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Abstract: Flavonoids, a variety of plant secondary metabolites, are known for their diverse biological
activities. Isoflavones are a subgroup of flavonoids that have gained attention for their potential
health benefits. Puerarin is one of the bioactive isoflavones found in the Kudzu root and Pueraria
genus, which is widely used in alternative Chinese medicine, and has been found to be effective in
treating chronic conditions like cardiovascular diseases, liver diseases, gastric diseases, respiratory
diseases, diabetes, Alzheimer’s disease, and cancer. Puerarin has been extensively researched and
used in both scientific and clinical studies over the past few years. The purpose of this review is to
provide an up-to-date exploration of puerarin biosynthesis, the most common extraction methods,
analytical techniques, and biological effects, which have the potential to provide a new perspective
for medical and pharmaceutical research and development.
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1. Introduction

For many centuries, various cultures have used medicinal plants to treat ailments and
enhance overall health. These plants contain bioactive compounds that have therapeutic
properties, making them a valuable source of medicine [1–6]. From ancient civilizations
to modern times, the knowledge of medicinal plants has been passed down through
generations, contributing to the development of traditional medicine systems such as
Ayurveda, traditional Chinese medicine, and Native American healing practices [7].

The popularity of medicinal plants has increased recently due to their natural origin
and their potential to have fewer side effects than compounds from synthetic origin [8–10].
As a result, extensive research is being conducted to identify and understand the bioac-
tive compounds in these plants, leading to the development of new pharmaceuticals and
nutraceuticals [9,11,12].

Today, a significant number of pharmaceutical drugs come from plants or are inspired
by the bioactive compounds found in medicinal plants. Flavonoids and phenolic com-
pounds are just some of the many plant secondary metabolites that can be included in
bioactive compounds [13,14]. They have the ability to treat numerous health conditions,
such as respiratory disorders, digestive problems, skin problems, and chronic diseases like
diabetes and cardiovascular conditions [15–17].

Flavonoids have received significant attention in nutrition, the medical field, and
pharmaceutical research due to their health-promoting effects. Flavonoids are a class of
polyphenolic compounds found in various fruits, vegetables, different microorganisms,
and medicinal plants [17–19]. The diversity of flavonoids in nature and their promising
bioactivities make them promising candidates for developing novel therapeutic agents.
Their biological activities, which include antioxidant, anti-inflammatory, antiviral, anti-
cancer, and antimicrobial properties, have earned them their reputation [17]. Furthermore,
flavonoids and other bioactive compounds present in medicinal plants can be used to
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enhance their therapeutic potential through synergistic effects [20]. Flavanones, flavones,
isoflavones, flavonols, flavanols, and anthocyanins are among the subclasses that they
further classify into, with each having specific biological effects [17,21,22]. The focus of
research studies is now on discovering, extracting, and isolating new plant molecules that
have various biological effects, including various high-potential isoflavones.

Plant-derived flavonoids known as phytoestrogens are isoflavones, which have struc-
tural similarities to the hormone estrogen [23–25]. Their natural abundance is present in
soybeans and other legumes, and they have been investigated for their potential health
benefits [25–27]. Due to their potential to have both estrogenic and antiestrogen effects in
the body, the phytochemistry of isoflavones is gaining much attention. Their dual biological
effects are due to their ability to bind to estrogen receptors, mimicking estrogen’s actions in
certain tissues while blocking its effects in others [24,27]. The most common isoflavones
are genistein, daidzein, glycitein, and formononetin (Figure 1).

Figure 1. A schematic illustration of the basic structure, natural sources, and biological effects of
flavonoids, including the most common isoflavones.

Recently, one of the isoflavones that were discovered has revealed significant therapeu-
tic potential for both the pharmaceutical industry and the entire scientific medical world.

Puerarin, also known as daidzein-8-C-glucoside, is found in the roots of the kudzu
plant and the genus Pueraria [28–30]. The kudzu plant has compounds like flavonoids,
saponins, xanthones, lignans, sterols, and other compounds. The genus Pueraria is iden-
tified by puerarin, an isoflavone that is used as its chemotaxonomic marker. Isoflavone
glycosides, particularly puerarin, are responsible for many of the genus Pueraria bioactiv-
ities [30]. At positions 7 and 4’, there are hydroxy group substitutions, and at position
8, it is accompanied by a beta-D-glucopyranosyl residue through a C-glycosidin linkage
(Figure 2). To develop new applications and improve its bioavailability, it is essential to
comprehend the biosynthesis pathway of puerarin.

This review aims to explore the biosynthesis pathway, extraction methods, analytical
techniques, and provide a comprehensive summary of the biological effects of puerarin.
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Figure 2. Chemical structure of puerarin.

2. Biosynthesis of Puerarin

Isoflavones are derivatives of flavonoids, which are derivatives of 2-phenyl-benzo-
γ-pyrone (2-phenyl-3,4-dihydro-2H-1-benzopyran-4-one). They are included in the large
family of natural polyphenolic compounds with structure type C3-C6-C3 [17,31].

Several enzymes and key reactions are involved in the puerarin biosynthesis pathway,
which starts with the shikimate pathway. Chorismic acid is formed as the end product of the
shikimate pathway after aldol condensation reactions between phosphoenolpyruvic acid
and D-erythrose 4-phosphate [17,31]. The enzymes prephenate-aminotransferase (PhAT)
and arrogate-dehydratase (ADT) are responsible for converting this into the amino acid
phenylalanine. After the formation of the amino acid phenylalanine, biosynthesis occurs
through the phenylpropanoid pathway. The deamination of phenylalanine to form trans-
cinnamic acid occurs in the presence of phenylalanine-ammonia liase (PhaAL) [17,32]. The
4-coumaric acid is converted from trans-cinnamic acid by cinnamate-4-hydroxylase (C4L).
Providing the compound 4-coumaroyl-CoA will be achieved by using 4-coumarate-CoA-
ligase (C4CoAL) [17,31,32]. Afterwards, 4-coumaroyl-CoA is converted to isoliquiritigenin
by chalcone synthase and chalcone reductase [33–38]. Chalcone isomerase (CHI) then
catalyzes the formation of liquiritigenin from isoliquiritigenin, which is further catalyzed
by 2-hydroxyisoflavanone (IFS) to produce 2,7,4′-trihydroxyisoflavonone [36,37,39].

Two different pathways allow for the production of puerarin through the catalysis of
the chalcone isoflavone, by (i) 2-hydroxyisoflavanone dehydratase (HID) to form daidzein,
and by (ii) 8-C-glucosyltransferase (8-C-GT) to form trihydroxyisoflavonone-8-C-glucoside
(Figure 3) [35,36]. The transformation of it into puerarin is accomplished by PlUGT43
through 8-C-glucosylation. The 8-C-glycosylation reaction during the biosynthesis of
puerarin is still being debated [37,40].
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Figure 3. Overview of the main steps of the puerarin biosynthesis pathway.

3. Extraction Methods and Analytical Techniques

Puerarin can be found in several natural sources, such as Kudzu root (Pueraria lobata),
a traditional medicinal legume taxon native to Southeast Asia, which has a wide range
of species and can be found in China [41–43]. Additionally, puerarin can also be found
in other plants belonging to the genus Pueraria [41,42,44,45]. Puerarin can be obtained
for various applications using these natural sources in a sustainable and environmentally
friendly way.

There are several methods for extracting puerarin from Kudzu root, including the
following: (i) solvent extraction; (ii) ultrasound extraction; (iii) enzyme-assisted extraction;
(iv) microwave-assisted extraction [46]. Choosing the right extraction method for isoflavones
requires considering factors like efficiency, cost, and environmental impact, as each method
has its own advantages and disadvantages [17,47,48].

Despite its simplicity and cost-effectiveness, solid-liquid extraction is a traditional
method that may not achieve the highest purity of puerarin. Supercritical fluid extraction
is a method that offers high purity and efficiency, but it can be expensive and complex
to set up [49]. Microwave-assisted extraction can enhance efficiency by accelerating the
ex-traction process and reducing extraction time. Using microwave energy can lead to
an increase in operational costs [50]. Besides these methods, there have been attempts to
extract puerarin using other extraction methods, such as ultrasound-assisted extraction
and enzymatic extraction [46].

He Zhu et al. conducted a study to evaluate how differences in ultrasonic power,
microwave power, and time affect the rate of flavonoid extraction from Kudzu root samples.
Their research revealed that flavonoid extract yield was increased by increasing ultrasonic
and microwave power. Microwave power, followed by ultrasonic time and power, were
found to be the most effective combination factors for influencing the flavonoid extraction
rate [51].

Duru et al.’s investigation involved evaluating how well isoflavones (daidzein, genis-
tein, puerarin) are extracted from the by-products of Kudzu roots using natural deep
eutectic solvents coupled with ultrasound-supported extraction. The use of natural deep
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eutectic solvents coupled with ultrasound-assisted extraction was evaluated against the
usual Soxhlet extraction technique, and the amounts of the extracted isoflavones were de-
termined by HPLC-UV/VIS. The results of this study suggest that the developed technique
may have advantages such as reduced extraction time and the use of inexpensive and green
extraction solvents, but further investigation is needed to fully optimize the conditions
for extracting isoflavones [52]. Below, the most commonly used extraction techniques are
presented with different advantages and disadvantages (Table 1).

Table 1. Advantages and disadvantages of various techniques for extracting puerarin from natural sources.

Extraction
Techniques Advantages Disadvantages References

Traditional
(e.g., Maceration,

Percolation,
Decoction, Soxhlet)

■ Low installation cost
■ Low maintenance cost
■ Dynamic extraction

• Time-consuming process
• Poor purity
• Low efficiency
• Large amounts of potentially toxic

solvents
• Significant waste production
• Difficulty with automation

[47,48,53]

Microwave-Assisted Extraction

■ Shorter time
■ Higher extraction rate
■ Low consumption of organic solvents
■ Lower costs
■ Low pollution

• Generating free radicals
• Heating occurs during extraction
• Restricted to polar solvents
• Not specifically for volatile solvents

[46–48,53–56]

Ultrasound-Assisted Extraction

■ Heating is not necessary
■ High efficiency and yields
■ Low energy consumption
■ Less solvent

• Excessive ultrasonic energy may lead to
degradation of puerarin [47,48,53,57–60]

Supercritical Fluid
Extraction

■ Environmentally friendly
■ High selectivity
■ Mild extraction conditions
■ Requires less energy and resources

• Limited mass transfer
• Expensive equipment
• Required technical knowledge of

different specific properties
[46–48,61,62]

Enzyme-Assisted
Extraction

■ Gentle reaction conditions
■ Eco-friendly extraction solvents
■ Minimal active substance loss
■ Mild conditions
■ Higher extraction rate
■ Possibility of combining with various

extraction methods (e.g.,
ultrasound-assisted extraction,
microwave-assisted extraction)

• High cost of enzymes [46–48,63]

Deep Eutectic
Solvents

Extraction

■ Green solvents
■ DES are extremely easy to prepare with

high purity
■ Lower extraction temperature
■ Lower costs
■ Shorter extraction time
■ High selectivity

• Limited mass transfer
• High density and viscosity
• Low vapor pressure

[64–67]

In summary, different extraction methods, including ultrasound-assisted extraction,
supercritical fluid extraction, enzyme-assisted extraction, microwave-assisted extraction,
and deep eutectic solvents extraction, provide distinct advantages in the extraction of
puerarin from Kudzu root or other plants of the genus Pueraria [46]. Various factors affect
the extraction of plant sources, including the type of plant material, solvent selection,
extraction technique, and operating conditions [47,68].

Understanding these key factors is necessary to optimize the extraction process and
achieve high yields with desired properties. The primary variable in any extraction method
is definitely the solvent selection. It is important to choose the extraction solvent based on
its solubility and the intensity of interactions with the matrix. To examine the solvent’s
properties, it is necessary to pay attention to polarity, pH, viscosity, surface tension, vapor
pressure, boiling point, solid–liquid ratio, as well as the effect on the purity and activity of
the extracted compound [68].
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For example, in the case of ultrasound-assisted extraction, at the adjusted temperature,
a solvent with low vapor pressure facilitates cavitation, which increases the impact of
ultrasound on the process, and on the other hand viscous solutions have the opposite effect,
increasing the amplitude of waves, hindering the propagation of ultrasound, and producing
mechanical effects on the sample due to cavitation [68,69]. The frequency of extraction is a
crucial parameter that prevents the cavitation process from fully occurring and decreases
the size of bubbles by decreasing their expansion time [69]. The dielectric constant and the
dissipation factor are crucial parameters for microwave-assisted extraction, and modifying
the dielectric constant is necessary to obtain suitable characteristics. More microwave
energy is required for high volumes of solvent because microwave radiation is absorbed
by the solvent [68,70]. Very high microwave power can lead to lower yields, which can be
attributed to the heat generated by the microwave energy causing the disintegration and
thermal degradation of the puerarin content.

The potential of these advanced techniques in improving extraction efficiency, reducing
processing time, and enhancing the quality of extracted puerarin is significant. Additionally,
these extraction methods can also integrate green solvents and environmentally friendly
approaches, which promote sustainability and align with the industry’s growing demand
for chemical-free and eco-friendly processes, according to the basics and fundamentals of
green chemistry [71,72].

Analytical techniques are crucial for the pharmaceutical industry, as they aid in com-
prehending the physical and chemical stability of the bioactive compound, which influences
the selection and design of the dosage form, assesses stability, and identifies the impu-
rities [73]. To determine the presence and concentration of puerarin, various analytical
methods can be employed. Spectroscopic methods such as UV-VIS spectrophotometry
and mass spectrometry are included, along with chromatographic techniques such as
high-performance liquid chromatography and gas chromatography [74,75].

One of the commonly used methods for the analysis of puerarin is high-performance
liquid chromatography (HPLC) [76–78]. HPLC is a popular technique for estimating
puerarin concentration because it allows for the separation and quantification of individual
components in a sample. Choosing an analytical method for puerarin determination
necessitates considering factors like sensitivity, selectivity, and reproducibility. The accuracy
and precision of the results can only be guaranteed by verifying the chosen method through
standardization and calibration [76,79].

Even though high-performance liquid chromatography and mass spectrometry are
widely used for analyzing puerarin, it is essential to critically evaluate the limitations
and potential drawbacks that arise with these approaches. Depending on the cost of
the equipment and the specialized training needed for the operation, accessibility can be
limited [79]. In addition to the analytical methods mentioned, nuclear magnetic resonance
(NMR) spectroscopy is another effective method for analyzing puerarin. The identification
and quantification of puerarin in complex samples, such as plant extracts, can be achieved
through NMR spectroscopy, which provides detailed information about the molecular
structure and dynamics of compounds. For example, Yi et al. performed a complete NMR
analysis of puerarin and explored the antioxidative activity by bond dissociation enthalpy
(BDE) calculations. Their results revealed that in methanol-d4, the PBE0/aug-cc-pVTZ
approach was employed to calculate the root mean square value of puerarin to 5.73 ppm.
Also, they calculated the 13C and 1H chemical shifts of the puerarin molecule (in C7 and
C4’ positions) in methanol-d4, phenolic O–H bond dissociation enthalpies (84.3 kcal·mol−1;
82.5 kcal·mol−1), and single-step hydrogen atom transfer [80].

Integrating NMR analysis with other analytical techniques (e.g., HPLC, MS) can lead
to a more comprehensive assessment of bioactive molecules, which allows researchers to
take advantage of the strengths of both methods while minimizing their limitations [81–83].
Furthermore, these analytical methods offer precise information about the molecular structure
of puerarin, which makes it easier to identify and quantify complex samples (Table 2).
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Table 2. Details of various analytical methods used for the estimation of puerarin.

Analyte Column; Mobile Phase
Flow Rate;

Temperature;
Detection

Wavelength

Combined Technique
Parameters Results References

Puerarin
(Pueraria lobata

stem extract,
puerarin cream)

Optimapark C18 column
(250 × 4.6 mm, 5 µm);

A: 0.5% aqueous acetic acid;
B: methanol
(77:23, v/v)

1 mL/min;
30 ◦C;

250 nm
-

• Retention time = 10.75 min;
• Total analysis time = 25 min;
• Puerarin content in extract (0.29 ±

0.01%); puerarin content cream
(0.015 ± 0.001%);

• This analytical method was
successfully applied to quality
control of raw material and
cosmetic product.

[84]

Puerarin
(Pueraria lobata)

Optimapark C18 column
(4.6 mm × 250 mm, 5 µm);

A: 0.1% formic acid/aqueous
solution;

B: acetonitrile

1 mL/min

PDA–ESI–MS/MS:
# Detection: 200 ÷ 400 nm;
# Drying gas flow: 15

L/min;
# Nebulizing gas flow rate: 3

L/min;
# Desolvation line

temperature: 250 ◦C;
# Heat block temperature:

400 ◦C.

• Retention time = 15.43 min;
• [M+H]+ = 417.10;
• [M−H]− = 415.09;
• Product ion (m/z) = 297.12;
• λ Max (nm) = 250, 305.

[85]

Puerarin
(Pueraria lobata

radix)

ZORBAX SB C18
reversed-phase column

(4.6 mm × 250 mm, 5 µm);
A: 0.2% phosphoric acid/

water;
B: methanol

1 mL/min;
35 ◦C;

475 nm
-

• Precision (RSD) = 0.40–1.63%;
• Stability (RSD) = 1.05–4.95%;
• Repeatability (RSD) = 2.52–4.95%;
• LODs = 0.0152–0.0307 µg/mL;
• LOQs = 0.0506–0.1024 µg/mL;
• The maximum extraction efficiency

reached 8.92 mg/g with 7.66 mg/g
puerarin.

[86]

Puerarin
(Pueraria lobata)

Agilent SB-C18
(2.1 mm × 100 mm, 1.8 µm);
A: water/0.1% formic acid;

B: acetonitrile/0.1% formic acid

40 ◦C

ESI–(QTRAP)–MS:
# Source temperature:

550 ◦C;
# Ion spray voltage (IS): 5500

V (positive ion
mode)/−4500 V (negative
ion mode);

# Source: gas I, gas II, and
curtain gas (50, 60, and
25.0 psi).

• Retention time = 3.22 min;
• [M+H]+ = 417. [87]

Puerarin
(gel eye drops)

Agilent Zorbax SB-C18 column
(3.0 × 150 mm, 3.5 µm);
A: acetonitrile gradient;

B: 0.1% formic acid
(15:85, v:v)

0.6 mL/min;
35 ◦C;

250 nm

MS:
# Nebulizing gas: 55 psi;
# Turbo ion spray
# temperature = 600 ◦C;
# Collision gas = 8 psi;
# Curtain gas = 20 psi;
# Ion spray
# voltage: −4500 V.

• Product ion (m/z) = 415.1;
• The declustering potential is −80 V,

entrance potential is −10 V,
collision energy is −45 V, and
collision cell exit potential is −10 V;

• Three levels of quality control
samples (LQC 6 ng/mL, MQC 150
ng/mL, and HQC 3200 ng/mL) as
well as LLOQ (2 ng/mL);

• The RSDs were below 10% for
intra- and inter-day precision
measurements, and the accuracy
ranged from 92.3 to 104.0%,
suggesting their analytical
approach was reliable and
acceptable for quantifying PUE in
aqueous humor.

[88]

Puerarin
(Pueraria
thomsonii

radix)

Waters BEH C18 column
(2.1 mm × 100 mm, 1.7 µm);
A: 0.1% formic acid/water;

B: 0.1% formic acid/acetonitrile

0.3 mL/min;
30 ◦C

Q-TOF-MS:
# Range (m/z): 100–2000;
# Source voltages of 5500 V

(positive ion) and −4500 V
(negative ion);

# Ion source
temperatures = 600 ◦C and
500 ◦C;

# Cracking voltage (±80 V);
# Collision energy (±10 eV).

• Selected ion: [M−H]− ;
• Retention time = 5.14 min;
• Calculated and measured

mass = 415.1036;
• RSD = 0.73%;
• Reproducibility (RSD) = 0.15%;
• The extract contained 2.1145

mg/mL puerarin.

[89]

Puerarin
(Pueraria
tuberosa)

C18
(250 mm × 4.6 mm);

A: methanol;
B: water

(25:27 ratio)

1 mL/min;
25 ◦C;

250 nm
Q-TOF-MS

• Retention time = 18.156 min;
• [M+H]+ = 417.1201;
• [M+Na]+ = 439.1015.

[90]

4. Biological Effects of Puerarin

Chronic diseases are becoming more prevalent as a result of the increasing ill popu-
lation worldwide, leading to a serious threat to the health of individuals. Although new
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drugs are being developed to improve health, there has been insufficient progress in this
area.

Plant-derived natural preparations have become a valuable resource for the devel-
opment of new drugs. Bioactive molecules from Chinese herbal medicines (e.g., ginseng,
astragalus, Ginkgo biloba) have been discovered to have ‘life-nourishing’ properties, and
their role in health is being more and more recognized [91–93].

Puerarin has also gained recognition over the years due to its diverse pharmacological
and biological effects in the treatment of acute and chronic diseases [28,94–98], such as
cardiovascular diseases [99–102], liver diseases [103–105], neurologic disorders [26,106,107],
respiratory diseases [108], and many more.

The structure–activity relationship of puerarin has been the subject of numerous
studies conducted by researchers in recent decades. Analyzing the relationship between the
structure and activity of puerarin allows us to develop more effective analogues that can
highlight more pronounced biological effects, particularly in oncological drug development.
Discovering new biological effects is also a focus of current research. Current research
also focuses on the discovery of new biological effects. The development of an active
pharmaceutical form in which puerarin is encapsulated has been the focus of fewer clinical
studies. Besides discovering new biological effects, it is also essential to monitor the
potential adverse effects that may occur.

In the forthcoming section, we summarize an analysis of the biological effects of
puerarin (Table 3).

Table 3. Summary of the various biological effects of puerarin.

Type of
Disease/Disorder Biological Effects of Puerarin References

Cardiovascular
disease

■ Inhibits or regulates critical molecular activities involved in the major cellular events
of cardiac remodeling, such as JNK1/2, AMPK/mTOR, PPAR α/γ, Na+/K+-ATPase,
HIF-1 α, angiopoietin, and myocardial death-related pathways (e.g., mitochondrial
apoptosis, necrosis, autophagy);

■ Relieves the effects of oxidative stress and inflammation;
■ Improves mitochondrial function;
■ Decreases the death of cardiomyocytes.

[109]

■ Alleviates hyperpermeability by decreasing the levels of TNF-α and IL-1β;
■ Inhibits the expression of adhesion molecules, and the inflammatory factors IL-8,

COX-2, IL-1β, TNF-α, and IL-6 to exert an anti-inflammatory effect in atherosclerosis;
■ Improves the lipid profile by reducing the levels of blood triglyceride, total

cholesterol, and low-density lipoprotein cholesterol;
■ Increases the levels of high-density lipoprotein cholesterol in hyperlipidemic rats;
■ Improves regulation of Na+/K+-ATPase;
■ Decreases inflammation, oxidative stress, autophagy, and myocardial fibrosis.

[110]

■ Reduces myocardial remodeling-related proteins expression;
■ Attenuates reactive oxygen species, restores mitochondrial membrane potential, and

decreases Ca2+-overload in vitro.
[111]

■ Anti-myocardial fibrosis and anti-myocardial ischemia effects;
■ Inhibits myocardial hypertrophy;
■ Anti-atherosclerosis effects;
■ Inhibits the activation of p38-MAPK and reduces the content of TNF-a in serum;
■ Inhibits the activity of myeloperoxidase and decreases malondialdehyde content in

the myocardial tissue;
■ Lowers blood pressure and enhances vascular endothelial function by relaxing blood

vessels through the eNOS signaling pathway.

[112]
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Table 3. Cont.

Type of
Disease/Disorder Biological Effects of Puerarin References

■ Inhibits excess oxidative stress and the release of inflammatory cytokines;
■ Maintains mitochondrial function;
■ Promotes adaptive autophagy and protects against myocardial damage.

[113]

■ Puerarin pretreatment reduces the cardiotoxicity injury associated with doxorubicin,
resulting in increased cell viability, decreased LDH activity, and apoptosis;

■ Prevents excess oxidative stress, maintains mitochondrial function and energy
metabolism, and enhances myocardial function.

[114]

■ The reduction of IL-1β was positively correlated with succinate in the serum of
puerarin–tanshinone IIA-treated mice;

■ Inhibits inflammation by targeting HIF-1α to interfere with the succinate
signaling axis;

■ The combination of puerarin–tanshinone IIA was more effective in restraining
inflammatory responses and the formation of atherosclerotic plaque.

[115]

Liver disease

■ Hepatoprotective effects against benzo[a]pyrene-induced liver damage via inhibiting
oxidative stress and inflammation. [116]

■ Inhibits mPTP opening, and decreases mitochondrial Ca2+ levels and ATP synthase
expression;

■ Corrects the pathological damage caused by Xanthium strumarium toxicity.
[117]

■ Attenuates EtOH-induced liver injury;
■ Inhibits levels of SREBP-1c, TNF-α, IL-6 and IL-1β, compared with silymarin;
■ Acts as an inhibitor of MMP8 to reduce inflammation and lipid deposition in

alcoholic-liver disease.
[118]

Respiratory
disease

■ Inhibits the inflammatory response to prevent LPS-induced acute lung injury;
■ Reduces LPS-induced damage to A549 cells;
■ Reduces the expression of the inflammatory cytokines TNF-α, IL-8, and IL-1β in

LPS-induced A549 cells;
■ Improves sepsis-induced lung injury by inhibiting ferroptosis.

[119]

■ Redox-sensitive attenuation effect of inflammatory responses in mice exposed to ACS-
and CSE-stimulated HSAECs, via inhibition of NOX-isoforms;

■ Reduces the production of reactive oxygen species, lowers the infiltration of
inflammatory cells, and decreases the expression of inflammatory mediators.

[120]

Gastric disease

■ Decreases NLRP3 inflammasome-mediated injury by inducing AMPK/SIRT1
signaling in the gastric epithelium;

■ Protects GES-1 cells against LPS-induced injury by inhibiting NLRP3.
[121]
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Table 3. Cont.

Type of
Disease/Disorder Biological Effects of Puerarin References

Kidney disease

■ Reduces p65 acetylation via Sirt1 activation;
■ Additive inhibitory effects on the NF-κB activation. [122]

■ Improves glucose level and lipid metabolism;
■ Suppresses the production of reactive oxygen species and the accumulation of

excessive collagen fiber in glomerular mesangial cells;
■ Downregulates TGF-β and mesenchymal transition markers in high glucose-injured

glomerular mesangial cells and diabetic kidney.

[123]

Metabolic disease

■ The synthesis of the chitosan–puerarin hydrogel led to the discovery that it promotes
diabetic wound healing by inhibiting ectopic miR-29ab1-mediated macrophages and
controlling inflammation.

[124]

Neurological
disorders

■ Significantly attenuates depression-like behaviors in rats;
■ Controls the imbalance of intestinal bacteria;
■ Inhibits inflammatory responses in the hippocampus, serum, colon, and

downregulates the TLR4/NF-κB pathway.
[125]

■ Improves neurological impairment and forelimb motor function;
■ Reduces inflammatory response;
■ Inhibits brain edema;
■ Regulates synaptic plasticity.

[126]

■ Induces brain-derived neurotrophic factor production in astrocytes;
■ Promotes phosphorylation of extracellular-signal-regulated kinases;
■ Protects astrocytes through the PI3K/Akt- and ERK/mitogen-activated protein

kinases pathway;
■ Increases the potential of the mitochondrial membrane;
■ Decreases mitochondrial reactive oxygen species;
■ Increases Bcl-2 and decreases Bax levels;
■ Suppresses caspase-3 activation;
■ Decreases the production of pro-inflammatory cytokines;
■ Inhibits inflammatory responses;
■ Downregulates apoptosis-associated proteins;
■ Reduces calcium influx.

[127]

■ Significantly reduces the production of inflammatory cytokines (e.g., TNF-α, IL-6) in
the peripheral blood;

■ Exhibits inhibitory effects on the release of TNF-α and IL-6 from microglia, preventing
hippocampal neuronal cell death;

■ Exerts anti-neuroinflammatory effect against sepsis-associated encephalopathy by
modulating the AKT1 pathway in microglia.

[128]

■ Inhibits the level of factors related to the classical pathway of pyroptosis (e.g., NLRP3,
Caspase-1, IL-1β, IL-18);

■ Reduces blood–brain barrier damage.
[129]
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Type of
Disease/Disorder Biological Effects of Puerarin References

■ Attenuates oxidative stress and neuron apoptosis;
■ Enhances synaptic plasticity;
■ Improves cognitive function by blocking the TRPM2/NMDA receptor pathway;
■ Inhibits oxidative stress, apoptosis, and autophagy deficits by promoting synaptic

plasticity and suppressing oxidative stress, apoptosis, and autophagy deficits.

[130]

Urologic disease

■ Induces proliferation inhibition, apoptosis, and senescence of bladder cancer cells
in vitro;

■ Inhibits CCNB1 and PI3K/AKT pathways by upregulating the miR-139-5p;
■ Exerts oncogenic effects in bladder cancer by regulating the miR-139-5p/CCNB1 and

PI3K/AKT pathways.

[131]

Geriatric disease

■ Reduces bone loss;
■ Increases bone density;
■ Boosts osteogenic activity;
■ Helps promote bone repair and remodeling, which can be beneficial after bone

transplantation or in patients with osteoporosis;
■ Exerts inhibitory effects on the adipogenic differentiation of bone marrow

mesenchymal stem cells;
■ Prevents alcoholic osteonecrosis;

[132]

■ Encapsulation of puerarin into peptide self-assembled hydrogels significantly
ameliorates the progression of monoiodoacetic acid-induced osteoarthritis in rats. [133]

Bone disease

■ Significantly inhibits osteoclast activation and bone resorption, without affecting
osteoclastogenesis or apoptosis;

■ Significantly blocks c-Fos expression.
[134]

■ Anti-osteoporosis effect;
■ Reduces adipogenic differentiation and promotes osteogenic differentiation of bone

mesenchymal stem cells via activating the Wnt/β-catenin pathway and inhibiting the
PPARγ pathway.

[135]

■ Inhibits the activity and differentiation of osteoclasts;
■ Inhibits osteoclast differentiation through the OPG/RANK/RANKL

signaling pathway.
[136]

Ophthalmology
disease

■ Inhibits amyloid β-induced NLRP3 inflammasome activation in retinal pigment
epithelial cells via suppressing ROS-dependent oxidative and endoplasmic reticulum
stresses;

■ Promotes the activity of superoxide dismutase, catalase, and glutathione;
■ Inhibits the expression of nNOS and MDA to protect against retinal damage caused

by oxidative stress;
■ Improves micro-circulation;
■ Reduces blood viscosity;
■ Improves the reduction of intraocular pressure.

[137]
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■ Treatment with puerarin enhances cell viability, reduces reactive oxygen species
content, increases catalase and superoxide dismutase activities, and elevates the ratio
of GSH/GSSG in human corneal epithelial cells;

■ Attenuates hyperosmotic stress-induced injury of the human corneal epithelial cell
line by targeting the regulation of the SIRT1/NLRP3 signaling.

[138]

Sensorial
disorders

■ Anti-apoptotic effects towards ototoxic drug (e.g., cisplatin)-induced hair cell injury
in vitro;

■ Suppression of the synthesis of reactive oxygen species;
■ Inhibits apoptosis, and upregulates the Akt signaling pathway.

[139]

Pregnancy-specific
disorder

■ Protection against H2O2-induced apoptosis in HTR-8/SVneo cells by regulating the
miR-20a-5p/VEGFA/Akt axis;

■ Reverses H2O2-induced apoptosis and metastasis inhibition in cells;
■ Provides some theoretical basis for exploring effective treatments for patients

with preeclampsia.

[140]

5. Future Perspectives

Pueraria species have been employed in China to treat a range of illnesses for thousands
of years. Numerous impressive achievements have been made and more studies have been
conducted in recent decades. Biotechnology has led to the development of new extraction
methods that can extract and isolate more biologically active components from medicinal
plants, which has resulted in the introduction of drugs into clinics or supplements for the
pharmaceutical market.

Puerarin, which is an active ingredient in traditional herbal medicine, has been ac-
knowledged to possess a variety of biological effects. Numerous studies are beginning to
find solutions to the issues that require puerarin to be used as a therapeutic agent, such as
its limited bioavailability caused by its low solubility and lipid stability.

It is undeniable that biotechnology is a tool for achieving sustainable processes and
products. The specificity, activity, and stability of enzymes are expected to be expanded
in green chemistry and biotechnology as a result of advances in enzyme engineering and
biocatalyst optimization. The demand for eco-friendly and cost-effective synthetic routes,
particularly for addressing puerarin issues, will make enzymatic synthesis a key factor in
innovation and progress in the years ahead [141]. Furthermore, enzymatic synthesis will be
enhanced by applying advanced computational tools and machine learning algorithms to
design and optimize enzymes for specific synthesis pathways for different drugs or natural
compounds, such as puerarin [142,143].

As the field of enzymatic synthesis progresses, there are several emerging trends that
could revolutionize the production and use of nanoparticles. Metal nanoparticles, solid
lipid nanoparticles, nanomicelles, cyclodextrins, dendrimers, and nano-vesicle systems are
among the most common nanoparticles that have been studied for their biocompatibility
and biodegradability [144–146]. The encapsulation of various nanoparticles with puerarin
has been carried out by researchers for many years to improve its bioavailability and
therapeutic effects, and the results have been promising [147–150]. Enzymatic synthesis and
nanoparticle production have immense potential due to ongoing research and innovation,
which will lead to more efficient, sustainable, and versatile manufacturing processes.

This review provides a preliminary up-to-date overview of puerarin’s biosynthesis,
extraction methods, analytical techniques, and bioactivities, with emphasis on its potential
as a bioactive molecule in the treatment of various systemic diseases. As this field’s
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research progresses, it is evident that the development of innovative extraction techniques
will have a significant impact on improving the production and utilization of puerarin
in pharmaceuticals, food supplements, and other related products. With more in-depth
experimental and clinical studies on puerarin, its biological activity mechanism will be
more fully revealed, the types of medication will be more varied, and the clinical indications
will be expanded in the future.
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