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1. Introduction

Nucleic acids are not only static carriers of genetic information but also play vital roles
in controlling cellular lifecycles through their fascinating structural diversity. Gone are
the days when DNA was perceived as a right-handed double helix and mediator RNA
was imagined mostly as a linear single-stranded molecule. We now know that various
structures, including quadruplexes, triplexes, and looped and zig-zagged structures, dy-
namically interact with proteins and cooperate in fine-tuning molecular processes. Section 2
of this Editorial is an overview of this exciting field of science and serves as a short guide
to the topic of “unusual” DNA and RNA structures. In Section 3, we briefly summarize
and highlight the main messages in the eight impactful articles published in this Spe-
cial Issue, each of them representing various and important aspects of current research
efforts. Finally, Section 4 discusses the current and future directions and implications
for applications.

2. Overview of Unusual Nucleic Acid Structures

Unusual nucleic acid structures (UNas) can be defined as noncanonical nucleic acids
differing from the classical double-stranded structure of B-DNA and are mostly abbre-
viated to non-B DNA (a term introduced in the early 80s [1]). However, this may be
quite misleading, as these structures often arise also in RNA or DNA–RNA hybrid
molecules (hence our use of the novel term “unusual nucleic acid structures”, abbre-
viated to UNas). The division of UNas may be quite tricky; historically, the most tra-
ditional categories are duplexes [2,3], triplexes [4], and quadruplexes [5]. In addition,
all these “-plexes” can be intramolecular (containing only a single nucleic acid strand)
or intermolecular (wherein two or more nucleic acid strands are involved) [6,7]. Un-
usual duplexes are mostly represented by the A-form [8] and Z-form of nucleic acids [9].
Triplexes are characterized by a triple-helical DNA structure in the case of intramolecular
DNA triplexes (sometimes called H-DNA) [10] or by noncoding RNA pairing with DNA
duplexes through Hoogsteen interactions in the case of intermolecular triplexes [11,12].
Quadruplexes can be divided into G-quadruplexes and i-motifs [13]. Aside from these,
there are also somewhat special UNas called R-loops (three-stranded structures consisting
of a DNA–RNA hybrid and a displaced strand of DNA) [14] and cruciforms, the latter
of which form four-way-junction, double-stranded-stems, and single-stranded loops [15].
All the abovementioned UNas are depicted in Table 1, and key information about them
is summarized.
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Table 1. The selection of the most-researched UNas together with their basic characteristics, formation
sequences, and known molecular-biological functions. Schematic structures were visualized using
UCSF Chimera [16] based on experimentally solved structures in the case of A-DNA (PDB: 2RMQ), Z-
DNA (PDB: 4OCB), and triplexes (PDB: 149D). For the remaining and more structurally complicated
UNas, simplified diagrams were made using BioRender.

UNas Schematic Structure Basic Characteristics and Typical
UNas-Forming Sequences Molecular-Biological Function

A-DNA
(A-RNA)
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believed to exist in the A-form [17]. In 
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and viruses can utilize this 
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conditions [2,3]. 

Z-DNA 
(Z-RNA) 

 

• Left-handed nucleic acid 
• Zig-zag phosphodiester back-

bone 
• Alternation of purine and py-

rimidine, typically d(CG)n or 
d(TG)n 

• In vitro, it usually requires a 
high concentration of salts to be 
formed from B-DNA (4M NaCl) 

Z-DNA and Z-RNA are associated with 
several human diseases, including vari-
ous cancers and the autoimmune dis-
ease Aicardi–Goutières syndrome [18]. 
These UNas are also believed to play 
crucial roles in innate immunity and 
host–virus interactions [19]. Proteins 
preferentially recognizing left-handed 
nucleic acids are known [20–23]. 

Triplexes 

 

• Triple-helical structure 
• Can arise in sites of long homo-

purine and homopyridine tracts 
• Prefers acidic or neutral pH and 

divalent cations 

Sites of triplex-forming sequences are 
connected with microsatellite repeat ex-
pansion disorders, including Frie-
dreich�s ataxia [24]. Although the in 
vivo formation of DNA triplexes has 
yet to be directly proved, it is believed 
to drive genomic instability [25].   

R-loops 
 

 

• Three-stranded structure 
• Consists of a DNA–RNA hybrid 

and a displaced strand of DNA 
• Arises mainly in guanine-rich 

clusters 

R-loops are formed during transcrip-
tion when the nascent RNA strand base 
pairs with template DNA. They may 
cause genomic instability via the block-
ing of DNA replication [26]. R-loops 
are involved in the repair of double-
stranded DNA breaks [27] and related 
to several human diseases [28]. 

G-quadruplexes 

 

• Guanines form planar G-quar-
tets; these stack on each other 

• Stabilized by monovalent cati-
ons (mostly K+ and Na+) 

• Guanine-rich sequences (tracts) 
are usually separated by short 
loop-forming sequences 

G-quadruplexes play vital roles in the 
replication [29], transcription [30], 
translation [31], telomere maintenance 
[32], and biogenesis of noncoding 
RNAs [33]. They are connected to many 
human diseases [34] as well as im-
portant physiological developmental 
processes [35]. 

i-motifs 

 

• Formed by intercalated cytosine 
base pairs in slightly acidic con-
ditions 

• Cytosine-rich sequences, analo-
gous to G-quadruplexes 

i-motifs likely participate in transcrip-
tion regulation [36]. In DNA, they can 
can arise in the opposite strand to the 
G-quadruplex [13]. There is also a hy-
pothesis that i-motifs played an 

• Short and wide helix
• Rigid, low flexibility
• No typical formation sequence
• Can arise under dehydrating conditions

(e.g., desiccation of bacteria)

Most of double-stranded RNA is believed to
exist in the A-form [17]. In addition, simple
prokaryotic organisms and viruses can utilize
this conformation to withstand adverse
conditions [2,3].

Z-DNA
(Z-RNA)
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• Left-handed nucleic acid
• Zig-zag phosphodiester backbone
• Alternation of purine and pyrimidine,

typically d(CG)n or d(TG)n
• In vitro, it usually requires a high

concentration of salts to be formed from
B-DNA (4M NaCl)

Z-DNA and Z-RNA are associated with
several human diseases, including various
cancers and the autoimmune disease
Aicardi–Goutières syndrome [18]. These UNas
are also believed to play crucial roles in innate
immunity and host–virus interactions [19].
Proteins preferentially recognizing left-handed
nucleic acids are known [20–23].

Triplexes
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• Triple-helical structure
• Can arise in sites of long homopurine

and homopyridine tracts
• Prefers acidic or neutral pH and divalent

cations

Sites of triplex-forming sequences are
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Although the in vivo formation of DNA
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R-loops
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• Formed by intercalated cytosine base
pairs in slightly acidic conditions
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i-motifs likely participate in transcription
regulation [36]. In DNA, they can can arise in
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It is worth mentioning that the in vivo existence (and potential biological relevance)
of even-higher-order “-plexes” cannot be excluded. Such structures could then be named
pentaplexes, sextuplexes, and so on [43].

The formation of most UNas is dependent on primary sequence information [44]; spe-
cific UNa-forming sequential motifs have been discovered and experimentally validated
(Table 1). Thanks to the rapid development of computer technology and capacities, it is
now possible to predict the occurrence of UNa-forming sequences in the whole eukaryotic
chromosomes relatively easily, and several user-friendly web servers have been devel-
oped for this purpose. One such example allows the prediction of G-quadruplex-forming
sequences [45], cruciform-forming sequences [46], R-loop-forming sequences [47], and Z-
DNA-forming sequences: the DNA analyzer web server (https://bioinformatics.ibp.cz/#/,
accessed on 29 April 2024).

3. Current Research Highlights

Here, we would like to shortly highlight the main findings of works published in this
Special Issue and encourage readers to read through the articles in their entirety.

Anthony Mittermaier and his team developed a very useful (and user-friendly) web
server that allows users to analyze multiplicities of their provided G-quadruplex-forming
sequences (https://www.mcgill.ca/mittermaierlab/greg-webserver, accessed on 29 April
2024). In addition, their article presents a detailed bioinformatic survey of the G-quadruplex
polymorphism in human gene promoter regions, linking G-quadruplex polymorphisms to
biological functions and providing new criteria with which to identify biologically relevant
G-quadruplex-forming regions [48].

Another freely accessible service was developed by Jiří Št’astný’s group from Mendel
University. Existing computer programs cannot easily predict where R-loops might oc-
cur in DNA. To address this, a new tool called R-loop tracker was developed (https:
//bioinformatics.ibp.cz/#/analyse/rloopr, accessed on 29 April 2024). This free web-
based tool can predict R-loops in genomic DNA and allows researchers to compare these
predictions to other DNA analyses [47].

It was previously found that G-quadruplexes can arise in long noncoding RNAs (lncR-
NAs) [33]. The study by Singh et al. identified lncRNA clusters with G4-forming sequences
in cervical cancer patients, confirmed the formation of G-quadruplexes in specific lncRNAs,
and discussed their roles as potential prognostic biomarkers for cervical cancer [49].

A recent article by Nicoletto et al. discusses the presence, conservation, and localization
of putative G-quadruplex-forming sequences in human arboviruses [50]. Arboviruses are
transmitted by arthropod vectors (arthropod-borne viruses, i.e., arboviruses) and comprise
many important human pathogens, including Dengue virus, West Nile virus, Zika virus,
or Tick-borne encephalitis virus [51]. Their study reveals the predominant locations of G-
quadruplex-forming sequences in coding sequences and three-prime untranslated regions
(3′UTRs). It also highlights their regulatory roles, emphasizing the potential of using
G-quadruplex structures as antiviral targets [50].

The article by Gumina and Richardson et al. discusses the role of G-quadruplexes and
the DHX36 helicase in gene expression regulation, particularly in cancer cells, highlighting
the impact of DHX36 knockout on gene expression associated with G-quadruplex content
in promoters or gene regions [52]. The findings suggest that DHX36 knockout leads to
subtle but widespread changes in gene expression and provides valuable insights into
the complex interplay between G-quadruplex structures, helicases like DHX36, and gene
expression regulation, especially in the context of cancer [52].

The study by Feng, Luo et al. explores the effects of potassium (K+) and sodium (Na+)
ions on global G-quadruplex formation in rice (Oryza sativa) [53]. The authors utilized a
high-throughput method called BG4-DNA-IP-seq (DNA immunoprecipitation with anti-
BG4 antibody coupled with sequencing). One of the exciting findings is that K+-specific
G-quadruplexes are more associated with active histone marks and low DNA methylation
levels compared to Na+-specific G-quadruplexes. This important research will facilitate the

https://bioinformatics.ibp.cz/#/
https://www.mcgill.ca/mittermaierlab/greg-webserver
https://bioinformatics.ibp.cz/#/analyse/rloopr
https://bioinformatics.ibp.cz/#/analyse/rloopr
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functional characterization of G-quadruplexes in rice and allow the potential use of specific
G-quadruplex locations for biotechnological advancements in the future [53].

The study by Shavkunov et al. focused on tRNA fragments (tRFs) and their roles in
interspecies interactions in bacterial communities [54]. Their research highlighted the emer-
gence of novel types of RNAs and their potential significance in bacterial and eukaryotic
cells [54].

The last published work in this Special Issue is a thorough review by Zulfiqar et al.
dealing with Virus-Induced Gene Silencing (VIGS), mainly with respect to crop improve-
ment [55]. VIGS represents a powerful tool for analyzing gene function and inducing
heritable epigenetic modifications. This review also highlights the role of VIGS in develop-
ing crop varieties with improved agronomic traits and stress tolerance [55].

4. Future Perspectives

There is a growing number of bioinformatic tools for UNas prediction and biophys-
ical characterization [45,56–59] as well as for determining their roles in various diseases
including cancer [60,61]. Contemporary, specific antibodies against cruciforms [62,63], left-
handed nucleic acids [64], G-quadruplexes [65], and i-motifs [66] have also been developed,
allowing effective analyses of UNas both in vitro and in situ. Even if UNas are often diffi-
cult to sequence, current methods and their modifications [67] allow accurate sequencing
and determination in genomes, leading to the finalization of telomere-to-telomere gapless
assemblies [68–71]. Although there are currently many tools for the prediction and experi-
mental validation of UNas, their structural bioinformatical characterization or modeling is
somewhat lagging. In the field of protein science, there are currently many approaches for
the de novo (ab initio) prediction of structures only from the amino acid sequences, e.g.,
AlphaFold [72] or trRosetta [73], and they are also usually accessible via a user-friendly in-
terface [73,74]. In the case of UNas, no such straightforward method exists so far. Although
some pioneering works have been published [75,76], they rely on arbitrary (user-provided)
instructions and (sequential/spatial) restrictions; in addition, only structures with previ-
ously known similar (experimentally solved) templates can be modeled. Moreover, the
work toward an ab initio nucleic-acid-structure-modeling tool is complicated by the fact that
UNa formation is often driven by additional (but important) factors like negative/positive
supercoiling (in the case of DNA) [77], chromatin epigenetic marks [78], chemical modifica-
tions of nucleobases [79], molecular crowding conditions/local microenvironment [80,81],
interacting proteins [82], and other (de)stabilizers. In other words, predicting nucleic
acid structure can be paradoxically even more challenging than predicting the structures
of proteins.

Experimental or modeled structures of UNas can be further inspected using virtual
screening/high-throughput molecular docking to determine which known chemical or
natural substances are capable of specific binding, as successfully applied, e.g., in the case
of bimolecular human telomeric G-quadruplexes [83]. The resulting UNas and their binders
can be further characterized using molecular dynamics methods [84],constituting a com-
plementary approach to biophysical methods of wet-lab characterization. Unfortunately,
another limiting factor here is the lack of user-friendly software that would allow a wide
range of scientists to carry out these analyses independently. Considering the computa-
tional complexity of these analyses, an ideal solution could be an integrative web server
allowing scientists to analyze UNa .pdb structures using natural-language commands with
the help of artificial intelligence [85].

So far, for the entirety of the UNa entity, only G-quadruplexes have been considered
the primary target in two clinical trials with CX-3543 and CX-5461 compounds [86,87].
The main pitfall of UNa-binding compounds has been low specificity and relatively high
toxicity in vivo, as, for example, in the case of the known in vitro G-quadruplex stabilizer
TMPyP4 [88]. Later, more specific compounds were developed, recognizing, e.g., only
parallel or antiparallel types of G-quadruplexes [89]. We believe that advances in bioin-
formatic methods will soon allow the implementation of the well-known concept of one
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drug–one target in the field of UNas; this would allow selective targeting of particular
pathological UNas that arise, for example, due to nucleotide repeat expansion [90,91].
Altogether, UNas represent very promising molecular targets, and the current boom
in methods of computational biology can pave the way for their future application in
drug discovery.
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