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Abstract: The metabolism of glucose and lipids plays a crucial role in the normal homeostasis of
the body. Although glucose is the main energy substrate, in its absence, lipid metabolism becomes
the primary source of energy. The main means of fatty acid oxidation (FAO) takes place in the
mitochondrial matrix through β-oxidation. Glioblastoma (GBM) is the most common form of primary
malignant brain tumor (45.6%), with an incidence of 3.1 per 100,000. The metabolic changes found in
GBM cells and in the surrounding microenvironment are associated with proliferation, migration,
and resistance to treatment. Tumor cells show a remodeling of metabolism with the use of glycolysis
at the expense of oxidative phosphorylation (OXPHOS), known as the Warburg effect. Specialized
fatty acids (FAs) transporters such as FAT, FABP, or FATP from the tumor microenvironment are
overexpressed in GBM and contribute to the absorption and storage of an increased amount of lipids
that will provide sufficient energy used for tumor growth and invasion. This review provides an
overview of the key enzymes, transporters, and main regulatory pathways of FAs and ketone bodies
(KBs) in normal versus GBM cells, highlighting the need to develop new therapeutic strategies to
improve treatment efficacy in patients with GBM.
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1. Introduction

Glucose is an essential nutrient, dependent on blood flow for a constant supply and
normal homeostasis of the body. It is the substrate that enters tissue cells and is transformed
into adenosine triphosphate (ATP). ATP occupies a key position both in the metabolism
of normal cells and in the tumor microenvironment. To maintain the cellular function of
the brain, an adequate and continuous supply of energy is necessary, because glycogen
is stored in a limited amount at this level. During periods of limited glucose availability,
tissues use fat-derived ketone bodies (KBs) as alternative fuel sources [1–4].

Ketones, the result of lipid metabolism, provide 5% to 20% of the total energy expended
by the human body. In the liver, fatty acids (FAs) are transformed into KBs, which then
circulate through the bloodstream to various organs, including the brain. When the insulin
level is low and there is a high concentration of FAs in the blood, they are converted into
KBs providing an alternative source of energy for the body and especially for the brain.
Acyl-Coenzyme A (CoA) oxidation takes place in the mitochondria of organs with high
energy requirements and generates KBs (β-hydroxybutyrate-BHB and acetoacetate-AcAc).
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BHB represents approximately 70% of circulating ketones, crossing the blood–brain barrier
(BBB) and serving as fuel at this level when needed. At the same time, BHB also acts as a
signaling molecule in many cellular functions, including the epigenetic regulation of gene
transcription. The carnitine shuttle system facilitates the transport of fatty acyl-CoA in the
mitochondria, being a particularly vital mechanism when the blood glucose level is low,
ensuring a sustained energy supply of the body [5–12].

Growing evidence supports the link between disturbed lipid metabolism and cancer.
Metabolic irregularities favor tumor proliferation. Identifying gene expression changes of
enzymes involved in metabolic pathways could widen the range of cancer biomarkers and
therapeutic approaches [13–15].

Mitochondria have recently been recognized as the “engine of cell death” due to their
essential involvement in programmed cell death. Besides the essential role they have in the
production of ATP, the generation of reactive oxygen species (ROS), and the facilitation of
cell death pathways, mitochondria are involved in various pathological conditions, such
as cancer, neurodegenerative diseases, obesity, or diabetes. Mitochondria are the point of
convergence between the metabolism of glucose, glutamine, and lipids. The main function
is to support the tricarboxylic acid cycle (TCA) and aerobic respiration through oxidative
phosphorylation (OXPHOS) which generates ATP through the mitochondrial respiratory
chain, thus satisfying the need for energy for cell survival [16–18].

Tumor cells undergo metabolic changes that cause these cells to use more glucose
than normal cells, transforming glucose into lactate through aerobic glycolysis instead of
metabolizing glucose through OXPHOS to produce ATP, a phenomenon known as the
Warburg effect. This phenotype implies a high level of fermentation even when oxygen is
abundant [19–22].

Gliomas are the most common primary brain tumors. The World Health Organiza-
tion (WHO) has classified gliomas into four grades (I–IV), with higher grades indicating
increased dedifferentiation and malignancy. Glioblastoma multiforme (GBM) constitutes
a significant part (54.7%) and stands out as the most aggressive form, and is associated
with high invasiveness, rapid growth, rapid spread in brain tissue, high recurrence rate,
resistance to apoptosis, and an unfavorable poor prognosis. Although current treatment
involves surgery, radiation therapy, and chemotherapy, the prognosis remains poor, with
a median survival of approximately 12 to 18 months and a five-year survival rate of
approximately 4.7% [23–27].

This treatment approach does not lead to long-term disease remission for the patients,
in part due to the molecular heterogeneity and plasticity of GBM cells, seen present not only
between different tumors but also within the same tumor. The metabolic alterations of GBM
are attributed to mutations in tumor suppressor genes and oncogenes together with the
impact of the surrounding microenvironment, so the interest in studying GBM metabolism
as well as the metabolism of the surrounding microenvironment has increased in the last
decade. Therefore, it is crucial to develop new therapeutic strategies for GBM patients,
which are able to enhance the efficacy of existing treatment modalities while preserving
the normal integrity of brain tissue. From this point of view, the knowledge about tumor
metabolism and especially about lipid metabolism requires deepening [6,28–32].

In this review, we aim to provide an overview of the current knowledge of fatty acid
oxidation (FAO) and its associated pathways in the normal brain versus changes in GBM.

2. Fatty Acid Homeostasis

FAO is a key catabolic pathway that occurs in the mitochondrial matrix for energy
production in mammals (see Figure 1). This aerobic process begins with the activation of
FAs by linking the thioester with CoA. Mitochondria use three primary enzymatic pathways
for ATP generation, namely: TCA, OXPHOS, and FAO (Figure 1). The obvious interaction
between these metabolic pathways leads to the maintenance of normal homeostasis of the
body [33–36].
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Figure 1. β-oxidation of FAs, Ketogenesis, and OXPHOS. Upon entering the cell, LCFA undergoes
activation by binding with CoA. The initial reaction is catalyzed by ACoAD. This transformed
molecule, now an acyl-CoA, is transported across the mitochondrial membrane through the carnitine
shuttle system. The long-chain acyl-CoA produced is subsequently oxidized to generate acetyl-CoA,
a process facilitated by MTP. Created in BioRender.

2.1. β-oxidation of Fatty Acids

β-oxidation of lipids in the mitochondrial matrix involves the removal of a hydroxyl
group from FAs, with the formation of highly polar thioesters known as acyl-CoA molecules.
Long-chain fatty acids (LCFAs) face a barrier to the free crossing of mitochondrial mem-
branes. To overcome this, LCFAs require transport as carnitine derivatives, called acyl-
carnitines or esterified carnitines, which facilitate their transport across the mitochondrial
membrane (see Figure 2). The LCFA acyl-CoA produced is subsequently oxidized to gener-
ate acetyl-CoA, a process facilitated by the mitochondrial trifunctional protein (MTP). Short-
and medium-chain fatty acids (SCFA and MCFA) passively diffuse across the mitochondrial
membrane and are converted to acyl-CoA esters in the mitochondrial matrix [12,33,35,37].

Inside the mitochondria, the β-oxidation of FAs is carried out through a series of
four catalysis reactions. Acyl-CoA dehydrogenase (ACoAD) catalyzes the first step by
generating reducing equivalents that are transferred to the electron transfer flavoprotein,
which serves as a shuttle between AcoAD and the respiratory chain. Enoyl-CoA hydrase
catalyzes the second step, the hydration of 2-trans-enoyl thioesters in 3-l-hydroxyacyl-coA
derivatives. In the third stage, the catalysis by Hydroxyacyl-CoA dehydrogenase takes
place, obtaining the oxidation of 3-l-hydroxyacyl-coA esters into 3-ketoacyl-coA species.
In the last step, under the action of ketoacyl-CoA thiolase, the thiolytic cleavage of the
3-ketoacyl-coA chain by the thiol group of a second molecule of coenzyme A occurs. This
sequential process cleaves two carbon atoms from the acyl chain during each iteration,
producing, finally, acetyl-CoA molecules. MTP located on the inner side of the mitochon-
drial membrane and composed of α and β subunits, catalyzes the last three reactions in
the β-oxidation of LCFA and MCFA acyl-coA esters. The α subunit catalyzes two con-
secutive steps in LCFA oxidation, namely, enoyl-CoA hydration and 3-hydroxyacyl-CoA
dehydrogenation, while the β subunit has long-chain 3-ketoacyl-CoA thiolase activity. In
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some types of cancer, it has been shown that nonsteroidal anti-inflammatory drugs can
inhibit the multiplication of tumor cells by binding and suppressing the α subunit of MTP.
Therefore, it is hypothesized that the selective inhibition of the α subunit of MTP would
be associated with the inhibition of tumor growth and therefore could offer new cancer
therapies [11,33,38–41].
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Figure 2. The Carnitine shuttle system for transporting LCFA acyl CoA into the mitochondrial matrix.
LCFA is transported across the outer mitochondrial membrane with the assistance of carnitine.
Facilitated by the enzyme CPT I located on the outer mitochondrial membrane, FAs bind to the
hydroxyl group of carnitine, forming fatty acyl-carnitine. This complex is then transported into
the mitochondrial matrix in exchange for carnitine via a carrier protein. Within the matrix, CPT II
situated on the inner mitochondrial membrane facilitates the transfer of the acyl group from fatty
acyl-carnitine to CoA, resulting in the formation of fatty acyl-CoA and free carnitine. The liberated
carnitine is then transported back to the intermembrane space via a carrier protein, where it can be
utilized for subsequent cycles. The fatty acyl-CoA within the mitochondrial matrix is now primed
for β-oxidation by the enzymes present, ultimately yielding acetyl-CoA. Acetyl-CoA subsequently
enters the Krebs cycle, contributing to energy production. OCTN2 is a carnitine-specific transporter
found in the brain. Created in BioRender.

2.2. Free Fatty Acids and Lipid Droplets

FAs serve as constituents of cell membrane phospholipids and as a fuel source for
OXPHOS. Free fatty acids (FFAs) can enter the brain where they can be used as an energy
source participating in various physiological processes such as cell transport, cell signaling
and transduction, synaptic transmission, protein stabilization, and others, but they can
also initiate various harmful activities inside brain cells. Brain FFAs also influence cell
growth, development, and survival as well as the inflammatory response at the brain level
by regulating the phosphoinositide 3-kinase (PI3K) pathways, the peroxisome proliferator-
activated receptor, protein-coupled receptors, protein kinase C, or nuclear factor kappa-
amplifying light chain of activated B cells. Active neuronal cells struggle to use FFAs for
ATP production, but if neuronal mechanisms are overwhelmed, FFAs can become toxic to
neurons. To prevent neuronal damage, FFAs will be stored in intracellular lipid droplets
(LDs). Excess FFAs are transported by apolipoproteins in astrocytes, which are abundant in
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LDs and less vulnerable to the damaging activity of ROS compared to neurons. Astrocytes
are considered the primary sites for FFA storage and metabolism in the brain. LDs serve
as energy reservoirs, transporting FAs to the mitochondria during nutrient deprivation,
where they are used as an alternative energy source. Therefore, to protect neurons from
FFA-associated lipotoxicity and to meet energy demands in specific situations, FA storage
and oxidation processes appear to rely on a tightly interconnected metabolic relationship
between neurons and astrocytes [42–45].

LDs contain neutral lipids, predominantly triacylglycerols, cholesterol esters, and
sterol esters, which are found in most cell types, being synthesized at the level of the
endoplasmic reticulum membrane. The process of composition and storage of neutral
lipids in LDs serves as a protective mechanism against lipotoxicity induced by excessive
lipid accumulation. Each step in the formation of neutral LDs is facilitated by a specific
enzyme, with diglyceride acyltransferase I and II (DGAT1, DGAT2) playing an essential
role in catalyzing the final step of the triglyceride formation pathways. The two enzymes
are found mainly in the endoplasmic reticulum where they catalyze the conversion of
diacylglycerol to triacylglycerol, but also in LDs during their growth. It has been shown
that the suppression of DGATs promotes axon regeneration because FAs are redirected
towards the synthesis of phospholipids at the expense of the synthesis of neutral lipids.
DGAT1 also prevents mitochondrial dysfunction and lipotoxicity, which can occur in the
case of brain pathology [42–44,46].

Physiologically, the formation of LDs is linked to the nutritional state of the cells. In
the case of a high availability of exogenous lipids, LDs will form. Also, in case of a lack of
an exogenous intake rich in fats, the cells change their energy source from glucose to FAs,
so LDs will be formed. But besides these physiological states, LDs are also formed in case
of cellular stress such as inflammation, hypoxia, endoplasmic reticulum stress, or mitochon-
drial dysfunction. The formation of LDs in certain pathological processes presented distinct
functional phenotypes, depending on the context or the cell type involved [42,46–48].

2.3. Carnitine Shuttle System in Normal Mitochondria

The carnitine shuttle represents a specialized mechanism that facilitates the transfer
of LCFA through the inner mitochondrial membrane to the mitochondrial matrix for β-
oxidation and energy production. FAs come from three main sources: exogenous FAs that
enter cells from the bloodstream or intestinal lumen; FAs synthesized endogenously from
acetyl-CoA by de novo synthesis; and FAs released inside the cell by hydrolysis of acylated
proteins, phospholipids, and triglycerides [5,12,38,49,50].

Regardless of their origin (either exogenous, synthesized de novo, or by intracellu-
lar hydrolysis), intracellular FAs undergo thioesterification to CoA. Acyl-CoA synthases
(ACoASs) catalyze this process, leading to the formation of acyl-CoA products, the activated
form of intracellular FAs [51–53].

ACoASs typically associated with proteins and membranes are directed to or away
from specific metabolic pathways depending on the cellular energy state. Their intracellular
flow and destination are regulated by various proteins, including FA-binding proteins,
sterol carrier protein 2, and acyl-CoA-binding domain proteins, which guide them to energy
storage or generation processes [50,54,55].

When cells require energy, acyl-CoAs can be transported into mitochondria and
peroxisomes, where they collaborate to maintain lipid homeostasis. Substrate transport,
substrate specificity, end products, and energy production show variation between the
mitochondrial and peroxisomal β-oxidation pathways [56,57].

The impermeability of mitochondrial membranes to acyl-CoA requires the conjugation
of FAs to carnitine for their entry into mitochondria. The first component of the carnitine
shuttle is Carnitine Acyltransferase I (CPT I) located in the inner part of the outer mito-
chondrial membrane with the role of converting acyl-CoAs into acylcarnitines and at the
same time, a role in the rate-limiting stage of FAO. The second component of the carnitine
shuttle, the inner mitochondrial membrane protein, is the Carnitine Acylcarnitine Translo-
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case (carrier) which facilitates the exchange of acylcarnitines and carnitine between the
outer and inner mitochondrial membranes. On the matrix side of the inner mitochondrial
membrane, the third important component of the shuttle is located, namely, Carnitine
Acyltransferase II (CPT II), which is responsible for converting acylcarnitine back into
acyl-CoAs to allow subsequent oxidation processes. The carnitine released in this process is
translocated back into the cytosol by the same carrier of the inner mitochondrial membrane
through an acyl-carnitine/carnitine antiport reaction (see Figure 2) [12,38,58].

Carnitine transporters are encoded by two solute carrier (SLC) gene families, namely,
SLC6 (SLC6A14) and several members of SLC22 (SLC22A1, A2, A3, A4, A5, A7, A16).
OCTN2/SLC22A5 stands out as a high-affinity carnitine transporter. Carnitine Acylcarni-
tine Translocase is the A20 member of the SLC25 protein family, proteins that are mainly
located in the inner mitochondrial membrane. In one-third of these, their transported
substrates are unknown. The expression of Carnitine Acylcarnitine Translocase is found
in tissues with high energy expenditure such as heart muscles or skeletal muscles, and,
of course, in the liver when glycogen reserves have been exhausted, but also in the brain,
even if at a lower rate [32,59–61].

The balance of carnitine homeostasis is maintained by a harmonious interplay of
dietary absorption, endogenous biosynthesis, and efficient renal reabsorption. The brain
does not directly use FAs for oxidative metabolism. Instead, it relies on KBs derived from
acetyl-CoA and acetoacetyl-CoA, which are generated via FAO that occurs mainly in the
liver [12,38,53,62].

2.4. Ketogenesis

Ketogenesis, contrasting with ketolysis, is a biochemical process occurring in the
mitochondria, where acetyl-CoA is utilized to produce KBs (see Figure 1) [1,63,64].

Acetyl-CoA acetyltransferase (ACAT) consisting of two metabolic enzymes, one cy-
tosolic (ACAT2) and one mitochondrial (ACAT1), facilitates the reversible conversion of
two molecules of acetyl-CoA to acetoacetyl-CoA (Figure 1). HMG-CoA synthetase, which
is regulated by succinylation, desuccinylation for short-term control, and transcriptional
regulation for long-term control, catalyzes the chemical reaction that leads to the formation
of hydroxy-beta-methylglutaryl-CoA (HMG-CoA). Factors such as nutrition and hormones
influence these mechanisms, explaining the prevalence of ketogenesis in conditions such as
diabetes, starvation, or intense lipolysis [13,64–68].

After this, HMG-CoA lyase catalyzes the conversion of HMG-CoA to AcAc. AcAc can
either undergo non-enzymatic decarboxylation in acetone or be converted to BHB by the
action of BHB dehydrogenase (BHD). BHD shows the highest activity in the liver, followed
by the kidney, heart, brain, and skeletal muscle. This variation in activity can be attributed
to its role in catalyzing both the final stage of ketogenesis, predominantly in hepatocytes,
and the initial stage of ketone oxidation in extrahepatic tissues [69–71].

AcAc and BHB serve as the body’s two primary KBs for energy production. In
extrahepatic tissues, including the brain, BHB is converted to AcAc by BHD, and AcAc is
converted to acetyl-CoA by beta-ketoacyl-CoA transferase. Acetyl-CoA enters the citric acid
cycle, leading to the production of ATP molecules through OXPHOS. However, acetone
does not undergo conversion back to acetyl-CoA and is either excreted in the urine or
exhaled (Figure 1) [72–77].

3. Ketone Body Metabolism

Energy is essential for normal brain function and constitutes approximately 20% of
the body’s total energy expenditure at rest, despite the brain comprising only about 2% of
the total body weight [8,78]. Under typical physiological circumstances, the brain depends
primarily on glucose for the production of ATP from the oxidation of glucose. When
the availability of glucose is limited, KBs become the vital substrate for the brain, being
able to provide up to 60% of the brain’s energy needs. Together with lactate, it serves



Int. J. Mol. Sci. 2024, 25, 5482 7 of 22

as the primary alternative fuel for the brain. Both KDs and lactate can cross the BBB via
monocarboxylate transporters (MCTs) present in endothelial cells and astroglia [8,79–81].

The use of ketones by the brain appears to be regulated mainly by their concentration
in the bloodstream. Plasma ketone levels contribute to less than 5% of brain metabolism.
Previous research suggests that, unlike healthy tissues, cancer cells are inefficient in using
KBs for energy production. Several dietary approaches, such as ketogenic diets, ketogenic
MCFA intake, or exogenous ketone supplementation, can produce substantial changes in
normal brain metabolism but not in cancer metabolism [8,82].

Currently, very little is known about the regulation and use of KBs at the biochemical level.

3.1. Ketone Bodies Enter the Brain through MCTs

KB transport across the BBB is carrier-dependent and does not increase with neuronal
activity, unlike glucose transport. Instead, it is correlated with circulating concentrations.
MCTs are the known transporters exclusive to KBs and are widely distributed throughout
the brain. MCTs are a group of 14 transmembrane proteins encoded by the SLC16A gene
family, and eight of them are expressed in the brain. These conveyors can facilitate the
movement of a wide range of substrates. MCT1, MCT2, MCT3, and MCT4 are the MCTs
responsible for KB (AcAc and BHB) movement across the plasma membrane (see Table 1
for molecular aspects of the MCT family) [8,82–84].

Table 1. Molecular aspects of the MCT family of transporters in the brain and their main role.

Gene Name Protein Name Main Substrates Main Role

SLC16A1 MCT1 Lactate, ketone bodies, and pyruvate – Predominant expression in endothelial cells with
a barrier role

SLC16A2 MCT8 T2, rT3, T3, T4
– High affinity to transport thyroid hormones =

specific thyroid hormone transporters

SLC16A3 MCT4 Ketone bodies, lactate, and pyruvate – Predominant expression presence in astrocytes

SLC16A4 MCT5 - – Expression is elevated in certain GBM cells

SLC16A6 MCT7 Ketone bodies – Transporter of ketone bodies

SLC16A7 MCT2 Lactate, ketone bodies, and pyruvate
– Predominant expression in neurons
– High susceptibility to hypoxia
– High sensitivity to intracellular pH

SLC16A9 MCT9 Carnitine – Act a carnitine efflux transporter

SLC16A14 MCT14 -
– Hypothesis: MCT14 is a neuronal aromatic

amino acid transporter

Derived from references [48,83,85–89]

Astrocytes express MCT4, which, similar to MCT1, has a relatively low affinity for BHB.
In contrast, neurons predominantly express the MCT2 isoform, characterized by a high
affinity for BHB. The effect of KBs on neurons could still be mediated by neuronal uptake.
MCT2 expression in neurons is co-localized in mitochondria-rich postsynaptic density struc-
tures, suggesting its potential role in synaptic transmission. This implies that both neurons
and, to some extent, astrocytes have the capacity to take up KBs (Figure 3) [8,90–92].
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Created in BioRender.

3.2. The Catabolism of KBs in Glial and Neuronal Cells

After being transported into the brain, BHB and AcAc are converted back into acetyl-
CoA, which then enters the TCA cycle for ATP generation (see Figure 3). This conversion
takes place within the mitochondria, where BHB is transformed into AcAc by the reversible
action of BHD using NAD+, leading to the formation of NADH. AcAc is then broken down
to acetoacetyl-CoA by 3-oxoacid CoA-transferase 1 (OXCT1). mRNA levels of OXCT1
are detectable in all human tissues except the liver; hence, the liver cannot utilize KBs
as an energy substrate. Acetoacetyl-CoA is subsequently converted back into two acetyl-
CoAs, ready to enter the TCA cycle, by the reversible action of ACAT (the first enzyme of
ketogenesis). Unlike glucose, this conversion of BHB and AcAc into an oxidizable form
does not necessitate ATP. In the developing rodent brain, cultured neurons, astrocytes, and
oligodendrocytes all demonstrated the ability to utilize KBs for oxidative metabolism at
rates considerably higher than those for glucose. However, neurons and oligodendrocytes
appeared to be more efficient at oxidizing ketones than astrocytes [8,93,94].

4. Dysregulation of Fatty Acid Metabolism in GBM

Mitochondrial dysfunction in cancer leads to increased OXPHOS activity in these
cells. Research has shown that in glioblastoma, mitochondria play a key role in induc-
ing resistance to Temozolomide. Therefore, targeting the treatment of mitochondria
could be effective in the treatment of cancer due to the dependence of tumor cells on
mitochondria [34,75–77].

Remodeling of lipid metabolism through changes in FA transport, de novo lipogenesis,
storage of LDs, and FAO in order to provide energy is a distinctive sign of cancer, including
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GBM. Changes in lipid metabolism are associated with different aspects of tumor biology,
such as proliferation, migration, and resistance to therapy, and are dependent on the type of
tumor or the type of molecular subclass with which it is associated. FAs exert a significant
impact on tumors, making disruption of their metabolism a potential strategy for tumor
treatment. Consequently, targeting the reprogramming of FA metabolism in tumor cells
has become an increasingly prominent focus of research [95,96]. Rapidly proliferating
cells require a significant number of FAs to facilitate membrane synthesis and to generate
phospholipids crucial for replication. FAs can serve as substrates for mitochondrial ATP
synthesis, regulate post-translational modification of lipids, and modulate the function of
signaling proteins. Through de novo lipogenesis or exogenous absorption from the sur-
rounding microenvironment, tumor cells obtain FAs. CD36/AG translocase (FAT), plasma
membrane AG-binding proteins (FABPpm), and FA transport protein family (FATP)/SLC27
are specialized transporters that facilitate the absorption of FAs from the surrounding mi-
croenvironment and are overexpressed in tumors. At the same time, the hypoxia-inducible
factor (HIF)-1α promotes FABP expression. Therefore, the tumor microenvironment shows
an increased uptake of FAs and, secondarily, an increased number of LDs (Figure 4) [96–99].
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Figure 4. Difference between a normal cell and a GBM cell. In GBM cell mitochondria: ROS levels
increase, oxygen consumption is low, and ATP production occurs by glycolysis; FA synthesis and FAO
are antagonistic pathways—in GBM both are activated. HIF1 plays a pivotal role in lipid metabolism.
It can increase lipid uptake and trafficking, fatty acid synthesis, lipid droplet biogenesis, and lipid
signal production, and suppress FAO. Lipid droplet accumulation may be the final result of HIF1
in lipid metabolism. Low expression of ketogenic enzymes in GBM leads to increased survival,
proliferation, migration, and invasion of GBM cells. Created in BioRender.

As mentioned above, in the case of normal cells, and in the case of tumor microenviron-
ment cells, LDs have the role of preventing lipotoxicity, thus maintaining lipid homeostasis.
At the same time, under conditions of metabolic stress, LDs represent an important source
of ATP and NADPH, following the β-oxidation pathways. Acetyl-CoA produced in TCA
leads to the generation of NADH and FADH2 for the electron transport chain, with the
secondary synthesis of ATP, a quantity six times higher than the oxidation of carbohydrates.
Another important source of NADH is the oxidation of citrate diverted from acetyl-CoA
under the action of isocitrate dehydrogenase I (IDH1). Thus, sufficient NADH, essential
for anabolic metabolism and ROS detoxification, is generated. Thus, hypoxic cells through
the overexpression of FABP3 and FABP7 benefit from an increased capture of FAs and
a sufficient number of LDs to provide sufficient energy for the recovery of tumor cells,
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including GBM cells during reoxygenation. At the same time, GBM cells are protected
from ROS toxicity by increasing NADPH levels. The in vivo inhibition of FABP3 and
FABP7 inhibits the growth of the GBM cell line U87 by reducing the absorption of FAs
and, secondarily, by the lack of formation of LDs. This interaction between tumor cells and
lipids makes the latter play a crucial role in the preparation of the tumor microenvironment,
and, therefore, favors tumor initiation and progression [96,100–102].

Analysis of metabolic profiles between low-grade gliomas (LGG) and patient-derived
GBM revealed a prevalence of FA catabolism over synthesis in GBM. This observation
demonstrates the dual nature of β-oxidation, which encompasses both anabolic and
catabolic functions, providing metabolic plasticity to GBM cells, which allows tumor
cells to adapt and grow in different microenvironmental conditions [103,104].

Increased de novo lipogenesis, characteristic of tumor metabolism dynamics, leads
to overexpression of FA synthetase (FASN), which secondarily promotes the mobility and
wound repair abilities of glioma cells. Activation of the phosphoinositol 3-kinase/protein
kinase B (PI3K/Akt) signaling pathway reveals positive feedback in maintaining high
levels of FASN in GBM cells. It is well known that activation of the PI3K/Akt signaling
pathway produces cell proliferation and invasion in malignant gliomas. In orthotopic
GBM mouse models, FASN levels were reduced under Temozolomide and Metformin
treatment [103,105–108].

The upregulation of FASN in GBM cells is likely attributable to increased expres-
sion of the essential transcriptional regulator sterol regulatory element-binding protein
(SREBP) [103,109,110].

SREBP activation plays a crucial role in FA metabolism under hypoxic conditions. In
addition, SREBP1 serves as a downstream target of tumor suppressor pathways, including
the liver b1/AMP kinase-activated protein kinase (LKB-AMPK) and Akt pathways. AMPK
phosphorylates SREBP1, inhibits its activity and, consequently, suppresses tumor growth.
AMPK also phosphorylates acetyl-CoA carboxylase (ACC), which leads to the inhibition
of FA synthesis. However, in GBM cells, AMPK activation increases ACC activity and
levels. Activation of the PI3K/Akt pathway increases the expression of SREBP1 and genes
associated with FA synthesis. Furthermore, PI3K hyperactivation and epidermal growth
factor receptor (EGFR) mutations promote GBM growth and survival through SREBP-1
activation. These findings suggest that inhibition of SREBP activity could be a promising
therapeutic approach [103,111,112].

4.1. Carnitine Shuttle System Dysregulation in GBM

As mentioned above, an essential cofactor in lipid metabolic pathways is carnitine.
It plays a key role in facilitating LCFA transport across the mitochondrial membrane
(Figure 2). Consequently, a deficiency in the carnitine shuttle can lead to a reduced ability of
tissues to use LCFA as an energy source. On the other hand, tumor cells grow in lipid-rich
microenvironments that give them survival advantages. Therefore, inhibiting the factors
involved in the carnitine shuttle could lead to the formation of a microenvironment not
favorable to the development of tumor cells and therefore to the slowing down of tumor
progression [49,113–115].

OCTN2, a membrane transporter of carnitine, is present in both brain cells and GBM
cells. The expression of OCTN2 was found to be higher in primary GBM samples from
patients, and even more pronounced in samples from patients with recurrent GBM, as
compared to the healthy brain [32,116,117].

Fink et al. showed that increased OCTN2 expression in GBM patients correlates with
unfavorable outcomes, as demonstrated by decreased tumor cell viability upon OCTN2
silencing by siRNA-mediated activity (preclinical studies using a GBM mouse model).
Thus, increased expression of OCTN2 could be a potential prognostic factor for GBM. This
in vivo study represents the first demonstration of the antitumor efficacy of the OCTN2/L-
carnitine inhibitor Meldonium. Its peculiarity is that no significant side effects have been
observed so far. Furthermore, this study suggests the possibility of optimizing GBM
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therapy through targeted interventions, such as specific inhibition of OCTN2 or drug
delivery by targeting OCTN2. It was also shown that L-Carnitine-conjugated nanoparticles
promote permeation across the BBB to target glioma cells via OCTN2, resulting in improved
antiglioma therapy [118,119].

Bogusiewicz et al. conducted a study aiming to gain a deeper understanding of
intermediates in the carnitine transfer system by leveraging data obtained from untargeted
lipidomic analyses of brain tumors. Particular attention is paid to factors such as tumor
grade (WHO I-II, LGG; WHO III-IV, HGG), the presence of mutations in IDH, and 1p/19q
coding. They demonstrated that carnitine levels were significantly increased in HGG
compared to LGG, with a ratio of 4.21 in IDH wild-type tumors (IDHwt) compared to IDH
mutant tumors (IDHm), with no statistically significant difference between cases with and
without the presence of the 1p/19q co-deletion. The mean peak areas for short-, medium-,
and long-chain acylcarnitines were greater in HGG compared to LGG, although statistical
significance was observed only for short-chain acylcarnitines. Furthermore, their findings
showed higher levels of these analytes in IDHwt samples compared to mutants, although
the difference was not statistically significant. Carnitine and acylcarnitine levels tended to
be higher in tumors with higher malignancy (HGG versus LGG) or in patients with poorer
clinical outcomes (IDHwt versus IDHm and with 1p/19q co-deletion versus no co-deletion
1p/19q). The results of this study confirmed that changes in the carnitine transfer system
could serve as a crucial factor in measuring the malignancy of gliomas and evaluating
clinical prognosis [120].

Inhibition of carnitine transport by chemotherapeutic agents such as Vinorelbine and
Vincristine resulted in suppression of FAO, which was further potentiated by Etomoxir—a
CPT I inhibitor. Consequently, this led to decreased viability and increased apoptosis
in glioma cells. Modulation of OCTN2 expression influenced glioma cell survival in an
FAO-dependent manner. These results suggest that tumor cell survival is highly dependent
on both FAO and OCTN2 activity, indicating that CPT I and OCTN2 could be potential drug
targets. Vincristine, Vinorelbine, Cediranib, Verapamil, Oxaliplatin, and Etoposide inhibit
OCTN2-dependent carnitine uptake in glioma cells (see Figure 5). Moreover, OCTN2 can
transport anticancer drugs, such as Ectoposide or Oxaliplatin [32,118,121–123].
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Figure 5. The alterations in FA metabolism in GBM. The metabolic changes in GBM result in increased
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Therefore, inhibiting (X) these enzymes is expected to enhance survival in patients with GBM. Created
in BioRender.
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While the expression and enzymatic activity of proteins involved in this pathway have
been investigated, the specific role and destiny of carnitine and its esters formed during the
transport of FAs across the mitochondrial membrane remain poorly understood.

4.2. MCTs of KBs in GBM

MCTs are the only known transporters for ketone bodies and are widely distributed
throughout the brain. MCT1/2/4 are recognized contributors to cancer development,
operate through various mechanisms, and play a critical role in lactate transport. In GBM,
maintaining an alkaline intracellular pH is essential to sustain glycolysis. Inhibition of
MCT1 and MCT4, which are essential for this pH balance, would effectively prevent
glucose metabolism through glycolysis. In vivo studies indicated an upregulation of MCT4
and MCT1 in GBM compared with normal brain parenchyma, oligodendrogliomas, and
astrocytomas. Particularly remarkable was the significant increase in MCT4 levels observed
in necrotic tissues of GBM tumors. These findings suggest the potential for strategies
targeting MCT4 and MCT1 to provide new avenues for the development of new therapeutic
targets. MCT1 inhibitors, including AZD3965, BAY-8002, and 7ACC2, bind to distinct
conformations of MCT1, either outward or inward (Figure 5). However, all three inhibitors
directly occupy the substrate binding site. Goldberg et al. showed that AZD0095 exhibits
outstanding potency, high selectivity for MCT1, favorable secondary pharmacology, a well-
defined mechanism of action, suitable properties for oral administration in clinical settings,
and promising preclinical efficacy when used in combination with cediranib [124–128].

Current research on the role of MCTs in GBM is limited; however, the many implica-
tions associated with their function underscore the need for further investigation. Gaining
a deeper understanding of MCTs in GBM is crucial for the development of new inhibitors.
While there are several inhibitors targeting MCTs, there is currently a lack of research into
potential therapeutic drugs specifically tailored for GBM.

4.3. The Role of Ketogenic Enzymes in Glioblastoma

Given the dynamic and nutrient status-sensitive nature of ketone metabolism, there is
considerable interest in exploring its biological connections to cancer. This interest stems
from the potential for precision-guided nutritional therapies in cancer treatment [82].

Ketogenic enzymes, in turn, contribute to cell maintenance and energy supply, in
order to prepare the microenvironment necessary for the development of GBM cells. This,
together with the Warburg effect, underscores the importance of ketogenic metabolism in
driving GBM progression. [52,93,129].

To obtain a clearer understanding of ketogenic enzymes in human gliomas and es-
pecially in GBM, in Table 2 we investigate the expression levels of several key enzymes
involved in this metabolic pathway.
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Table 2. The ketogenic enzymes and their role in cancer and in GBM.

References Aim Analyzed Data Suggested Mechanism of Findings Significance and Future Research

ACAT1 & ACAT2

Wang et al. [129]
– ACAT1 expression

and myeloid
cell ratio

ACAT1
ITGAM *
CXCL1 *
MDSCs *

↑ ACAT1 expression → ↑ myeloid cell ratio
↑ myeloid marker ITGAM → ↑ myeloid cell infiltration in
tumor tissue
CXCL1 = crucial role in the induction of MDSCs and accelerated
tumor growth

– Manipulating MDSCs has emerged as a promising target for
the development of anticancer therapies

– ACAT1 may play a potential role in the immune
microenvironment

– CXCL1 contributes to the development of an
immunosuppressive microenvironment and facilitates tumor
progression. It is a potential prognostic biomarker and
therapeutic target for patients with GBM

Kou et al. [39]

– Suppression of
ACAT and
suppression of
SREBP-1 = blocked
GBM growth

SREBP-1
LDs

ACAT

LDs ↑ in GBM patient tissues (infrequently in LGG, and undetectable
in normal brain tissues)

– The formation of LDs is a signature feature of GBM
– ↑ LDs = poor survival
– ACAT1 protein level is correlation with LD formation
– ACAT2 = no expression in GBM patient tumor tissues/

rarely expressed
– SREBP-1 = highly activated in GBM

– SREBP-1 = a potential therapeutic target in malignancies
– Inhibiting ACAT1 to block cholesterol esterification represents

a promising therapeutic strategy for treating GBM by
suppressing SREBP-1

– LDs could potentially be mobilized when cancer cells
encounter a harsh microenvironment

Ohmoto et al. [130]

– Roles of ACAT1 in
human GBM cell
line U251-MG

– Role of K604

ACAT1
K604
AKT

ERK1/2 *

– ACAT1 = expressed in human GBM tissues
– At low cell density, proliferation of GBM cell line U251-MG is

significantly inhibited by K604 treatment
– At medium and high cell densities, K604 had no effect on the

proliferation of GBM cell line U251-MG
– Phosphorylation of AKT and ERK1/2 = inhibited by K604 in a

dose-dependent manner
– The activation of AKT and ERK1/2 may be associated with

refractory GBM

– ACAT1 may be a promising therapeutic target for GBM
– Further research is needed to elucidate the molecular

mechanisms underlying the inhibition of ERK1/2 and AKT
phosphorylation by K604

Löhr et al. [131]
– ACAT1 and

the GBM
microenvironment

ACAT1
GBM IDHw

GBM IDHm-R132H
SREBP-1

LD
CD68

– ACAT1 = more pronounced in microglia and macrophages
rather than in tumoral cells

– Expression of ACAT1 ↑ in GBM compared to LGG
– No expression of ACAT1 in normal brain tissues
– ↑ LD in GBM
– IDHm status exhibited a near absence of LD accumulation,

whereas GBM showed an abundance of LDs

– The tumor microenvironment, including the
macrophage/microglia may serve as a therapeutic target

– Mitotane could be particularly promising for GBM patients
who have exhausted other treatment options

– The in vitro impact of ACAT1 inhibition on macrophage
polarization holds significant interest
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Table 2. Cont.

References Aim Analyzed Data Suggested Mechanism of Findings Significance and Future Research

Bemlih et al. [67]

– Expression of
ACAT1 in U87,
A172 and GL261
glioma cell lines
and in normal
human astrocytes

ACAT1
CD80
CD86

MHC * class I

– ACAT1 expression is inhibited by Avasimibe in
glioma cell lines

– ACAT1 expression was unchanged in normal
human astrocytes

– Avasimibe = ↑ the expression of costimulatory
molecules (CD80, CD86), and ↑ MHC class I
(characteristic of immunogenicity of glioma cells)

– The effect of Avasimibe on glioma is
dose-dependent (was nearly abolished at 7.5 µM)

– Inhibition of ACAT1 = ↑ immunogenicity of tumor
cells. This finding suggests that such inhibition
could be valuable in enhancing T-cell responses to
tumors in vivo

– Targeting cholesterol metabolism through the
inhibition of ACAT-1 activity in GBM patients
presents a novel opportunity for controlling
glioma progression

HMG CoA Synthase & HMG CoA Lyase

Zhao et al. [64]

– Role of HMG
CoA Synthase
and HMG CoA
lyase in cancer

HMG CoA Synthase
BRAFV600E

– HMG CoA Synthase shows a positive correlation
with tumoral cell growth

– The dehydroacetic acid selectively inhibits the
proliferation and tumor growth of cells
expressing BRAFV600E

– HMG CoA Synthase = play a oncogenic role
– Ketogenic HMG CoA Synthase-HMG CoA

Lyase-acetoacetate axis is a promising therapeutic
target in treatment of BRAFV600E positive
human cancers

Zhou et al. [132] HMG CoA Syn-thase 1
in cancer

HMG CoA Synthase 1
Fibroblast

CD8+

– HMG CoA Synthase = highly expressed and
negatively correlated with the prognosis in cancer

– Compared to adjacent control tissues, HMG CoA
Synthase 1 was underexpressed in GBM tissues

– The infiltration levels of CD8+ T cell and cancer
associated fibroblast = closely associated with HMG
CoA Synthase 1 expression

– High HMG CoA Synthase 1 expression could
reduce the sensitivity to drugs in cancer

– HMG CoA Synthase 1 = had impacts on cell
proliferation and immunity
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Table 2. Cont.

References Aim Analyzed Data Suggested Mechanism of Findings Significance and Future Research

BHD & OXCT1

Chang et al. [66]

– Expression of
BHD and OXCT
in glioma WHO
grade III and
in GBM

BHDOXCT
GFAP

↓ expression of BHD in GBM
↓ expression of OXCT in GBM

– Patients with low expression of BHD and OXCT in
gliomas may respond better to adjuvant therapy,
such as a ketogenic diet → further investigations
utilizing animal models and/or conducting
large-scale clinical trials are essential to validating
these findings

Schwartz et al. [133]

– Expression of
BHD and OXCT
in GBM patients
and a
Ketogenic diet

BHDOXCT

– Patient 1 (original tumor) = ↓ expression of OXCT
and BHD in GBM, but still exhibits positive
expression

– Patient 2 = The majority of tumoral cells are positive
for OXCT and BHD → some GBM cells could
metabolize ketone, thus obtaining energy for their
continued growth

Ketocal = ↓ the blood glucose and ↑ blood ketones,
initially ↓ in weight (6%), but after then the patients’
weight was stabilized → use an adjunctive therapy for
GBM shows promise.
The question arises whether GBM cells can utilize ketones
for proliferation and growth?

* ITGAM = integrin subunit alpha M; CXCL-1 = C-X-C motif chemokine ligand 1; MDSCs = myeloid-derived suppressor cells; ERK1/2 = extracellular signal regulated kinase 1
2 ; MHC =

major histocompatibility complex; ↑ = increase; ↓ = decrease; → = results.



Int. J. Mol. Sci. 2024, 25, 5482 16 of 22

5. Conclusions

The metabolic shifts observed in tumor cells are significant, primarily dictated by
genetic factors. Our therapeutic aim revolves around altering these genetic determinants to
enhance the cells’ susceptibility to anticancer treatments.

The remodeling of lipid metabolism in GBM involves changes in FAO, FA transport,
de novo lipogenesis, and LD storage. By increasing the expression of FA transporters and
the transporters of the molecules involved in their supply, there is an increase in the content
of FAs in the tumor microenvironment. The excess of FAs is stored in the form of LDs,
which, in turn, will be split to generate energy. Thus, the hyperexpression of HIF-1α in
GBM leads to the hyperexpression of FAT, FABPpm, FATP, and, secondarily, the increase
in the absorption of FAs and the formation of LDs in the tumor microenvironment. LDs
prevent lipotoxicity and provide a source of ATP and NADPH in conditions of metabolic
stress. The inhibition of FABP3 and FABP7 leads to the reduction of FA absorption and
inhibits the growth of GBM cells.

Analysis of metabolic profiles between LGG and GBM reveals an increase in FA
catabolism in GBM, providing metabolic plasticity for tumor adaptation and growth in
different microenvironments. Through the PI3K/Akt signaling pathway, there is an over-
expression of FASN with the promotion of de novo lipogenesis, which is associated with
increased GBM cell invasion. At the same time, there is an increase in the expression of
OCTN2, an important transporter of carnitine. Inhibition of OCTN2 has demonstrated
antitumor efficacy in preclinical studies and could be a potential prognostic factor and
therapeutic target for the treatment of GBM.

The role of KBs and ketogenesis enzymes in GBM metabolism is equally important,
but still poorly understood, so new studies are needed regarding their expression and
functions in GBM, as well as the potential of ketogenic therapies, such as ketogenic diets for
this pathology. MCTs serve as key transporters for KBs across the BBB. Targeting MCTs, par-
ticularly MCT2 and MCT4, presents a novel approach in managing GBM cell metabolism.

The ongoing discovery of new therapeutic targets aimed at altering tumor metabolism
underscores the importance of ongoing research in this area. In recent years, attention has
been paid to metabolic reprogramming in GBM, as it has become increasingly evident that
it plays a substantial role in the pathogenesis of these aggressive tumors. Investigations
into the use of lipid metabolism for GBM have been limited, largely due to inadequate
understanding of the physiological functions of lipids and lipid-related pathways in the
brain and GBM. Therefore, future investigations focusing on therapeutic strategies targeting
lipid metabolism pathways may provide new and practical concepts for GBM therapy.

Author Contributions: Conceptualization, C.T. and A.B.; methodology, F.T.; software, A.C.; valida-
tion, C.T., A.B. and A.C.; formal analysis, A.C.; investigation, F.T.; resources, A.B.; data curation,
F.T.; writing—original draft preparation, C.T.; writing—review and editing, A.B.; visualization, A.K.;
supervision, A.B.; project administration, C.T.; funding acquisition, F.T. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by “George Emil Palade” University of Medicine, Pharmacy,
Science, and Technology of Targu Mures, research grant number 10126/2/17.12.2020.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ghimire, P.; Dhamoon, A.S. Ketoacidosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA; SUNY Upstate Medical

University: Syracuse, NY, USA, 2024.
2. Meidenbauer, J.J.; Mukherjee, P.; Seyfried, T.N. The glucose ketone index calculator: A simple tool to monitor therapeutic efficacy

for metabolic management of brain cancer. Nutr. Metab. 2015, 12, 12. [CrossRef] [PubMed]
3. Zhang, C.; Wang, M.; Ji, F.; Peng, Y.; Wang, B.; Zhao, J.; Wu, J.; Zhao, H. A Novel Glucose Metabolism-Related Gene Signature for

Overall Survival Prediction in Patients with Glioblastoma. BioMed Res. Int. 2021, 2021, 1–13. [CrossRef]

https://doi.org/10.1186/s12986-015-0009-2
https://www.ncbi.nlm.nih.gov/pubmed/25798181
https://doi.org/10.1155/2021/8872977


Int. J. Mol. Sci. 2024, 25, 5482 17 of 22

4. Henderson, L.R.; van den Berg, M.; Shaw, D.M. The effect of a 2 week ketogenic diet, versus a carbohydrate-based diet,
on cognitive performance, mood and subjective sleepiness during 36 h of extended wakefulness in military personnel: An
ex-ploratory study. J. Sleep. Res. 2023, 32, e13832. [CrossRef] [PubMed]

5. Kumari, A. Chapter 4—Beta Oxidation of Fatty Acids. In Sweet Biochemistry; Kumari, A., Ed.; Academic Press: Cambridge, MA,
USA, 2018; pp. 17–19.

6. Woolf, E.C.; Syed, N.; Scheck, A.C. Tumor metabolism, the ketogenic diet and β-hydroxybutyrate: Novel approaches to adjuvant
brain tumor therapy. Front. Mol. Neurosci. 2016, 9, 1–11. [CrossRef] [PubMed]

7. Newman, J.C.; Verdin, E. Ketone bodies as signaling metabolites. Trends Endocrinol. Metab. 2014, 25, 42–52. [CrossRef] [PubMed]
8. Jensen, N.J.; Wodschow, H.Z.; Nilsson, M.; Rungby, J. Effects of ketone bodies on brain metabolism and function in neuro-

degenerative diseases. Int. J. Mol. Sci. 2020, 21, 1–17. [CrossRef] [PubMed]
9. Laffel, L. Ketone bodies: A review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes/Metab. Res.

Rev. 1999, 15, 412–426. [CrossRef]
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