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Abstract: The Agelas genus sponges are widely distributed and provide shelter for organisms that
inhabit reefs. However, there is a lack of research on the genetic diversity of the Agelas sponges.
Additionally, only one Agelas mitochondrial genome has been documented, leaving the character-
istics of the Agelas genus’s mitogenome in need of further clarification. To address this research
gap, we utilized Illumina HiSeq4000 sequencing and de novo assembly to ascertain the complete
mitochondrial genome of Agelas sp. specimens, sourced from the South China Sea. Our analysis of
the cox1 barcoding similarity and phylogenetic relationship reveals that taxonomically, the Agelas
sp. corresponds to Agelas nakamurai. The mitogenome of Agelas nakamurai is 20,885 bp in length,
encoding 14 protein-coding genes, 24 transfer RNA genes, and 2 ribosomal RNA genes. Through a
comparison of the mitochondrial genes, we discovered that both Agelas nakamurai and Agelas schmidti
have an identical gene arrangement. Furthermore, we observed a deletion in the trnD gene and
duplication and remodeling of the trnL gene in the Agelas nakamurai’s mitogenome. Our evolutionary
analysis also identified lineage-specific positive selection sites in the nad3 and nad5 genes of the Agelas
sponges’ mitogenome. These findings shed light on the gene rearrangement events and positive
selection sites in the mitogenome of Agelas nakamurai, providing valuable molecular insights into the
evolutionary processes of this genus.

Keywords: Agelas; mitochondrial genome; phylogeny; positive selection

1. Introduction

Agelas sponges are notable reef organisms due to their large size and vibrant colors [1].
They are widely distributed across the tropical western Atlantic, the temperate north
Atlantic (including the Mediterranean), and the central and western Indo-Pacific seas,
inhabiting depths ranging from 2 to 400 m [2]. The ecological roles of Agelas sponges
include providing habitat and shelter for various marine organisms. Their complex body
structure creates crevices and spaces that serve as hiding places for small fish, crustaceans,
and other invertebrates seeking refuge from predators. Additionally, these sponges offer a
surface for attachment to diverse organisms such as algae, polychaetes, and bryozoans [3–5].
Moreover, Agelas sponges possess a substantial amount of biologically active secondary
metabolites, comprising alkaloids (particularly bromopyrrole derivatives), terpenoids,
sphingolipids, carotenoids, and fatty acids [6]. Consequently, they have emerged as a
crucial source of novel pharmaceutical compounds.

The mitochondrial genome is commonly employed in species classification [7], pop-
ulation genetics [8], molecular ecology [9], and molecular phylogeography [10] because
of its abundance of rare genomic features that are highly valuable for constructing phy-
logenetic trees. These features include indels in coding sequences, variations in genetic
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codes, alterations in the secondary structure of tRNAs and rRNAs, as well as gene rear-
rangements [11]. Sponges possess a more diverse mitogenome compared with bilaterian
animals [12]. Previous studies have uncovered intriguing phenomena observed in multiple
sponge mitogenomes, including the loss of tRNA genes, the presence of repetitive elements
with hairpin structures [13], and the phenomenon of multipartite mtDNAs, like those found
in calcareous sponges [14–17]. However, these findings are limited to specific genera or
species with sequenced mitogenomes, leaving numerous unexplored molecular evolution-
ary phenomena in sponges awaiting investigation. Although there has been a substantial
increase in sponge mitogenome sequencing in the past decade [15,18,19], there is still a lack
of data on Agelas mitogenomes. To date, only one species from the Agelas genus, Agelas
schmidti (Accession: NC_010213.1) [20], has undergone mitochondrial genome sequencing.
This dearth of information impedes our comprehensive understanding of the mitogenome
details of Agelas sponges.

Here, we present the first report on the complete mitogenome of an Agelas sp. discov-
ered in the South China Sea. The objectives of our study were: (1) to identify Agelas sp. at
the species level; (2) to reconstruct the phylogenetic relationships among Demospongiae
sponges using mitochondrial protein-coding genes (PCGs); and (3) to investigate the linear
characteristics and adaptive evolution of genes in the mitogenomes of Agelas. Overall, our
study aimed to provide a valuable molecular reference for future research on the ecological
and evolutionary aspects of sponge mitogenomes.

2. Results
2.1. Sample Collection, Sequencing Quality and Assembly Results

Sponge specimens were collected at Quanfu Island of Xisha Islands from the South
China sea. Through HiSeq 4000 platform sequencing, a total of 2,586,488,700 bp of clean
reads were obtained after removing adapter sequences and low-quality sequences. The base
quality Q20 value was 96.39%, the Q30 value was 91.31% and the GC content was 50.97%.
The Chloroplast & Mitochondrial Assembly (CMA) V1.1.1 software (Guangzhou SCGene
Co., Ltd., Guangzhou, China) was used for genome assembly. Based on the assembled
complete mitochondrial genome sequence, the captured mitochondrial genome sequencing
reads were statistically analyzed using DNA sequence alignment. The genome depth was
calculated to be 68.13×, and the genome coverage was 100%.

2.2. Species Identification

Based on the morphological characteristics (Supplementary Figure S1), the specimens
were tentatively identified as Agelas in taxonomy. To achieve species-level identification,
a Maximum Likelihood (ML) phylogenetic tree was constructed using the cox1 gene as
the barcode sequence (Figure 1). In the ML tree, species belonging to the Agelas were
grouped into distinct clades, with strong support from high bootstrap values, suggesting
that the phylogenetic analysis based on the cox1 gene accurately classifies different Agelas
species. Importantly, the individual we investigated clusters together with two other
Agelas nakamurai specimens (Accession: DQ069305.1, DQ069304.1) within the same clade.
Moreover, their cox1 barcoding showed complete similarity of 100% (query coverage:
63.3%), providing robust evidence for the taxonomic classification of the studied individual
as Agelas nakamurai at the species level. Consequently, “Agelas nakamurai” would be used
instead of “Agelas sp.” in the subsequent text.
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Figure 1. ML tree depicting the cox1 genes among Agelas sp. and other sponges from the genera 
Agelas and Axinella. The accession numbers of the cox1 genes and their sequence similarity (query 
coverage: 56.3%~63.1%) with the cox1 of Agelas sp. are indicated at the end of each leaf. Percent 
bootstrap values are shown near the nodes. Only values above 70 are displayed. 

2.3. Mitogenome Composition 
The Agelas nakamurai mitogenome has a total length of 20,885 bp (GenBank accession 

No. OQ363829), consisting of 27.7% A bases, 34.7% T bases,15.9% C bases, and 21.7% G 
bases, resulting in a total GC content of 37.6%. The mitogenome contains a total of 40 
genes: 2 rRNA genes (rnl & rns), 14 PCGs (nad1-6, 4l; cox1-3; atp6, 8, 9 and cob), 24 tRNA 
genes (trnR1, Q, W, T, S1, K, N, M1, H, P, E, R2, S2, A, C, L1, L2, Y, M2, M3, I, F, G, V) (Figure 
2). Among the 14 PCGs, the start codons for nad6 and atp6 are GTG, while the remaining 
coding genes initiate with ATG. The stop codons of nad1, nad3, and cob are TAG, while the 
rest of the PCGs end with TAA (Supplementary Table S1). No introns were found in any 
of the PCGs. 

The mitogenome of Agelas nakamurai exhibits a highly compact structure, with coding 
sequences making up 86.7% of the genome, while the non-coding region makes up 13.3%. 
This compactness is primarily due to overlapping genes and the tight arrangement of ad-
jacent genes. For instance, the trnE gene overlaps with the nad6 gene by 3 base pairs, and 
the trnR gene is closely connected to the nad4l gene without any intervening spacer se-
quence. 

 

Figure 1. ML tree depicting the cox1 genes among Agelas sp. and other sponges from the genera
Agelas and Axinella. The accession numbers of the cox1 genes and their sequence similarity (query
coverage: 56.3%~63.1%) with the cox1 of Agelas sp. are indicated at the end of each leaf. Percent
bootstrap values are shown near the nodes. Only values above 70 are displayed.

2.3. Mitogenome Composition

The Agelas nakamurai mitogenome has a total length of 20,885 bp (GenBank accession
No. OQ363829), consisting of 27.7% A bases, 34.7% T bases,15.9% C bases, and 21.7% G
bases, resulting in a total GC content of 37.6%. The mitogenome contains a total of 40 genes:
2 rRNA genes (rnl & rns), 14 PCGs (nad1-6, 4l; cox1-3; atp6, 8, 9 and cob), 24 tRNA genes
(trnR1, Q, W, T, S1, K, N, M1, H, P, E, R2, S2, A, C, L1, L2, Y, M2, M3, I, F, G, V) (Figure 2).
Among the 14 PCGs, the start codons for nad6 and atp6 are GTG, while the remaining
coding genes initiate with ATG. The stop codons of nad1, nad3, and cob are TAG, while the
rest of the PCGs end with TAA (Supplementary Table S1). No introns were found in any of
the PCGs.
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scription. Distinct colors correspond to various genes. The tRNA genes are denoted by single-letter
abbreviations representing the accepted amino acid. The gray inner ring represents the GC content of
the sequence.
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The mitogenome of Agelas nakamurai exhibits a highly compact structure, with coding
sequences making up 86.7% of the genome, while the non-coding region makes up 13.3%.
This compactness is primarily due to overlapping genes and the tight arrangement of adja-
cent genes. For instance, the trnE gene overlaps with the nad6 gene by 3 base pairs, and the
trnR gene is closely connected to the nad4l gene without any intervening spacer sequence.

2.4. The Phylogenetic Relationship and Gene Arrangement

A multigene phylogenetic tree was constructed for 38 Demospongiae sponges by
utilizing PCGs obtained from mitogenomes (Supplementary Table S2). Bayesian inference
(BI) and ML analyses produced the same phylogenetic topology (Figure 2; Supplementary
Figure S2), and most of their internal nodes are well supported. The multigene phylogenetic
tree (Figure 3) reveals that the Agelas nakamurai and Agelas schmidti are clustered together
and share a close affinity with Axinella corrugata.
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Figure 3. BI phylogenetic tree illustrating the mitogenomes of 38 species from the Demospongiae
class of sponges. Hippospongia lachne, Hyattella sinuosa, Ircinia strobilina, Vaceletia sp., and Cacospongia
mycofijiensis were used as outgroup for tree construction. The numbers adjacent to the nodes indicate
the percentage of posterior probability values, with only values exceeding 70 being shown. Leaf labels
are color-coded to represent different superfamilies. On the right side, a gene arrangement diagrams
show the arrangement of mitochondrial genes in 38 Demospongiae sponges, with genes represented
by various colors and shapes. This plot exclusively depicts the relative positioning of genes on the
mitochondria while disregarding information related to the length. To facilitate illustration, the PCGs
from same family are abbreviated in Arabic numerals, for example: the blue rectangle in the figure
represents the genes of the cox family, and if the number “1” appears in the rectangle, it represents
the gene locus cox1, and so on. tRNA genes are abbreviated by their corresponding ligand amino
acids. rRNA includes two types, rnL and rnS, abbreviated as “L” and “S” respectively.

Gene arrangement diagrams reveal that the number of PCGs and rRNA genes in
Demospongiae sponges is consistently maintained, with a highly conserved order of
arrangement. The majority of PCGs and rRNA genes in sponges are organized in the
following sequence: cox, nad1, nad2, nad5, rnS, rnL, cox2, atp8, atp6, cox3, cytb, atp9, nad4,
nad6, nad3, and nad4L. However, certain lineages present rearrangements, particularly
at the superfamily level, in which Dictyoceratida and Dendroceratida display unique
arrangements of PCGs and rRNA genes. Additionally, some species, such as Topsentia
ophiraphidites and Axinella corrugata, that cannot be accurately clustered into the same clade
as their superfamily, exhibit distinct orders of PCGs and rRNA arrangements. On the
contrary, tRNA genes within Demospongiae display significant variation in both quantity
and arrangement. Loss and rearrangement of tRNA genes are common phenomena.
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The visualization of mitochondrial genomes in the genus Agelas (Supplementary
Figure S3a,b) indicates a disparity in genome size between Agelas nakamurai and Agelas
schmidti, primarily attributed to non-coding sequences. Both species exhibit identical gene
arrangements, including PCGs, rRNAs, and tRNAs. This finding suggests a potential
ancestral characteristic within the Agelas. Based on the detailed comparison with Axinella
corrugata (Supplementary Figure S3) and the gene arrangement information of other Demo-
spongiae sponges (Figure 3), we observe that the gene arrangement of the Agelas sponge
mitogenome exhibits lineage specificity primarily in the number and arrangement order
of tRNAs, although its PCGs and rRNA genes align with most sponges. Interestingly,
we found that neither Agelas nakamurai nor Agelas schmidti contain the trnD gene, which
is uncommon among Demospongiae sponges. In comparison, all other sponge species,
except for those in the Dictyoceratida order which have experienced significant loss of
tRNA genes, possess the trnD gene.

2.5. tRNA Phylogenetic Analysis and Similarity Comparison

To examine potential instances of tRNA duplication and remodeling in the mito-
chondrial genome of Agelas nakamurai, we extracted its tRNA genes and constructed
phylogenetic trees together with the tRNA genes of Ectyoplasia ferox, Geodia neptuni, Hali-
chondria okadai, Agelas schmidti, and Axinella corrugata. Surprisingly, we discovered that the
phylogenetic relationship between the trnL1(uaa) and trnL2(uag) genes of Agelas nakamurai
differ significantly from that of other sponges. The phylogenetic analysis of tRNA genes
reveals a distinct cluster with a high bootstrap value (86) that encompasses two trnL genes
of Agelas nakamurai (Figure 4a). Conversely, the trnL genes of Ectyoplasia ferox, Geodia
neptuni, Halichondria okadai, and Axinella corrugata are assigned to separate branches. To
further investigate this phenomenon, we conducted a comparative analysis of the sequence
and secondary structure similarity between the two trnL of Axinella corrugata and Agelas
nakamurai (Figure 4b). In the case of Axinella corrugata, the two trnL sequences share only
59.3% similarity. Additionally, trnL1(uaa) exhibits an additional loop structure at 25 bp to
39 bp when compared to trnL2(uag). On the other hand, despite having different anticodons,
the sequence similarity between the trnL1(uaa) and trnL2(uag) in Agelas nakamurai is as high
as 87.5%. Furthermore, both genes share a high degree of similarity in their secondary
structure. Meanwhile, it is worth noting that Agelas schmidti also exhibits a high similarity
between trnL1(uaa) and trnL2(uag), with the sequence similarity of the two trnL genes
reaching 90.3%.
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Figure 4. Evolutionary analysis of the tRNA genes of Agelas nakamurai. (a) An illustrated neighbor-
joining tree displaying the relationships between mitochondrial tRNA genes from Agelas nakamurai
(An), Agelas schmidti (As), Axinella corrugata (Ac), Ectyoplasia ferox (Ef), Geodia neptuni (Gn), and
Halichondria okadai (Ho). Bootstrapped values are indicated on the branches of the tree. Only values
above 70 are displayed. Colored branches and fonts are used to indicate the trnL genes from different
evolutionary branches. (b) Predicted secondary structure of Agelas nakamurai trnL1(uaa), Agelas
nakamurai trnL2(uag), Axinella corrugata trnL1(uaa), and Axinella corrugata trnL2(uag). The sequence
similarity between tRNA genes is indicated in the middle of the arrows.

2.6. Nucleotide Diversity and Positive Selection Site Analysis

A sliding window analysis was conducted to identify nucleotide polymorphisms
(π) in 14 PCGs among the 17 mitogenomes of Demospongiae sponges (Supplementary
Table S3). The result reveals significant variations in nucleotide polymorphism across
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different PCGs, with relatively high levels observed in atp8, nad4L, and nad6 (0.284, 0.279,
and 0.279, respectively), while atp9 showed the lowest value of π at only 0.178. The
remaining genes exhibit π values ranging from 0.201 to 0.256 (Figure 5a).
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Figure 5. Nucleotide diversity and evolutionary analysis of 14 PCGs in the Agelas. (a) A sliding
window analysis of PCGs of Agelas nakamurai. The curve represents the level of nucleotide polymor-
phisms (π), while the rectangle below illustrates the specific PCGs and their corresponding average π

values. (b) Analysis of positive selection sites with Agelas as the foreground branch. The Agelas genus
is indicated with an asterisk on the phylogenetic tree. Amino acids residing in the positively selected
sites are distinguished by a red background.

To investigate the occurrence of adaptive evolution with lineage specificity in Agelas
sponges, we performed a positive selection site analysis on 14 PCGs within their mi-
togenomes. Two species from the Agelas were chosen as the foreground branches. The
analysis results reveal the presence of a positive selection site in both the nad3 and nad5
mitochondrial genomes of the two Agelas sponges. Specifically, position 4 in the nad3 gene
and position 439 in the nad5 gene were found to have positively selected amino acids.

3. Discussion

We sequenced the mitochondrial genome of a sponge collected from the South China
Sea and identified it as Agelas nakamurai based on the cox1 sequence. The mitochondrial
genome of Agelas nakamurai is 20,885 bp long with a GC content of 37.6%, which is similar
to that of other Demospongiae sponges. We conducted a comparison and found that the
mitochondrial genome of Agelas nakamurai is 525 bp longer than that of its congener, Agelas
schmidti. The variation in genome size is primarily due to the expansion of the intergenic
region, a characteristic shared with most other Demospongiae sponges [8].
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In mitochondrial genome PCG-based phylogenetic analysis, the vast majority of De-
mospongiae sponges effectively differentiated at the superfamily level. Previous molecular
research has primarily classified Demospongiae sponges into five major clades: G0 (Ho-
mosclerophorida), G1 (Dictyoceratida, Dendroceratida), G2 (Chondrosida, Halisarcida,
and Verongida), G3 (Marine Haplosclerida), and G4 (all other groups) [20,21]. However,
the clustering of Dictyoceratida and Dendroceratida within G1 was not readily apparent
in our phylogenetic analysis. This discrepancy can be attributed to our use of the Dicty-
oceratida sponge as the outgroup, which suffered significant loss of mitochondrial PCGs.
Nevertheless, the clustering results for the other clades closely matched those reported
by Lavrov [20], with Agelas sponges positioned within the G4 group of the clade system.
The clustering of Agelas nakamurai and Agelas schmidti undoubtedly indicates their close
affinity. Interestingly, the two species of Agelas sponges, as well as Axinella corrugata, form a
monophyletic group and are considered sister groups to other sponges within the Axinella
superfamily, despite Axinella corrugata’s classification as belonging to the Axinella super-
family. This finding is consistent with other studies on the evolutionary relationships of
Demospongiae based on mitochondrial genomes [19,20].

In terms of gene arrangement, Agelas nakamurai is consistent with Agelas schmidti of
the same genus, suggesting that the gene arrangement of mitochondrial genomes within
the genus Agelas may be conserved. At the same time, we noticed that Agelas nakamurai and
Agelas schmidti both have a trnD deletion. Due to the presence of superwobble phenomena
and tRNA import mechanisms in eukaryotes, the lack of the trnD gene in Agelas nakamurai
does not lead to changes in codon usage bias of mitochondrial PCGs (Supplementary
Figure S4). However, it is possible that the lack of trnD has implications for the nuclear
genome. Because changes in mitochondrial tRNA are often associated with alterations in
the nuclear genome. Specifically, the loss of mitochondrial tRNA (mt-tRNA) genes can
result in the redundancy of specific translation components in mitochondria, ultimately
leading to the loss of corresponding nuclear genes [15]. A notable example is the correlation
observed in other non-bilaterian animals, where the loss of mt-tRNA is connected to the loss
of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases [22,23]. Future research on
the Agelas nuclear genome might reveal similar phenomena.

Phylogenetic analysis of tRNA genes in Agelas nakamurai sponges reveals a notable
deviation from other sponge species in the phylogeny of two trnL genes. A comparison
indicates that these trnL genes in Agelas nakamurai exhibit a distinctively high similarity
in both sequence and secondary structure of their products. The results indicated that: (i)
the evolutionary processes of trnL genes in the mitogenome of Agelas nakamurai differed
comparatively from other sponge species, displaying relative independence; (ii) the dupli-
cation and remodeling of one single trnL gene resulted in the presence of two trnL genes in
the Agelas nakamurai mitogenome. Similar gene duplication and remodeling events have
been observed in the evolution of mitochondrial genes encoding isoacceptor tRNAs [24,25].
Notably, comparable phenomena have been observed in Agelas schmidti, supporting the
notion of trnL gene duplication and remodeling as an evolutionary characteristic of the
Agelas.

Calculation of nucleotide polymorphism revealed that the atp8 gene exhibits the
highest level of polymorphism in the mitochondrial genome of Agelas nakamurai sponge,
followed by nad6. Conversely, the atp9 gene exhibits the lowest level of nucleotide poly-
morphism. In a study conducted by Wang et al. on mitochondrial genomes of various
demosponges, it was observed that the atp8 gene displays the lowest level of conservation
in demosponges mitochondria, followed by the nad6 gene. On the other hand, the atp9
gene demonstrates the highest level of conservation [13]. These findings suggest that the
polymorphic characteristics of the PCGs in Agelas nakamurai sponge align with those of the
majority of demosponge sponges.

Evolutionary analysis reveals a positive selection site within the nad3 and nad5 genes
of Agelas sponges. Recent studies have unveiled the adaptive evolution of mitochondrial
PCGs, which play a crucial role in oxygen utilization and energy metabolism [26]. The
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nad3 and nad5 genes specifically encode crucial subunits of complex I in the mitochondrial
electron transport chain [27]. Complex I is responsible for the crucial role of being the
primary entry point for the electron transport chain in cellular respiration [28]. As a result,
subunits of complex I are highly conserved among different organisms [29]. The presence
of positively selected sites within the nad3 and nad5 genes implies that these genes have
undergone adaptive changes in response to both environmental stress and natural selection.
The adaptive variation of these genes may be the key to the survival of Agelas sponges in
their ecological niche. Although we are unable to determine the biological effects of the two
amino acid substitution sites in the Agelas, this information still provides us with valuable
insights into their evolutionary history.

4. Materials and Methods
4.1. Sample Collection and DNA Extraction

Agelas sp. specimens were collected from the Quanfu Island of Xisha Island from the
South China sea. Total genomic DNA was extracted with the TIANamp Marine animals
DNA Kit (Tiangen Biotech, Beijing, China) following the manufacturer’s protocol.

4.2. Illumina Library Preparation and Sequencing

Paired-end libraries were prepared according to the instructions of the VAHTS Uni-
versal DNA Library Prep Kit for Illumina V3 (cat: ND607-02). The size-selected, adapter-
modified DNA fragments were PCR-amplified using PE PCR primers and following pro-
tocol: polymerase activation (98 ◦C for 2 min), followed by 10 cycles (denaturation at
98 ◦C for 30 s, annealing at 65 ◦C for 30 s, and extension at 72 ◦C for 60 s) with a final,
4 min extension at 72 ◦C. DNA libraries were purified by magnetic beads, quantified by
RT-PCR. The sequencing process was carried out at the Jiangsu Recbio Technology Co., Ltd.
(Taizhou, China), with 150 bp paired end reads.

4.3. Sequence Assembly and Annotation

Illumina paired-end reads were filtered according to sequencing quality and trimmed
for low-quality bases (quality < 20, perror > 0.01) upstream and downstream. The Chloro-
plast & Mitochondrial Assembly (CMA) V1.1.1 software (Guangzhou SCGene Co., Ltd.,
Guangzhou, China) was used to analyze and assemble the raw reads data. Genome con-
firmation was performed by mapping the paired-end reads to the genome with 100%
coverage and insert-size in accordance with the characteristics of the sequencing library.
Additional criteria for confirmation included sequencing depth, coverage, and the relation-
ship between the paired end reads. Coding genes were annotated with BLASTX [30],
while tRNAs were annotated using tRNAscan-SE v2.0 (web server) [31] and MITOS
(http://mitos.bioinf.uni-leipzig.de/index.py, accessed on 12 March 2023) [32]. The pre-
dicted boundaries of the rRNA genes were identified by aligning them to rRNA sequences
obtained from published sources. These alignments were then manually verified to ensure
accuracy.

4.4. Species Identification Based on the cox1 Gene

The DNA sequence of the cox1 gene was extracted and uploaded to both the National
Center for Biotechnology Information (NCBI) nucleic acid database [33] and the BOLD
Identification System (IDS) [34] for sequence comparison. Based on the identification
using the IDS (Database: Species Level Barcode Records, Current: 11 July 2023), the cox1
barcoding sequence of Agelas sp. showed a 100% similarity (query coverage: 63.3%) only to
Agelas nakamurai, leading us to identify Agelas sp. as Agelas nakamurai. To further validate
the accuracy of the identification result, we performed a phylogenetic analysis using the
cox1 gene. The cox1 sequences of the 30 species that exhibited the greatest similarity were
chosen for the construction of a phylogenetic tree with Agelas sp. This selection comprised
5 individuals from the NCBI database and 25 individuals from the IDS database. In
total, 9 species from the Agelas and 2 species from the Axinella genus were included. The

http://mitos.bioinf.uni-leipzig.de/index.py
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phylogenetic tree was constructed using the ML method, with the bootstrap test repeated
1000 times. This analysis was performed using MEGA v11 [35].

4.5. Phylogenetic and Gene Arrangement Analysis

To investigate the mitochondrial genomic characteristics of the genus Agelas, we ob-
tained the complete mitogenomes of 37 species from the class Demospongiae through
the NCBI database. These genomes were then utilized to build a multigene phylogenetic
tree, in which Agelas nakamurai was included. For this purpose, PhyloSuite v1.2.3 [36] was
employed to extract the PCGs, tRNA, and rRNA sequences from the mitogenomes [37].
Once aligned, the extracted sequences were trimmed using Gblocks v0.91b [38] and con-
catenated using PhyloSuite v1.2.3. The best partition scheme and model for BI and ML
were discovered using ModelFinder [39] with the Bayesian Information Criterion (BIC).
The results can be found in Supplementary Tables S4 and S5. BI tree was reconstructed
using MrBayes v3.27a [40] employing the Markov Chain Monte Carlo method (Gener-
ations: 2,000,000; Sampling Freq: 1000) to calculate the posterior probability. Mean-
while, ML trees of 14 PCGs were constructed using IQtree v2.2.2.6 [41], with Ultra-
fast bootstrap analysis [42] method repeated 1000 times. The mitogenomes of Agelas
nakamurai, Agelas schmidti, and Axinella corrugata were visualized by OGDRAW (https:
//chlorobox.mpimp-golm.mpg.de/OGDraw.html, accessed on 24 September 2022) [43].
The statistics of aspartic acid codons and the calculation of RSCU values were completed
using MEGA v11. Data visualization was completed using the ggplot2 package in R
v4.3.1 [44].

4.6. Analysis of tRNA Duplication, and Remoulding

Ectyoplasia ferox (Accession: EU237480.1), Geodia neptuni (Accession: AY320032.1),
Halichondria okadai (Accession: NC_037391.1), Agelas schmidti (Accession: NC_010213.1),
and Axinella corrugata (Accession: AY791693.1) were selected to construct a phylogenetic
tree (Neighbor-joining method based on p-distances) of mitochondrial tRNA genes. All
tRNA genes undergo verification using tRNAscan-SE v2.0 (web server) and MITOS to
ensure precise annotation. The results indicated that the tRNA annotation outcomes from
both tools were consistent, although discrepancies were found compared to those on
GenBank. Given the potential for GenBank’s annotation results to be derived from an
outdated tRNA annotation model, which may have lower accuracy, we opted to utilize the
annotation outputs from tRNAscan-SE v2.0 (web server) and MITOS for further analysis.
The structure prediction of tRNA was conducted using tRNAscan-SE v2.0 (web server) and
visualized with Forna (http://rna.tbi.univie.ac.at/forna, accessed on 19 March 2023) [45].

4.7. Nucleotide Diversity and Selection Pressure Analysis

Seventeen mitochondrial genomes of Demospongiae sponges, comprising all 14 PCGs,
were chosen for evolutionary analysis. We utilized the sliding window mode of DnaSP v6
(window length: 200, step size: 25) [46] to calculate the nucleotide diversity of 17 Demo-
spongiae sponge mitochondria. The phylogenetic tree necessary for the analysis of selection
pressure was constructed using the ML method, utilizing the sequences of 14 PCGs. The
construction process closely followed the methodology outlined in the previous section
titled “Phylogenetic and Gene Arrangement Analysis”. The branch-site model was uti-
lized to detect amino acid sites under positive selection in the lineage of the Agelas. The
identification of positive selection at a site can only be confirmed if the analysis results of
Naive Empirical Bayes (NEB) or Bayes Empirical Bayes (BEB) indicate a probability higher
than 0.995.

5. Conclusions

In this study, we conducted a comprehensive analysis of the mitogenome of Agelas
nakamurai. The comparative analysis revealed that Agelas nakamurai and Agelas schmidti
share identical gene arrangement in terms of PCGs, rRNA genes, and tRNA genes. Ad-

https://chlorobox.mpimp-golm.mpg.de/OGDraw.html
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ditionally, we have identified a deletion in the trnD gene and replication and remodeling
of the trnL gene in the mitogenome of Agelas nakamurai. Furthermore, our evolutionary
analysis also indicates the presence of lineage-specific positive selection sites on the nad3
and nad5 genes in Agelas.

Supplementary Materials: The following supporting information can be downloaded at: https://
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