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Abstract: We describe the complex case of a 44-year-old man with polycystic kidney disease, mild
cognitive impairment, and tremors in the upper limbs. Brain MRI showed lesions compatible with
leukodystrophy. The diagnostic process, which included clinical exome sequencing (CES) and
chromosomal microarray analysis (CMA), revealed a triple diagnosis: autosomal dominant polycystic
kidney disease (ADPKD) due to a pathogenic variant, c.2152C>T-p.(Gln718Ter), in the PKD1 gene;
late-onset phenylketonuria due to the presence of two missense variants, c.842C>T-p.(Pro281Leu)
and c.143T>C-p.(Leu48Ser) in the PAH gene; and a 915 Kb duplication on chromosome 15. Few
patients with multiple concurrent genetic diagnoses are reported in the literature; in this ADPKD
patient, genome-wide analysis allowed for the diagnosis of adult-onset phenylketonuria (which
would have otherwise gone unnoticed) and a 15q11.2 duplication responsible for cognitive and
behavioral impairment with incomplete penetrance. This case underlines the importance of clinical
genetics for interpreting complex results obtained by genome-wide techniques, and for diagnosing
concurrent late-onset monogenic conditions.

Keywords: polycystic kidney disease; phenylketonuria; leukodystrophy; CES; CMA; intellectual
disability; 15q11.2 duplication

1. Introduction

Genetic clinicians nowadays perform genome-wide analysis on a regular basis, and
must deal with a large number of genetic variants, both single-nucleotide variants (SNVs)
and copy number variants (CNVs). The use of genome-wide technologies in the clini-
cal setting will exponentially increase the number of patients diagnosed with multiple
molecular alterations, some of which might have been suspected from the phenotype,
while others may be incidental or confounding findings. These considerations are even
more valid in the context of late-onset conditions; in fact, genetic diseases are frequently
addressed in the differential diagnosis of adult patients in whom most disorders have a
multifactorial origin [1]. Leukodystrophies are a group of inherited white matter disor-
ders with a heterogeneous genetic background, phenotypic variability, and disease onset
at variable age. They usually present in infants with non-specific features, such as in-
tellectual disability and motor or coordination dysfunction, while adult-onset cases are
more rare [2]. In adults, a broad range of conditions can result in the typical imaging
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patterns, including inflammatory, infectious, and malignant conditions, with significant
involvement of small blood vessels. Once treatable and acquired causes of white matter
disease are ruled out, usually patients are referred for genetic investigation. To date, more
than 20 disease-causing genes are known, leading to autosomal, recessive and X-linked
forms of inheritable leukodystrophies. Among these, the frequent overlap of clinical and
radiological features can present a challenge in establishing a definitive diagnosis [3]. Here,
we report the clinical and molecular findings of a young adult presenting with a subacute
neurological condition and polycystic kidney disease (PKD); clinical exome sequencing
(CES) and chromosomal microarray analysis (CMA) revealed three different molecular
alterations potentially correlated with the clinical picture.

2. Results

Our patient is a 44-year-old male with a history of chronic renal failure secondary
to polycystic kidney disease (Figure 1) and mild psychomotor delay. He is the first of
two brothers born to non-consanguineous parents with a maternal family history of PKD,
which had not been previously investigated. His father had died at the age of 62 because of
colorectal cancer. Motor milestones were reached normally; but he experienced language
delay and had poor school performance. His mother showed clinical signs of polycystic
kidney disease at the age of 51, and underwent haemodialysis for 11 years until she had
a kidney transplant at the age of 62. The patient’s neurological symptoms appeared at
42 years of age, with acute onset of spastic hypertonus and limb tremors. He recently
experienced urinary incontinence and erectile dysfunction. Brain MRI showed a pattern
compatible with leukodystrophy (Figure 2); two years later, he was hospitalized in our
Neuropsychiatric Department because of his worsening clinical picture. Neurological
examination showed spastic paraparesis with moderate lower limb weakness but marked
spasticity (bilateral modified Ashwort scale = 3). No atrophy or fasciculations were noticed.
Deep tendon reflexes were brisk (3+) at both upper and lower limbs, while Hoffman and
Babinski signs were present bilaterally. Tone and strength were normal at upper limbs,
and cranial nerves were intact. Cognitive tests confirmed mild intellectual disability. The
neuropsychological assessment revealed below-average performance in all tests of verbal
episodic memory (the Rey Auditory Verbal Learning Test) and visual episodic memory (the
Rey–Osterrieth complex figure), in a spatial working memory task, in a graphic planning
task, and in all language tests.
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Figure 1. (a) Family tree showing autosomal dominant segregation of polycystic kidney disease: I-
1, II-1, II-3, III-3 and III-5 are affected by PKD; the proband (III-5) is highlighted with a black arrow. 
(b) Computed tomography of the lower and upper abdomen showing enlarged kidneys with 
multiple hyperdense cystic formations. 

Figure 1. (a) Family tree showing autosomal dominant segregation of polycystic kidney disease:
I-1, II-1, II-3, III-3 and III-5 are affected by PKD; the proband (III-5) is highlighted with a black
arrow. (b) Computed tomography of the lower and upper abdomen showing enlarged kidneys with
multiple hyperdense cystic formations.
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Figure 2. Panels showing T2-weighted (A,C) and T1-weighted (B,D) axial brain MRI scans at the 
basal ganglia (A,B) and corona radiata (C,D) level. An extensive and symmetric T2 hyperintensity 
(A,C) black asterisks involving mainly occipital and parietal white matter was observed, with cor-
responding T1 slightly hypointense signal (B,D) white asterisks, sparing subcortical U-fibers and 
corpus callosum. T2-weighted sagittal brain MRI scans (E) showing mild vermian cerebellar atrophy 
(white arrow). 
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imaging (SWI) scans were normal. MR spectroscopy did not show elevated levels of lac-
tate. Gadolinium contrast was not infused because of PKD. Nerve conduction studies doc-
umented axonal sensory and demyelinating motor polyneuropathy, and EEG showed 
generalized background slowing in the theta frequency range; the fundus oculi was nor-
mal. Serology testing for HIV, syphilis, hepatitis B/C, tuberculosis, and JC virus was neg-
ative; the autoimmune antibody screening, blood lactic acid, folate and vitamin B12, and 
CSF examination were also normal. We therefore performed additional tests to exclude 
common causes of leukodystrophy (VLCFA levels, galactocerebrosidase and glycogen-
branching enzyme activity, serum cholestanol, gonadotropins, free testosterone, homo-
cysteine) were all normal [4]. At the time of our first genetic evaluation, the patient had 
already performed a multigene panel screening for leukodystrophies with normal results. 
Abdominal CT scan revealed enlarged kidneys with multiple hyperdense cystic for-
mations (Figure 1B); moreover, multiple cysts were present in the liver.  

CES analysis eventually identified a pathogenic PKD1 variant, c.2152C>T-
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Figure 2. Panels showing T2-weighted (A,C) and T1-weighted (B,D) axial brain MRI scans at the
basal ganglia (A,B) and corona radiata (C,D) level. An extensive and symmetric T2 hyperintensity
(A,C) black asterisks involving mainly occipital and parietal white matter was observed, with cor-
responding T1 slightly hypointense signal (B,D) white asterisks, sparing subcortical U-fibers and
corpus callosum. T2-weighted sagittal brain MRI scans (E) showing mild vermian cerebellar atrophy
(white arrow).

Spinal cord MRI was unremarkable, while brain MRI (Figure 2) showed extensive
bilateral fluid-attenuated inversion recovery (FLAIR) hyperintensity involving subcortical
white matter of the centrum semiovale and corona radiata, bilateral periventricular and
peritrigonal region, and bilateral precentral and postcentral gyri. A corresponding T1
slightly hypointense signal in these regions, particularly in occipital white matter, was
evident. The subcortical U-fibers and corpus callosum were spared. Also, mild cerebellar
atrophy was detected. Diffusion-weighted imaging (DWI) and susceptibility-weighted
imaging (SWI) scans were normal. MR spectroscopy did not show elevated levels of
lactate. Gadolinium contrast was not infused because of PKD. Nerve conduction studies
documented axonal sensory and demyelinating motor polyneuropathy, and EEG showed
generalized background slowing in the theta frequency range; the fundus oculi was normal.
Serology testing for HIV, syphilis, hepatitis B/C, tuberculosis, and JC virus was negative;
the autoimmune antibody screening, blood lactic acid, folate and vitamin B12, and CSF
examination were also normal. We therefore performed additional tests to exclude common
causes of leukodystrophy (VLCFA levels, galactocerebrosidase and glycogen-branching
enzyme activity, serum cholestanol, gonadotropins, free testosterone, homocysteine) were
all normal [4]. At the time of our first genetic evaluation, the patient had already performed
a multigene panel screening for leukodystrophies with normal results. Abdominal CT
scan revealed enlarged kidneys with multiple hyperdense cystic formations (Figure 1B);
moreover, multiple cysts were present in the liver.

CES analysis eventually identified a pathogenic PKD1 variant, c.2152C>T-p.(Gln718Ter),
maternally inherited, and two pathogenic PAH variants: maternally inherited c.842C>T-
p.(Pro281Leu), and c.143T>C-p.(Leu48Ser), likely paternal or de novo. The maternal vari-
ant is reported by ClinVar as likely pathogenic (https://www.ncbi.nlm.nih.gov/clinvar/
variation/589, accessed on 10 November 2023), while the second variant is listed by Clin-
Var as pathogenic (https://www.ncbi.nlm.nih.gov/clinvar/variation/608, accessed on 10
November 2023). After identifying the PAH variants, phenylalanine levels in the patient’s
blood were assessed, and were found to be highly increased (1592 µMol). Lastly, CMA
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analysis revealed a small 335 Kb duplication in 4p16.3 and a larger 915 Kb duplication in
15q11.2 (Figure 3).
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Figure 3. Panels showing chromosome 15q11.2 (A) and chromosome 4p16.3 (B) duplications, as
reported in the UCSC Genome Browser (https://genome.ucsc.edu/, accessed on 20 November 2023)
using assembly ID: GRCh37/hg19. The red frames indicate the localization of the duplicated regions
on chromosome 15 and 4.

3. Discussion

When a monogenic condition is suspected and the clinical phenotype is not suggestive
of a specific causative gene, genome-wide strategies such as CMA (to look for CNVs) and
CES or whole-exome sequencing (WES) are now commonly adopted to identify pathogenic
variants. In this case, we performed both CMA and CES and found at least three different
molecular alterations relevant to our patient’s phenotype. Until now, few patients with
multiple genetic diagnoses have been reported [5], but co-occurrence of multiple monogenic
conditions in complex patients will become more and more frequent.

In this young man, we first identified the PKD1 variant responsible for the autosomal
dominant polycystic kidney disease segregating in the maternal side of the family. Indeed,
the well-known pathogenic c.2152C>T-p. (Gln718Ter) PKD1 variant was also confirmed in
the proband’s mother.

Furthermore, CES revealed the presence of two missense variants in the PAH gene,
c.842C>T and c.143T>C, likely in trans since only the first variant was found in the mother;
the second variant was either transmitted from the (deceased) father or arose de novo. This
finding strongly suggested the diagnosis of phenylketonuria (PKU). PKU is an autosomal
recessive metabolic condition due to biallelic pathogenic variants in the PAH gene, encoding
phenylalanine hydroxylase [6]. PKU is mainly a childhood disorder, but in rare cases,
the first symptoms occur in adulthood, as in this case, mimicking other neurological
conditions [7,8]. A few patients with adult-onset untreated PKU are reported in the
literature [9]; most of these patients, including ours, show a MRI cerebral leukodystrophy
pattern. The importance of considering PKU in case of an adult-onset leukodystrophy
stems from the availability of an effective treatment, even in late-diagnosed cases.

https://genome.ucsc.edu/
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Both c.842C>T-p.(Pro281Leu) and c.143T>C-p.(Leu48Ser) are considered pathogenic
PAH variants. The Pro281Leu, besides being a missense variant, is also supposed to alter
splicing [10,11], whereas the Leu48Ser variant affects a highly conserved residue and is
expected to disrupt PAH protein function [12]. These variants have been also reported in
combination by the BioPku database [13] in 38 patients with either the mild (44.74%) or
classic (55.26%) PKU phenotype.

The age of onset and severity of PKU mostly depends on residual enzymatic activity,
although genotype–phenotype correlation is not straightforward [14]. Some missense
variants do not completely abolish enzymatic activity, leading to a nonclassical, milder
PKU phenotype [15]. While the c.842C>T variant may completely abolish PAH activity
because of its likely interference with splicing, the c.143T>C variant (supposedly inherited
from the father) apparently has 39% of residual activity [16]. This may explain why
diagnosing PKU in our patient has been so challenging, allowing the late onset of PKU
after the age of 40. The diagnosis of PKU was biochemically confirmed by measuring blood
levels of phenylalanine (20 times higher than normal in our patient).

However, our patient’s clinical history was characterized by early-onset mild intel-
lectual disability and delayed language development, not consistent with the relatively
spared enzymatic activity of phenylalanine hydroxylase. In order to evaluate other possible
genetic factors responsible for this discrepancy, we performed CMA and uncovered two
microduplications involving the 15q11.2 and 4p16.3 chromosomal regions (Figure 3). Actu-
ally, both CNVs had been also detected by CES, since both regions contain disease-causing
genes, as analyzed by the SOPHiA Genetics Clinical Exome Solution® v2 kit.

The 15q11.2 duplication (grch37 chr15: 22784523-23699760), located upstream of the
PWS/AS region, harbors four highly conserved non-imprinted genes (TUBGCP5, CYFIP1,
NIPA1, NIPA2) and has already been associated with cognitive, language, and behav-
ioral impairment [17]. It is worth noting that CYFIP1 encodes a cytoplasmic interactor
of FMRP [18,19], the fragile X syndrome protein, and is involved in different neuronal
processes such as actin filament reorganization [20] and intracellular signaling [21]. Duplica-
tions of 15q11.2 are inherited from an unaffected parent in approximately 80% of cases [22];
therefore, it was not surprising that the dup15q11.2 was also found in our patient’s mother.
The role of dup4p16.3 is still unclear. It spans 335 Kb (grch37 chr4:2907164-3242247) and
involves two disease-causing genes, ADD1 and HTT, which are not related to the ob-
served phenotype. Therefore, given its smaller size (335 vs. 915 Kb) and the limited
gene content, it appears that the 15p11.2 duplication explains most of our patient’s mild
intellectual disability.

In conclusion, this case demonstrates the relevant role of clinical genetics in analyzing
the ever-growing amount of genomic data produced by NGS technology and correlating
it with a complex phenotype comprising multiple genetic conditions. The adult onset of
PKU in our patient further complicated the diagnosis, since one of the two missense PAH
variants had a relatively large residual enzymatic activity. While NGS technology allowed
the rapid and cost-effective identification of the molecular cause of ADPKD and revealed
the unexpected presence of PKU in our patient, our multidisciplinary clinical team was
instrumental in establishing our proband’s three different diagnoses.

4. Materials and Methods

Genetic testing was performed for diagnostic purposes after informed consent forms
were obtained. The informed consent included authorization to publish significant results.
CES was performed using the NGS Clinical Exome Solution® v2 kit (SOPHiA Genetics,
Saint-Sulpice, Switzerland) covering the coding regions and splice junctions of 4490 genes,
using a paired-ends read mode with FastQ only analysis workflow on the NextSeq550DX®

NGS platform (Illumina, San Diego, CA, USA). The sequencing FastQ data were ana-
lyzed with the DDM® platform by SOPHiA Genetics (https://www.sophiagenetics.com/
technology/ accessed on 10 November 2023) to detect SNVs, indels, and CNVs. The pa-
tient’s mother DNA was also analyzed to assess inheritance. CMA analysis was performed
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using the GenetiSure CytoCGH Microarray kit (Agilent Technologies, Santa Clara, CA,
USA), following the manufacturer’s instructions, using the ADM-2 algorithm for data analy-
sis with Agilent CytoGenomics software (https://www.agilent.com/en/product/cgh-cgh-
snp-microarray-platform/cgh-cgh-snp-microarray-software/cytogenomics-software-2285
00, accessed on 10 November 2023).
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