota. 16S may be useful when dealing with a large number of samples, as it
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offers a balance between cost, speed, and allows abundance estimation of representative
bacteria and archaea even with a relatively small number of raw reads [4,5]. However, its
taxonomic resolution is often limited to the genus level, though the species-level resolution
is improving [6,7]. Furthermore, discordant results may be found when using different
primers [6]. Shotgun detects viruses and fungi in addition to prokaryotes, has a higher
taxonomic resolution (detects species and, in some cases, even strains of a particular
species), and allows for the functional characterization and de novo assembly of new
bacterial metagenomes [4]. The downside is its intensive computational demands and the
need for substantial sequencing coverage. It also may be less effective when there is a
significant presence of host DNA in the sample [6].

Due to the great interest aroused by the human microbiome in recent years, a large
volume of studies and a large number of data are available to explore host–microbiota
associations in health and disease. It is thought that the gut microbiome can play an impor-
tant role in personalized medicine, for example, in the prediction of some pathologies like
CRC [8]. To this end, various machine learning techniques like Random Forest, Logistic Re-
gression (including Lasso), Support Vector Machines, and Artificial Neural Networks have
been used to develop prediction models from 16S and/or shotgun taxonomic abundance
data [9–11]. A primary aim of these studies is to find a “microbial signature” closely associ-
ated with the study’s outcome that has high prediction accuracy. The preferred abundance
data type in most studies is 16S sequencing, although shotgun use is increasing [8]. A key
factor influencing this trend is cost, since despite a decrease in prices, shotgun sequencing
is still more expensive than 16S. Currently, only a limited number of studies employ both
sequencing technologies. This presents a significant challenge: determining how prediction
models and microbial signatures developed using one technology can be adapted for data
obtained from the other, given the differing taxonomic resolutions and potential amplifica-
tion biases, particularly of 16S sequencing. The integration of data from both technologies
could leverage the extensive research conducted over the years. In principle, using shotgun
data and a 16S model to perform predictions seems more straightforward. For example, in
a genus-level 16S model, species-level data from shotgun sequencing can be aggregated by
genus before being presented to the model. The reverse case (the input of 16S data into a
shotgun-based model) is more challenging. This integration is particularly compelling in
clinical settings and routine practices where 16S sequencing remains a more economical
option. However, clear criteria for how to incorporate lower-resolution 16S data into a
higher-resolution shotgun model are not well established, posing a challenge for effective
data integration in these contexts.

We have two objectives in this study. First, we aim to develop an effective one-to-one
mapping from shotgun to 16S sequencing data. This mapping is intended to extend the
applicability of our previously established Lasso prediction model by Obón-Santacana et al.
to also accept 16S data [11]. The model discriminated between CRC patients and healthy
controls and was trained from a meta-analysis of eight different published shotgun datasets,
with study, age, sex, and Body Mass Index (BMI) as covariates. A robust microbial signature
of 32 bacterial species, some of them well established by other studies (e.g., Parvimonas
micra, Bacteroides fragilis), was identified. Our second objective is to evaluate the model’s
performance with 16S data. Given the inherently lower resolution of 16S sequencing and
the adaptation of a model to a data type for which it was not originally designed, we
anticipate a reduction in performance. However, this experiment will provide valuable
insights into how much of the model’s predictive power can be retained post-mapping.

2. Results
2.1. Description of the Shotgun and 16S Matrices

A validation set of 156 samples (51 controls, 54 high-risk colonic lesions/adenomas,
and 51 CRC) was used to estimate the Obón-Santacana et al. model performance. These
samples were sequenced again with 16S (see Sections 4, 4.1 and 4.2 for more details). Once
we obtained the 16S count matrix, it was subjected to the same pre-processing scheme
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as the original shotgun data. After filtering rare taxa, the shotgun count matrix retained
469 of the 4027 original taxa, while 16S retained 212 out of 574. Only 30% of the 16S taxa
could be identified by name at the species level, but this percentage increased to 76% at
the genus level and to 93% at the family level. As shown in Figure 1, 16S abundance
data were significantly less diverse than shotgun’s in both richness (Chao1, Shannon) and
evenness (Shannon index). Wilcoxon Rank Sum Test between shotgun and 16S alpha
diversities gave p-values < 2.2 × 10−16 for both indices. Also, differences among the control,
high-risk lesions, and CRC sample distributions were not apparent. The 16S abundance
matrix was clearly sparser, with each sample having on average 61% zeros (Figure 2). In
contrast, shotgun samples only had around 4% zeros or less (Wilcoxon Rank Sum Test
p-value < 2.2 × 10−16). We also observed that the control, high-risk lesions, and cancer
groups had a similar distribution of zeros in both 16S and shotgun data. The Kruskal–Wallis
test did not detect statistically significant differences in the alpha diversity nor the zeros
distributions among groups.
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Figure 1. Shotgun vs. 16S alpha diversity. Controls are in blue, high-risk samples in yellow, and
colorectal (CRC) samples in red. (a) Chao1 index: Kruskal–Wallis test among the three diagnostic
groups: shotgun p-value = 0.991, 16S p-value = 0.152; (b) Shannon index: Kruskal–Wallis: shotgun
p-value = 0.152, 16S: p-value = 0.732.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 4 of 17 
 

 

 

 

(a) (b) 

Figure 2. Shotgun vs. 16S sparsity. As the number of taxa differs between the two matrices, the 

proportion of zeros was computed for each sample. (a) The proportion of zeros in shotgun (purple) 

and 16S (green): Wilcoxon Rank Sum Test p-value < 2.2 × 10−16; (b) the proportion of zeros in control, 

high-risk lesions, and cancer for shotgun (blue-purple) and 16S (brown-green): Kruskal–Wallis 

among the three diagnostic groups: shotgun p-value = 0.152, 16S p-value = 0.154. 

A compositional Principal Components Analysis (PCA) based on central log-ratio 

transformation (clr-PCA) was used to project the 156 samples in a two-dimensional plot 

(Figure 3). The proportion of variance explained by the 16S’s first and second principal 

components (PC) was inferior to the analogous PCs in shotgun. The matching between 

both PCA projections, after accounting for translation, scaling, and rotation effects was 

assessed with Procrustes analysis, revealing a strong correlation between PCAs: r = 0.79 

(p-value = 0.001). Neither for the shotgun nor for the 16S dataset was an obvious visual 

clustering of the control, high-risk lesions, and cancer patients achieved. 

 
 

(a) (b) 

Figure 3. Shotgun and 16S clr-PCA of the 156 validation samples. Controls are in blue, high-risk 

samples are in yellow, and CRC samples are in red. (a) 16S data; (b) Shotgun data. Procrustes r 

between both PCAs was 0.79 (p-value = 0.001). Axes show the percentage of variance explained. 

  

Figure 2. Shotgun vs. 16S sparsity. As the number of taxa differs between the two matrices, the
proportion of zeros was computed for each sample. (a) The proportion of zeros in shotgun (purple)
and 16S (green): Wilcoxon Rank Sum Test p-value < 2.2 × 10−16; (b) the proportion of zeros in control,
high-risk lesions, and cancer for shotgun (blue-purple) and 16S (brown-green): Kruskal–Wallis among
the three diagnostic groups: shotgun p-value = 0.152, 16S p-value = 0.154.
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A compositional Principal Components Analysis (PCA) based on central log-ratio
transformation (clr-PCA) was used to project the 156 samples in a two-dimensional plot
(Figure 3). The proportion of variance explained by the 16S’s first and second principal
components (PC) was inferior to the analogous PCs in shotgun. The matching between
both PCA projections, after accounting for translation, scaling, and rotation effects was
assessed with Procrustes analysis, revealing a strong correlation between PCAs: r = 0.79
(p-value = 0.001). Neither for the shotgun nor for the 16S dataset was an obvious visual
clustering of the control, high-risk lesions, and cancer patients achieved.
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Figure 3. Shotgun and 16S clr-PCA of the 156 validation samples. Controls are in blue, high-risk
samples are in yellow, and CRC samples are in red. (a) 16S data; (b) Shotgun data. Procrustes r
between both PCAs was 0.79 (p-value = 0.001). Axes show the percentage of variance explained.

2.2. Taxonomic and Distance-Based Mapping

To use the shotgun-trained model, it is essential that every shotgun taxon in the
microbial signature is exclusively mapped to one 16S taxon. To achieve this, the first step
was to contrast the 16S taxonomic tree with shotgun’s (details are explained in Section 4,
Section 4.5). As shown in Table 1, all 32 bacteria of the shotgun signature could be matched
to at least one 16S taxon at the species, genus, family, or order level. Seven species (~22% of
the signature) were perfectly matched, and almost 47% had at least one candidate at the
genus level. As expected, a greater number of 16S candidates were found in more distantly
related taxonomic ranks.

Once the taxonomic matching was complete, nine shotgun taxa (seven at the species
level and two at the genus level) were mapped to one specific 16S taxon. The second
step was data-driven and concerned only the remaining taxa. The shotgun and 16S clr-
transformed abundance matrices were contrasted, so we selected the “closest” 16S species
within the pool of candidates as the one with minimum Euclidean distance to the original
shotgun species. In this manner, we obtained a group of 16S taxa that can be considered
“equivalent” to the original shotgun signature. This equivalence is presented in Figure 4,
along with the distance between the shotgun and 16S equivalent taxa. The species with
the overall minimum distance is Parvimonas micra, which is also the species of the original
signature with the greatest contribution to the prediction. In Figure A1 (Appendix A), we
show a heatmap representing the clr-transformed abundance matrices for the shotgun
microbial signature and the 16S signature side by side. In comparison with the shotgun,
the 16S taxa abundances seem more homogeneous across individuals (see also Figure A2b).
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Table 1. Taxonomic matching between shotgun and 16S. We show which taxa of the shotgun bacterial
signature could be matched to a species, genus, family, or order present in the 16S taxa, the frequency
of assignments to each taxonomic rank (in absolute and relative numbers), and the median and range
number of candidate taxa by rank.

Species Genus Family Order

Bacterial signature
(original Lasso model

[11])

Bacteroides fragilis A Agathobacter sp000434275 Anaerotignum sp000436415 Lachnospira sp000436535
Bifidobacterium bifidum Allisonella histaminiformans CAG-41 sp900066215 MGYG-HGUT-03875
Butyrivibrio A crossotus Blautia A sp000433815 ER4 sp003522105

Dialister invisus Blautia A sp900066205 Faecalicatena torques
Faecalibacterium prausnitzii I CAG-245 sp000435175 MGYG-HGUT-00877

Parvimonas micra CAG-269 sp000431335 MGYG-HGUT-02304
Sutterella wadsworthensis A Desulfovibrio sp900319575 MGYG-HGUT-03987

Lachnospira sp003537285 TF01-11 sp003529475
MGYG-HGUT-00184
MGYG-HGUT-00213
MGYG-HGUT-00245
MGYG-HGUT-00605
Romboutsia timonensis

Streptococcus thermophilus

N (% of total) 7 (21.9%) 15 (46.9%) 8 (25%) 2 (6.2%)

Median (Range)
number of candidates 1 (0) 6 (1–68) 47 (14–68) 87.5 (2–173)
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Figure 4. Distance-based matching between shotgun and 16S candidates. On the left, we show the
32 shotgun taxa that constitute the original bacterial signature, while on the right, we present their
16S counterparts, which were chosen after the taxonomic and distance-based matching. To assess
the impact of each shotgun species in the Lasso model, they are sorted in descending order by their
importance, i.e., their coefficient in the Lasso prediction model multiplied by their absolute average
abundance (error bars stand for the abundance standard deviation). Blue and red mean that a species
is either control- or CRC-enriched, respectively (see also Figure 3 in [11]). Bars correspond to the
Euclidean distance between the shotgun species and their mapped species in the 16S dataset. * marks
eleven species whose distance is also the absolute minimum when all 16S taxa are considered; i.e.,
they are the closest species even if the previous step (the taxonomic matching) is omitted.

2.3. Performance of the Mapping in the Validation and Test Sets

The Lasso model by Obón-Santacana et al. was not able to properly discriminate
between controls and high-risk lesions but achieved good performance discriminating
between controls and CRC cases. The original Area Under the Receiver Operating Char-
acteristic Curve (AUC) of the Lasso model when using the CRC vs. control validation set
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(102 shotgun samples) was 0.75 (95% CI: 0.66–0.84) [11]. We contrasted this performance
to the model’s AUC when using the 16S data for the same 102 samples, and instead of
the original microbial signature, we employed the 16S signature presented in Figure 4.
With the 16S data, the AUC dropped to 0.64 (95% CI: 0.54–0.75) for CRC vs. controls. The
model’s predictions delivered by the shotgun and the 16S data are compared in Figure 5a.
Spearman’s ρ between the two is 0.52. The original density plot of the model’s prediction
and the 16S density plot are also shown. Obón-Santacana et al. used a threshold of 0.33
that gave a specificity of 0.96, a sensitivity of 0.41, and a precision of 0.91. In the 16S data,
the specificity was 0.98, the sensitivity was 0.24, and the precision was 0.92. Following
the original paper, we also checked the model’s ability to discriminate between controls
and high-risk lesions. As in the case of the shotgun original signature, the 16S mapped
signature was uninformative: AUC = 0.52 (95% CI: 0.41–0.64).
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Figure 5. (a) Shotgun vs. 16S predictions (validation set); Spearman’s ρ = 0.52. Samples below the
threshold value of 0.33 are assigned to the control group (blue), while those above this value are
predicted to belong to patients with CRC (red). The density plot of shotgun prediction and the 16S
density plot are shown as marginals; (b) ROC curves for the original shotgun validation data (purple),
16S validation data (green), and 16S test data (orange).

In the final phase of our study, we evaluated the performance of the 16S signature
within the Lasso model using an independent 16S test set, comprising 416 samples. This
test set was imbalanced, consisting of 39 CRC cases, 146 high-risk lesions patients, and
231 controls. Epidemiological data of this test, contrasted to those of the validation set,
are shown in Table 2. We first projected these samples onto a 16S clr-PCA (as shown in
Figure 3a) to verify that they were comparable to the validation samples. Although there
was an overlap between the two datasets, as seen in Figure A2 in Appendix A, the test
samples were notably displaced along the first PC. We then examined the distribution
of covariates—sex, age, and BMI—that were used to adjust the original Lasso model,
comparing the test set with the validation set. A significant disparity was observed in
sex distribution: 51% of the test set were women, while in the validation set, they were
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only 36%. This is caused by the unbalanced test and a higher proportion of women in the
controls (64% vs. 47%). The median age in the test set was also slightly higher, especially
in the controls. Due to the test set having a different covariate distribution, AUC was
adjusted by the covariates following Pepe and Cai’s analysis of placement values [12].
A confidence interval (CI) was computed using 2000 bootstrap resamples of the model
prediction. Therefore, the AUC we obtained for the 16S test set was 0.61 (95% CI: 0.51–0.71).
Receiver Operating Characteristic (ROC) curves for shotgun, 16S validation, and 16S test are
shown in Figure 5b. At the threshold of 0.33, we obtained a specificity of 0.97, a sensitivity
of 0.10, and a precision of 0.36. We also computed the performance for the controls vs.
high-risk lesions for this test set, and again, we obtained an AUC of 0.52 (95% CI: 0.45–0.58).

Table 2. Summary of sample sizes and epidemiological data of validation and test sets, stratified by
diagnosis.

Diagnosis N Woman (%) Age Median (IQR) BMI Median (IQR)

Validation
Controls 51 47.1% 57 (7) 26.2 (4.4)

High-risk lesions 54 33.3% 60 (9.5) 28.1 (5.6)
CRC cases 51 27.5% 65 (13.5) 26.9 (4.3)

Total 156 35.9% 60 (7.9) 27.1 (4.2)

Test
Controls 231 64.1% 60 (10) 27.1 (6.7)

High-risk lesions 146 35.6% 63 (7) 27.7 (4.9)
CRC cases 39 25.6% 66 (6.5) 27.5 (5.8)

Total 416 50.5% 62 (6.0) 27.4 (5.1)

3. Discussion

It is well known that results derived from shotgun and 16S sequencing technologies
are not easy to reconcile [13]. Problems like disparate taxonomic resolution, potential biases
of the 16S amplification, and differing reference databases may produce very different
abundance matrices, PCAs, prediction models, and/or relevant microbial biomarkers. In
the present study, we describe an algorithm to map taxa from shotgun to 16S. Furthermore,
we show that replacing a shotgun model’s microbial signature with the 16S taxa selected
by this mapping decreases the model’s AUC, though the model still performs better than
chance alone. In our case, sensitivity and precision were also lower at the original model’s
threshold, while specificity was unaffected. To our knowledge, previous cancer-control
studies with shotgun and 16S data available trained two separate models and often noted
that shotgun had slightly better performance (see [14,15] about virome in CRC and [16] in
pancreatic cancer) but did not try to assess the shotgun model accuracy when predicting 16S
data. Our mapping approach combined taxonomic and data-driven approaches, selecting
the “nearest” 16S taxa to the shotgun microbial signature but always prioritizing biological
coherence. Overfitting did not seem to be a major problem since the procedure was agnostic
to the outcome. Our approach is also valid for unsupervised analyses, for instance, to
project 16S data over a shotgun PCA (see Appendix A, Figure A2), which may be of interest
when clear clusters are observed.

Not all taxa in the microbial signature could be mapped to 16S with the same accuracy.
However, we found that most of the species already highlighted in other studies had a good
shotgun–16S correspondence. For instance, Parvimonas micra and Bacteroides fragilis have
been consistently associated with CRC in a wide range of studies and cohorts [17]. The
former is also the species with greatest importance in Obón-Santacana et al.’s model [11].
In our data, we have found that the profile of both bacteria across the 156 samples is very
similar in the shotgun and 16S abundance matrices. Not only are these species identified
by name and present in both taxonomic tables, but as we show in Figure 4, they have
the absolute minimum distance. Other species with a low shotgun–16S distance and that
have been associated with CRC discrimination in the literature were Bifidobacterium bifidum,
Faecalibacterium prausnitzii (the second most important species in the prediction model), and
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Dialister invisus. On the other hand, Sutterella wadsworthensis (ranked third in the model,
though scarcely found in the CRC literature) presents an abundance profile in 16S that is
very different from that of shotgun, especially regarding the cancer samples (see Figure A1).

The mapping algorithm we propose also has its own set of drawbacks and challenges.
Firstly, shotgun and 16S should be pre-processed in a similar way to make them comparable
at the taxonomic and abundance matrix levels. This is not easy since shotgun and 16S
data have different particularities. For instance, a legitimate question is whether it is
appropriate to impose the shotgun filtering criteria (as we did) when 16S is clearly sparser
and less diverse. Also, not only does shotgun have greater resolution, but taxonomies are
also vastly different due to the different reference databases of shotgun and 16S and the
frequent update of the microbial phylogenies. We tried to alleviate these issues using a
mixed taxonomic/data-driven nature, but that requires a fraction of microbiome samples
sequenced with 16S and shotgun, which is not the most common scenario. Also, the best
metric to map shotgun to 16S data should be decided by the researcher and may change
depending on the dataset or the problem at hand. We opted for the Euclidean distance
because it is easy to compute and interpret, but the mapping was computed taxon by taxon
and does not consider potential interactions between the bacteria. Increasing the number of
sequenced 16S regions might have improved the taxa resolution. Another limitation in our
study that probably reduced the mapping efficiency was that the shotgun database used
(UHGG v1.0) was outdated. This was related to our interest in validating a predictive model
that had been developed with that version. Finally, although we successfully mapped the
shotgun’s signature to 16S, the decrease in the model’s AUC was considerable (0.75 to
0.64 in the validation set and 0.61 in the test set). A possible explanation is that we were
restricted to only 156 patients that had both shotgun and 16S data: with a larger paired
sample, the quality of the shotgun to 16S mapping may increase. Also, a larger sample
of patients would allow for retraining the model’s coefficients and potentially improve
the results.

In summary, finding 16S taxa that are “equivalent” to shotgun taxa is possible but
still challenging, and several preconditions should be met. Recent strategies like Green-
genes2 [13] are promising, as the use of the same reference database for both kinds of
data allows a more unified result from the bioinformatics step. In the other cases, our
contribution may be useful to place shotgun-generated and 16S-generated data, prediction
models, and microbial signatures in a common ground.

4. Materials and Methods
4.1. Study Population and Design

The research cohort (COLSCREEN study) was recruited among individuals that
participated from 2016 to 2020 in the ongoing population-based CRC screening program
overseen by the Catalan Institute of Oncology in L’Hospitalet del Llobregat, Barcelona,
Spain [11]. This program invites men and women between the ages of 50 and 69 to
partake in the immunochemical fecal occult blood test (FIT). In the event of a positive FIT
result (≥20 µg Hb/g feces), it is recommended that the participants undergo colonoscopy.
Participants of the COLSCREEN study (N = 997) were invited to participate after receiving
a positive FIT result. Since CRC diagnosis is rare in screening, this cohort includes patients
diagnosed clinically from the CRC Functional Unit (N = 45). Furthermore, a subset of
participants with a negative FIT is also included (N = 140). All of them underwent a
colonoscopy, and participants were categorized based on the risk-stratification proposal by
Castells et al. [18] after a careful review of the colonoscopy and histopathology reports.

A subset of the patients consisting of 156 individuals selected from the COLSCREEN
study (51 controls with normal colon mucosa, 54 with high-risk precancerous lesions, and 51
with CRC) were previously used to validate a predictive model for CRC proposed by Obón-
Santacana et al. [11]. The model was trained with meta-analysis data from eight different
published shotgun datasets, with study, age, sex, and BMI as covariates. For testing the
model in an independent set, the remaining patients available in the COLOSCREEN study
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with CRC (N = 39), with high-risk lesions (N = 165), and controls (N = 231) were used (total
N = 416).

All participants who agreed to take part in the COLSCREEN study provided written
informed consent, donated a fecal and blood sample at recruitment (samples obtained
before colonoscopy), and answered an epidemiological questionnaire. Clinically diagnosed
CRC patients usually underwent a colonoscopy before recruitment, and the fecal samples
were obtained prior surgery. In the present study, we excluded those participants that
reported having used antibiotics or probiotics one month before sampling. The ethics
committee of the Bellvitge University Hospital, L’Hospitalet del Llobregat, Barcelona,
Spain, approved the protocol of the study (PR084/16), and all procedures were performed
in accordance with relevant guidelines and regulations.

4.2. DNA Extraction, Sequencing, and Bioinformatics Analysis

Though the stool samples used for shotgun and 16S sequencing were identical, the
DNA extractions were performed separately for each method. The shotgun sequencing
process has been detailed previously [11]. In summary, fecal DNA was extracted using
the NucleoSpin Soil Kit (Macherey-Nagel, Duren, Germany) following the manufacturer’s
protocol. Sequencing libraries were prepared with 2 µg of total DNA using the Nextera XT
DNA Sample Prep Kit (Illumina, San Diego, CA, USA). The sequencing was performed
with 150 nucleotides, paired-end, using an Illumina HiSeq 4000 platform. Human reads
were removed from the metagenome samples by aligning the reads to the human genome
(GRCh38) with Bowtie2. Reads were deduplicated and trimmed to remove sequencing
adapters and low-quality ends. Clean sequencing reads were classified using Kraken2
(v.2.1.0) with a filtering threshold of 0.1, followed by Bayesian reassignment at the species
level using Bracken2. The UHGG database v.1.0 [19] was used for this classification.

The 16S rRNA sequencing was performed on all 997 COLSCREEN samples following a
standard protocol for stool. DNA extraction was performed using the DNeasy PowerLyzer
PowerSoil Kit (Qiagen, Venlo, The Netherlands, ref. QIA12855), including negative controls
of extraction. The extracted DNA was used to prepare 16S rRNA libraries, targeting the V3-
V4 region of the bacterial 16S ribosomal RNA gene, using the following universal primers
in a limited-cycle PCR: V3-V4-Forward (5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGA
CAGCCTACGGGNGGCWGCAG-3) and V3-V4-Reverse (5′-GTCTCGTGGGCTCGGAGAT
GTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3′). Then, full-length Nextera
adapters with barcodes for multiplex sequencing were added in a second PCR step, re-
sulting in sequencing-ready libraries. Sequencing was performed in the Illumina MiSeq
with 2 × 300 bp reads using v3 chemistry. Two bacterial mock communities from the BEI
Resources of the Human Microbiome Project (HM-276D and HM-277D) were amplified and
sequenced in the same manner as all other samples. Negative controls of PCR amplification
were also included in parallel, using the same conditions and reagents.

Raw data were processed using the Dada2 pipeline (v. 1.12.1) [20]. We filtered and
trimmed out low-quality reads according to the observed quality profiles. The value for
maximum expected error was 2. Also, 10 reads from the start of each read were removed.
Identical sequencing reads were combined into unique sequences, and then we made a
sample inference from a matrix of estimated learning errors and merged paired reads. After
the removal of chimeric sequences, taxonomy was assigned utilizing the SILVA 16S rRNA
database (v.132) [21]. The output of the process consisted of a count matrix (sample by
microbial taxa) and a taxonomic table (lineage of each microbial taxa).

As the reference databases are different in shotgun and in 16S data (UHGG v.1.0
for the former and SILVA v.132 for the latter), in some cases, there are incongruences
in the taxonomic assignment. The same microorganism may appear under a different
name in shotgun and 16S; even the full lineage may be affected in some cases. To ensure
the comparability of both taxonomy tables, we standardized them to follow the NCBI
taxonomic nomenclature (date: 7 March 2023) using the taxonomy function from the R
package myTAI (v-0.9.3) [22]. Each unique sequence name for 16S taxa obtained from
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SILVA database was mapped to the NCBI, with a success rate of 864/948 (91%). The 84 taxa
not found by the taxonomy search were manually curated.

4.3. Pre-Processing of the Abundance Matrices

Shotgun count matrix was normalized by genome length. From this point, both count
matrices were subject to the same pre-processing scheme presented in the original paper.
First, we dropped all the species that were not present in (at least) 5% of the samples with
0.1% abundance or higher. We computed the percentage of zeros for each sample for further
comparison between both tables. Then, we performed a replacement of zero values (using
the square root Bayesian-Multiplicative method) followed by clr transformation with the
zCompositions (v1.4.0) R package [23].

4.4. Description of the Abundance Matrices

The pre-processed shotgun abundance matrix was the same as the one used for
validating the Lasso model. We performed several descriptive analyses for the shotgun
and 16S matrices. Shannon and Chao1 alpha-diversity indices were computed from the
filtered data prior to the zero-substitution step. In addition, to compute the Shannon index,
we rarified the filtered data to the minimum depth. All alpha-diversity analyses were
performed using the vegan (v2.6) R package [24]. A clr-PCA was used to project graphically
the Shogun abundance data, on the one hand, and the 16S on the other. Then, we used the
vegan (v2.6) Procrustes analysis to search for the rotation of maximum agreement between
the PCAs and computed the sum-of-squared errors and Procrustes correlation between the
same samples in both projections.

4.5. Mapping Shotgun to 16S Abundance Data

Mapping data from the two sequencing technologies requires establishing a correspon-
dence between the taxa identified using 16S and those identified using shotgun sequencing.
Moreover, to use a shotgun-based model, we need every shotgun taxon to be mapped to a
single 16S taxon. To achieve this one-to-one mapping from shotgun to 16S data, we used a
two-step approach: taxonomic mapping and data-driven mapping.

1. Taxonomic: Here, we compared the taxonomic trees of shotgun and 16S and searched
the latter for the species of interest. In our case, the first step involved checking
whether the 32 species in the Lasso model’s signature were among the 16S taxa.
If a direct match was not found, the algorithm was extended to higher taxonomic
ranks (such as family or order) until a match was identified. This taxonomic strategy
is “universal” in that it only requires the availability of taxonomic tables for both
16S and shotgun sequencing, which is generally the case. Notably, the datasets for
shotgun and 16S sequencing do not need to be paired; they can originate from different
individuals. However, this approach faces several challenges and limitations. Firstly,
it requires that taxa lineages be identical in both phylogenetic trees, meaning that the
same microorganism should be classified with the same species name and lineage
in both datasets. This is often not the case due to rapid updates in microorganism
phylogeny and variations in reference databases. As a result, taxa classification must
be standardized to the same nomenclature in both shotgun and 16S datasets. Secondly,
the lower resolution of 16S sequencing means that many taxa identified at the species
level in the shotgun may not be present in the 16S dataset, or only identifiable at the
genus level or higher. Consequently, a single taxon identified in shotgun sequencing
could correspond to multiple candidate taxa in the 16S dataset. In those cases, we
proceeded with the second step.

2. Data-driven: For this second step, it is essential to have paired samples, i.e., samples
that are sequenced using both shotgun and 16S techniques. Then, some metrics
may be devised to select the “closest” 16S taxon to a particular shotgun taxon in a
data-driven way. We propose computing the Euclidean distance between relevant
shotgun taxa and all 16S taxa using transposed abundance matrices where samples
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are treated as variables. The chosen 16S taxon is the one with the “closest” clr-
transformed abundance profile across all samples to the target shotgun species. The
main advantage of this approach is that no information about bacterial phylogeny
is needed. The disparate taxonomic resolutions of the shotgun and 16S sequencing
techniques are by-passed; in fact, knowing the species or genus name (or even their
lineage) is not mandatory. However, if the sample size is limited, this method may
face difficulties in obtaining significant separation of 16S taxa and result in wrong
mappings due to perceiving noise in the abundance data as meaningful variation.
The shotgun model’s performance using these 16S biomarkers may be misleadingly
optimistic; thus, using an independent test set (additional samples sequenced with
16S) is advisable to estimate the true performance.

4.6. Performance Evaluation

We evaluated the Lasso predictive model using the mapped 16S taxa (the “closest”
taxa to the shotgun original microbial signature) as features. To do so, we assessed the
performance of the original validation set (N = 156) when using 16S data, as well as the
correlation between the original shotgun prediction and the current prediction. For the
present study, we exclusively computed the AUC for two different comparisons: (a) the
51 control (defined as normal/no-lesions) vs. 51 COLSCREEN CRC cancer samples and
(b) the 51 controls vs. 54 high-risk colonic precancerous lesions. This approach aligns with
the original Lasso model, which was designed for binary prediction. Finally, we evaluated
the model performance when using a 16S independent test set (N = 416) that consisted
of 231 controls, 39 CRC patients, and 146 high-risk lesions. For this test set, we had 16S
abundance data, sex, age, and BMI information—the same covariates used in adjusting the
Lasso model.
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Figure A1. clr-transformed abundances of the microbial signature in our data. Panel (a) shows the
shotgun data, and panels (b,c) show the 16S data. The columns are the 32 shotgun-16S “equivalent”
taxa, sorted by average abundance in the shotgun validation set (color code: purple—more abun-
dant, turquoise—less abundant). For the validation data (panels (a,b)), the order of the samples is
51 controls + 54 high-risk lesions + 51 CRC. For the test data (panel (c)), the order is 231 controls +
146 high-risk lesions + 39 CRC.
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