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Abstract: Infectious bursal disease virus (IBDV) is an immunosuppressive pathogen causing enor-
mous economic losses to the poultry industry across the globe. As a double-stranded RNA virus,
IBDV undergoes genetic mutation or recombination in replication during circulation among flocks,
leading to the generation and spread of variant or recombinant strains. In particular, the recent
emergence of variant IBDV causes severe immunosuppression in chickens, affecting the efficacy of
other vaccines. It seems that the genetic mutation of IBDV during the battle against host response is
an effective strategy to help itself to survive. Therefore, a comprehensive understanding of the viral
genome diversity will definitely help to develop effective measures for prevention and control of
infectious bursal disease (IBD). In recent years, considerable progress has been made in understand-
ing the relation of genetic mutation and genomic recombination of IBDV to its pathogenesis using
the reverse genetic technique. Therefore, this review focuses on our current genetic insight into the
IBDV’s genetic typing and viral genomic variation.

Keywords: infectious bursal disease virus (IBDV); genetic evolutionary typing; viral genome diversity;
reverse genetic

1. Introduction

Infectious bursal disease virus (IBDV) is a globally prevalent chicken immunosuppres-
sive virus that causes severe immunosuppression in infected chickens, leading to increased
susceptibility to other pathogens or even death [1–3]. Although there are two serotypes of
IBDV, only serotypeI causes disease in poultry. SerotypeII was isolated from turkeys and is
not pathogenic to chickens [3,4]. Under natural conditions, IBDV can infect all breeds of
chickens, causing huge economic losses to the poultry industry worldwide [5–10].

Due to the unique bi-segmented double-stranded RNA genome and its high error
rate of viral RNA-dependent RNA polymerase (RdRp) [3,11,12], IBDV is naturally prone
to varying degrees of genomic mutation or recombination, leading to the emergence
and spread of new mutant or recombinant strains in chickens [13–15]. Several main
pathogenic types of IBDV have been identified, including classical IBDV (cIBDV), variant
IBDV (varIBDV), very virulent IBDV (vvIBDV), attenuated IBDV, and novel variant IBDV
(nVarIBDV), which differ in pathogenicity and antigenicity [7,16–18]. Nonetheless, there
is no clear standard for typing the IBDV genome, and the description of the genotype of
IBDV has become complex and imprecise as novel strains emerge [6,19,20]. Consequently,
traditional classification methods based on pathogenicity and antigenicity need to be
modified. Recently, several improved genotyping schemes have been proposed that would
greatly facilitate the genetics and molecular epidemiological investigation of IBDV [21–24].

Currently, the vaccination of chickens with inactivated and live attenuated vaccines
are commonly-used clinical methods to control IBD [25–28]. However, the high mutation
rate of IBDV is likely to be the reason for the emergence of mutant viral strains whose
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antigenicity differs from that of the current commercially-available vaccines [16,29–31].
The battle between IBDV and the host is manifested in various ways [32–35], the most
obvious being viral variation at a genomic level that is critical to genetic diversity and
immune evasion [14,16,36,37]. Therefore, a comprehensive understanding of the patterns of
genomic variations in IBDV is critical for the prevention and control of IBD. In recent years,
reverse genetics has emerged as a useful technic to combat IBDV infection. This approach
can make true the precise mutations or substitutions in the IBDV genome from a genetic
perspective, and many advances have been made in this aspect to explore pathogenesis
and develop novel vaccines [38–41].

This review focuses on the current epidemics and pathogenesis of infections with
different IBDV strains, as well as novel approaches to virus classification based on phy-
logenetic evolution. In addition, we have summarized the current genetic insights into
virus-host interactions at a genomic level, as well as the application of reverse genetics to
IBDV vaccine development, providing new perspectives for future prevention, control, and
vaccine development against IBDV.

2. Epidemics and Pathogenesis of Different IBDV Strains
2.1. Classical IBDV (cIBDV)

In 1957, the original outbreak of IBD occurred in the area of Gumboro, Delaware,
USA, where researchers observed a high rate of disease occurrence in chicks [42]. Early
symptoms of IBD include diarrhea, loss of appetite, weakness, and even death [42]. The
main target organ of the virus is the bursa of Fabricius (BF) of 3–6-week-old chicks, which
is characterized by enlarged or hemorrhagic bursa during the first four days, followed
by bursal atrophy later in the course of the disease [3,25,43]. The infection eventually
leads to lymphocyte failure and destruction of the bursa, which is the main feature of IBD
pathogenesis [1,44]. In classical epidemic situations, mortality in diseased chickens may
range between 1% and 50%, with significant effects on both broilers and laying hens [3].
In addition to mortality, IBDV also has an immunosuppressive effect, which affects the
host's immune response and the efficacy of other vaccinations [3,43,45]. The virus genome
consists of two segments of RNAase-resistant, double-stranded RNAs [46]. The complete
terminal sequences of IBDV genomic dsRNA have been identified, indicating that different
RNA structures may have an impact on the ability of the virus to replicate [47]. As more
complete genomic information on IBDV has become available, the correlation between
genetic and pathogenic phenotypes among different strains of IBDV could be more precisely
assessed [14,17,48–51].

2.2. Variant IBDV (varIBDV)

In the late 1980s, it was first reported that IBDV variants were identified by virus
neutralization tests as serotypeI IBDV with significant antigenic differences from classical
strains [37,52]. These antigenically altered strains were collectively referred to as variants
IBDV to distinguish them from previous classical IBDV isolates [22,42]. Initially, the variant
IBDV-infected chickens were characterized by little or no mortality and no obvious clinical
signs, but their bursa and spleen were damaged [29,53,54]. Subsequent studies have shown
that amino acid mutations in the hypervariable region (HVR, nt 616–1050, aa 206–350)
of VP2 are the major cause of IBDV variants [30,55,56]. The VP2 hypervariable region
includes many amino acid residues exposed on the protein surface, and mutations in
these residues can lead to a variation in the antigenicity of VP2, allowing the variant to
escape from the neutralizing antibodies produced by vaccination against the cIBDV [54,56].
This phenomenon is known as antigenic drift and is the primary reason for antigenic
diversity [30,57]. Several mutations in the specific residues (222 T, 249 K, 254 S, 286 I, and
318 D) in the HVR may cause antigenic drift [58,59].
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2.3. Very Virulent IBDV (vvIBDV)

At the time the variant IBDV was identified in North America, very virulent IBDV
(vvIBDV) emerged in Europe [60,61]. In contrast to the variant strains, vvIBDV typically
causes high morbidity and mortality in SPF chickens, resulting in mortality of 50–100%, along
with typical signs and lesions. Importantly, vvIBDV can establish infection in the presence
of maternal antibodies to the classical strain and cause lesions in immune organs other than
the bursa [2,25]. As a highly transmissible virus, vvIBDV has spread rapidly throughout the
world, causing significant economic losses to the poultry industry [7,50,62–65]. However, the
emergence of vvIBDV promoted scientific research on the pathogenicity of IBDV infection.

Genetic studies revealed that the emergence of the vvIBDV strains was due to the
reassortment of genetic segments, specifically the reassortment of the mutated segment A
with the segment B of unknown origin, resulting in a sudden increase in the pathogenicity
of the virus [66]. Residues 222 A, 242 I, 256 I, 294 I, and 299 S of the vvIBDV segment A are
conserved compared to other strains of IBDV and serve as markers of pathogenicity [2,67,68].
In addition, residues 253 and 284 of VP2 are proposed to be the determinants of cell tropism
and major contributors to IBDV virulence [69–71]. Phylogenetic analysis has shown that
segment B of vvIBDV is distinct and highly conserved [13,58,66]. Additional studies have
confirmed that both genomic segments contribute to the high virulence of vvIBDV [72–76].
As the efforts in exploring vvIBDV continue, more critical residues that may be involved in
the pathogenicity of the virus have been identified [77–79].

2.4. Novel Variant IBDV (nVarIBDV)

Since 2015, China has experienced an outbreak of the novel variant IBDV (nVarIBDV) [6].
These isolated strains have distinct subclusters, indicating genetic evolution in both segments
A and B of the viral genome, which rarely occurred in China before [80–83]. While the vvIBDV
strain has historically been the most prevalent with low variability in field transmission [7,17],
the recent emergence of nVarIBDV outbreaks in other Asian countries such as Japan [9],
South Korea [84], and Malaysia [85] are of concern. It was reported that nVarIBDV does not
cause severe clinical signs but causes irreversible damage to the immune organs of chickens,
including bursal lesions, spleen swelling and atrophy, and long-term immunosuppression, to
a greater extent than the previous varIBDV [6,18,86]. In addition, the new strains can break
through the immune protection provided by existing vvIBDV vaccines [84,87,88].

The novel variant spectrum of IBDV strains exhibits significant genetic differences from
previously reported IBDV strains. The strains contain multiple amino acid substitutions,
with VP2 having typical residues similar to varIBDV (222 T, 249 K, 286 I, and 318 D) [58], as
well as other residues such as 221 K, 252 I, and 299 S, and VP1 containing 147 D and 508 K [6].
Although the same amino acid differences have been reported in other studies [89], the
relationship between these amino acid substitutions and the antigenicity and pathogenicity
of the strains has not been fully investigated. Therefore, further investigations into novel
variant IBDV strains are needed to better understand the epidemics of currently circulating
IBDV strains.

2.5. Other Strain Types of IBDV

There are several other strain types of IBDV, including attenuated, reassortant, and
recombinant strains. Attenuated strains usually refer to those attenuated live vaccine
strains made especially for the control of cIBDV or vvIBDV infection and are classified
as mild, intermediate, or intermediate-plus based on their attenuation [25]. The immu-
nization of chicks with attenuated vaccine strains has become the primary defense against
IBD in young chickens. Although attenuated strains are generally not lethal to chick-
ens, intermediate and intermediate plus attenuated strains can cause varying degrees of
bursal damage in vaccinated chickens [26]. However, due to the widespread use of live
vaccines, the spread of different strain types among flocks in recent years has led to the
increasing emergence of reassortant and recombinant strains of IBDV, such as strains with
segment A of vvIBDV and segment B of attenuated strains [76,90,91], segment A of vvIBDV
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and segment B of serotypeII [75], and segment A of vaccine strains and segment B of
vvIBDV [15,92], etc. Homologous recombination between different strains of IBDV has
also been reported [58,93–95]. Recombination and reassortment between different strains
pose new challenges to the prevention and control of IBD and require continued efforts to
investigate the genetics and epidemics of IBDV.

3. Classification of IBDV Based on Genomic Phylogenetic Evolution
3.1. Recent Scheme for IBDV Genomic Classification

The transmission, mutation, and recombination of IBDV between different coun-
tries and regions over the decades have led to the emergence of different genotypic
strains [21,22]. Recently, as more diverse strains are discovered, some new universal
genogrouping methods have been proposed [21,23,24].

Michel and Jackwood proposed a new viral classification method based on the evolu-
tionary analysis of IBDV segment A sequences in 2017 [21]. They sequenced 90 samples
from 23 countries worldwide and selected a 579 bp (nt 743–1331) fragment of segment A
containing the VP2 hypervariable region for phylogenetic analysis. They classified IBDV
into seven genogroups (G1–G7). And it could partially characterize the previous classifica-
tion of IBDV. For example, G1 contains most classical IBDV strains, G2 contains American
variants, and G3 contains vvIBDV strains. Furthermore, strains isolated from South Amer-
ica represent G4, while G5 and G6 include representative strains from Mexico and Italy,
respectively. The Australian and Russian strains make up G7. Jackwood et al. suggested
further subdivision of the different genomes into different subgroups and proposed a more
specific scientific nomenclature [22]—these proposals are encouraging.

Several studies suggested that the pathogenicity of IBDV is due to both of its ge-
nomic segments and that segmental reassortment also plays an important role in viral
evolution [72,96]. The genetic data of segment A alone are insufficient to characterize the
potential pathogenicity of IBDV, so it is necessary to classify IBDV based on both genomic
segments. Islam et al. proposed a phylogenetic analysis based on the two segments of
IBDV genome and selected a 366 bp region of segment A (nt 785–1150, aa 219–340) and
a 508 bp region of segment B (nt 328–835, aa 73–241), classifying the segment A of IBDV
into nine genogroups and B into five (nucleotide counting starts at the 5′ terminal of the
IBDV genome) [23]. The fragment selected for segment A contains a VP2 hypervariable
region, and segment B contains the “B marker region” (nt 328–756, aa 110–252), which could
characterize the phylogenetic evolution of segment B [97]. Thus, genogroups of segment A
were classified as A0 (serotypeII), A1 (A1a: classical virulent, A1b: classical attenuated), A2
(US antigenic variant), A3 (very virulent), A4 (early European and recent South American
distinct IBDV, dIBDV), A5 (atypical or recombinant Mexican strains), A6 (atypical Italian),
A7 (early Australian), and A8 (Australian variant). Genogroups of segment B were classi-
fied as B1 (classical-like), B2 (very virulent-like), B3 (early Australian-like), B4 (Polish and
Tanzanian), and B5 (Nigerian).

Meanwhile, Wang et al. proposed a similar scheme to classify IBDV genogroups [24],
using the HVR of segment A (nt 616–1050, aa 206–350) and the B-marker of segment B (nt
328–756, aa 110–252). Similarly, IBDV is divided into nine genogroups of “A” and five of “B”
in this scheme. However, the A2 of serotypeI strains is further divided into four subgroups:
A2a, A2b, A2c, and A2d. The novel variant of IBDV that has recently emerged in China
is classified as subgroup A2d [6]. A8 is defined as attenuated strains with specific cell
tropism and non-pathogenic characteristics. B3 consisted of HLJ0504-like strains isolated in
China [98], and B4 consisted mainly of recently discovered European transitional-lineage
strains [99,100]. In addition, the serotypeII strains were defined as AII and BII, respectively.

All these studies have contributed greatly to the molecular epidemiology of IBDV
worldwide. We have summarized their genomic classifications in Tables 1 and 2. Despite
differences in the length of genomic fragments selected for genogrouping and the phi-
losophy behind the classifying systems, they all have similar conclusions, indicating the
reliability of this system. However, there is some controversy regarding the classification of
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early Australian strains, Australian variants, and attenuated strains. Besides, the scheme of
Wang et al. did not include the B5 (Nigerian) genogroup for analysis [101].

Table 1. Genogroups of IBDV segment A.

Genetic Characteristics

Genogroups by the Following Authors

Michel and
Jackwood [21]

Islam et al.
[23]

Wang et al.
[24] Gao et al.

Classical (Virulent) G1 A1a A1 A1
Variant G2 A2 A2 A2

Very virulent G3 A3 A3 A3
South American G4 A4 A4 A4

Mexican G5 A5 A5 A5
Italian G6 A6 A6 A6

Early Australian
G7

A7
A7

A7
Australian variant A8 A8

Attenuated N/A a A1b A8 A9
SerotypeIIA N/A A0 AII SIIA

a N/A, not applicable.

Table 2. Genogroups of IBDV segment B.

Genetic Characteristics

Genogroups by the Following Authors

Michel and
Jackwood [21]

Islam et al.
[23]

Wang et al.
[24] Gao et al.

Classical-like N/A a B1 B1 B1
Very virulent-like N/A B2 B2 B2

Early Australian-like N/A B3 B3 B3
Polish and Tanzanian N/A B4 B4 B4

Nigerian N/A B5 N/A B5
SerotypeIIB N/A B1 BII SIIB

a N/A, not applicable.

3.2. Revised Proposal for IBDV Genomic Classification

Following their principles of sequence selection [21,23,24], we revised the classification
proposal by selecting a 391 bp fragment from segment A (nt 631–1021, aa 211–340) and a
528 bp fragment from segment B (nt 217–744, aa 73–248) for phylogenetic analysis of IBDV.
These fragments included as much as possible the VP2 hypervariable region of segment A
and the “B marker region” of segment B, as well as sequences reported in the literature and
representative sequences selected by combining Islam et al. [23] and Wang et al. [24]. Sequence
information for IBDV was obtained from NCBI (www.ncbi.nlm.nih.gov, accessed on 3 March
2023). The resulting phylogenetic analyses are shown in Figures 1 and 2. Notably, the genomes
of nVarIBDV appear as separate subgroups for both segments A and B.

Our analysis largely agrees with the classification schemes mentioned above [21,23,24],
but we made some suggestions for the controversial areas. Attenuated strains are mainly
derived from cIBDV or vvIBDV and could theoretically belong to the same subgroup as
A1 (classical virulent) [5,26]. However, they form unique subgroups in the phylogenetic
tree (Figure 1). Furthermore, the separate subgrouping of attenuated strains helps to define
reassorting virulent strains. Therefore, we propose to define attenuated strains as a new
subgroup called A9 (attenuated). Similar situations were observed for the early Australian
and the Australian variant strains, which formed separate clades in the phylogenetic tree
(Figure 1). To avoid adding further confusion to the existing genogroup classification
criteria, we propose to retain the classification scheme of Islam et al. for the Australian
strains as A7 (early Australian) and A8 (Australian variant). In addition, our results
indicate that segment A of serotypeII has shown distinct subgroups (Figure 1), while the
branches of segment B, although not forming independent subgroups (Figure 2), clearly
cannot be classified as B1 (classical-like) [23]. And the existing nomenclature of either

www.ncbi.nlm.nih.gov
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A0 [23] or AII [24] may not be clear at the level of presentation. Therefore, we propose that
the genomes of serotypeII be designated as SIIA and SIIB, respectively. In addition, our
phylogenetic analysis shows that the genetic lineage of segment A follows a clear stepwise
pattern with distinct genogroups, where SIIA represents the most distant group (Figure 1).
However, segment B exhibits more complex lineage divisions that differ from segment A
(Figure 2), suggesting that the two segments may have followed different evolutionary
pathways.
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Figure 1. Concise circular phylogenetic analysis based on the VP2 hypervariable region of IBDV
segment A. The analysis of 56 IBDV strains was performed using MEGA X [102] with the maximum
likelihood method, and 1000 bootstrap replications were included. The tree was annotated in iTOL
(https://itol.embl.de, accessed on 3 March 2023) and drawn to scale, with genogroup information
displayed in colored circular stripes on the outermost ring. The names and GenBank accession
numbers of the strains are shown in the figure. The novel variant strains recently reported belonging
to the A2 are shown in red bold.

Overall, the phylogenetic evolution of IBDV is a complex process closely linked to
genetic reorganization and the continuous emergence of new subtypes. The new genotyp-
ing scheme provides a more detailed and accurate classification of the genetic evolution of
IBDV. With further improvement, it can help researchers better understand the epidemio-
logical and molecular evolutionary mechanisms of IBDV and provide more reliable and
effective theoretical support for the prevention and control of IBD.

https://itol.embl.de
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Figure 2. Concise circular phylogenetic analysis based on the “B marker region” of IBDV segment B. The
analysis of 71 IBDV strains was performed using MEGA X [102] with the maximum likelihood method,
and 1000 bootstrap replications were included. The tree was annotated in iTOL (https://itol.embl.de,
accessed on 3 March 2023) and drawn to scale, with genogroup information displayed in colored circular
stripes on the outermost ring. The names and GenBank accession numbers of the strains are shown in
the figure. The novel variant strains recently reported belonging to the B1 are shown in red bold.

4. Genetic Factors Affecting IBDV–Host Interactions

The interaction between IBDV and its host is influenced by several genetic factors,
which have been well discussed in other reviews [34,103–105]. The variability of the IBDV
genome is a critical factor affecting the interaction, involving mutations, gene reassortment
and genetic recombination, and accounting for the emergence of multiple genotypes. The
selection pressure associated with the widespread use of vaccines and the long-term trans-
mission and prevalence of IBDV has resulted in the accumulation of multiple mutations
and recombination in the IBDV genome sequence [7,14]. Such mutations help IBDV evade
recognition and clearance by the immune system, thereby increasing its survival [30]. In
this section, we focus on the amino acid mutations in IBDV that have been identified and
partially studied, as well as the genome reassortment and genome recombination among
the viruses.

4.1. Mutations in IBDV

Gene mutation is one of the major mechanisms of the genetic evolution of IBDV.
Lines of evidence indicate that the VP2 hypervariable region is the most readily mutated
region in the IBDV genome and has the most important impact on the antigenicity and
pathogenicity of IBDV [36,56,106,107]. VP2 is the major structural protein of IBDV, serving
as the primary protective antigen of the virus and inducing the production of neutralizing
antibodies [108,109]. As shown in Figure 3, VP2 is folded into three structural domains,

https://itol.embl.de
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namely the base (B), the shell (S) and the projection (P) [107,110,111]. Among them, the
B and S structural domains are relatively conserved, while the P domain is multivariate
and contains the hypervariable region of VP2 [56,112]. Furthermore, the P domain con-
tains four loops, namely PBC (aa 204–236), PDE (aa 240–265), PFG (aa 270–293), and PHI
(aa 305–337) [56,107,110]. Previous studies have reported that the PDE and PFG domains
mainly affect the cellular adaptability and pathogenicity of the virus [70,113,114]. In con-
trast, the PBC and PHI domains are responsible for the antigenic variability and immune
escape of IBDV [30,56], which is also indicated in Table 3. Moreover, the PBC and PHI
structural domains may also play a role in the process of virus assembly and maturation
(Table 3).
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 Figure 3. Ribbon diagram of the predictive structure of IBDV VP2. The Protein Data Bank accession
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Earlier studies on mutation sites in the VP2 focused on antigenic variants. For exam-
ple, mutations in amino acid residues 213, 222, 223, 249, and 324 have been found to be
associated with loss of responsiveness to specific monoclonal antibodies [30,53,106,112].
However, in a later study, it was found that mutations in residue 222 are involved not
only in immune escape but also in viral replication and virulence [56]. Other amino acid
residues, such as 286 I, 318 D, and 321 A, have also been strongly associated with antigenic
variants in IBDV [53,56,59]. It was found that mutations at residues 222 and 254 can cause
IBDV to break through the immunity induced by the parental Del-E strain vaccine [30].
In addition, it was recently shown that mutations in residues 318 and 323 of VP2 signifi-
cantly affect the antiserum neutralization of nVarIBDV with genotype A2dB1 [117]. The
results from these studies suggest that amino acid mutations located in the hypervariable
region of VP2 have a crucial impact on the responsiveness of the neutralizing antibodies
and can lead to successful infection of chicks by the mutant strain even when maternal
antibodies remain relatively high. In addition, several amino acid residues have been
found to influence the cell tropism and pathogenicity of IBDV, including D279N, which
has been proven to contribute to viral adaptation to cell culture and is a marker of reduced
pathogenicity [113,118]. Residues at positions 253 and 284 were shown to be the de-
terminants affecting cell tropism, with 253 H being associated with attenuation of viru-
lence and a main contributor to IBDV virulence [69,70,113,114,119]. Mutations in residues
249 and 256 were associated with viral replication and virulence, while the additional mu-
tation Q249R introduced on the Q253H/A284T mutation basis in VP2 can further attenuate
IBDV [77]. Mutations in residue V321A have also been related to the low pathogenicity of
strain 94,432 [72]. There was some controversy regarding the role of VP2 residue 279 ini-
tially, but in a later study, it was confirmed that mutations in 279 do not contribute to IBDV
virulence [71].
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Furthermore, the Ile-Asp-Ala (IDA) sequence (aa 234 to 236) within the VP2 P struc-
tural domain was identified to use α4β1 integrin as a possible binding receptor for invading
avian cells [78], suggesting that IBDV can use the receptor-mediated pathway to enter host
cells and that VP2, as a structural protein of IBDV, must play an important role in this
process. A recent study deciphered the structure of IBDV virus particles using cryo-electron
microscopy and found that IBDV may use two receptors to enter cells [115]. The first
receptor binds to the upper region of the P structural domain, where residues 253 and
284 determine cell tropism. The second receptor interacts with the IDA motif located in a
negatively charged internalization groove, which is consistent with previous findings [78].
Moreover, residues 219 Q and 324 Q were found to contribute to the interaction between
adjacent VP2 trimers and play a role in virus assembly [115].

In addition to VP2, other viral proteins of IBDV also have important roles in vi-
ral infection, invasion, and replication [105]. However, these proteins are more con-
served and have been less studied in regard to gene mutations. VP1 is the RdRp of
IBDV and is responsible for transcription, initial translation, and replication of the viral
genome [11,120]. It was found that VP1 also contributes to IBDV pathogenicity; for ex-
ample, the A276T mutation in VP1 has been shown to attenuate virulence by affecting
intermolecular interactions [72]. Similarly, the V4I substitution attenuates vvIBDV virulence
and increases intracellular replication [79]. In addition, the amino acid triplet 145/146/147
(TDN, TEG, or NEG) in VP1 is an important virulence site affecting the activity of RdRp,
and TDN is considered a conserved marker tripeptide in vvIBDV [121]. Different struc-
tural domains of VP1 have also been shown to play separate roles in viral replication and
virulence, with the N-terminal domain likely playing a more prominent role, although its
exact function remains unclear [122,123]. Furthermore, it was found that nVarIBDV shares
an amino acid substitution A163V with vvIBDV, which may be associated with increased
pathogenicity of nVarIBDV [14]. Some recent studies have focused on post-translational
modifications of VP1, demonstrating that 186 R and 426 R can be methylated by protein
arginine methyltransferase (PRMT), thus affecting polymerase activity [124,125]. Likewise,
studies on VP3 of IBDV have revealed that residue 235 of the VP3 C-terminus (or residue
990 of the polyprotein) can affect the replication of attenuated IBDV in vitro and in vivo.
Moreover, the C-terminus of VP3 is necessary for IBDV replication [126,127].

Table 3. The roles of amino acid residues in IBDV mutation.

Protein Residues Site Impact Refs.

VP2

213 D PBC Immune escape [112]
219 Q PBC Virus assembly [115]

222 PBC

Immune escape;
Virus replication and

virulence-related
[30,56,59,106]

223 PBC Immune escape [106]
234–236 (IDA) PBC Intermolecular interactions [78]

249 PDE

Immune escape;
virus replication and

virulence-related
[53,77]

253 PDE
Cellular adaptability;

virulence-related [69,70,114,119]

254 PDE Immune escape [30]

256 PDE
Virus replication and

virulence-related [77]

D279N PFG Cellular adaptability [113,118]
284 PFG Cellular adaptability [69,70,113,114]

286 I PFG Immune escape [112]
318 D PHI Immune escape [56,59,106,117]
321 A PHI Immune escape; virulence-related [56,72]
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Table 3. Cont.

Protein Residues Site Impact Refs.

323 PHI Immune escape [117]
324 PHI Immune escape; virus assembly [106,115]

VP1

A276T N/A a Intermolecular interactions [72]

V4I N/A Virus replication and
virulence-related [79]

145/146/147
(TDN b, TEG or NEG) N/A Virus replication and

virulence-related [121]

A163V N/A virulence-related(undetermined) [14]
R186A N/A Polymerase activity related [124]

R426A N/A Virus replication and polymerase
activity related [125]

VP3 235(C-terminal) N/A Virus replication [126,127]
a N/A—not applicable. b TDN—conserved tripeptide in the vvIBDV pathotype.

4.2. Gene Reassortment and Recombination in IBDV

In addition to mutations, gene reassortment and recombination are important genetic
factors in IBDV that cannot be ignored. Genome reassortment of different segments in
IBDV has been reported in various regions across the globe and the newly emerging
variant strains are becoming a major threat to the poultry industry [100,128–131]. As the
IBDV genome has subgroups of segments A and B, the widespread use of live attenuated
vaccines has increased the occurrence of reassortment between vvIBDV and attenuated
strains. These reassortant viruses may exhibit virulence comparable to that of classical or
attenuated IBDV or may still inherit the high virulence of vvIBDV [76,132,133]. However,
reassortant viruses with serotypeII segment A, regardless of the genotype of segment B, do
not cause clinical disease in chickens or turkeys [129]. Therefore, evaluation of the potential
virulence of reassortant viruses requires genotyping of the two genomic fragments and
analysis of specific amino acid site changes.

Genome recombination is infrequent in the genetic evolution of IBDV. It is possibly
due to the extreme evolutionary dynamics of segmented RNA viruses, which exhibit high
rates of mutation and recombination but little homologous recombination [14]. In 2008,
recombination events in IBDV segment A involving attenuated vaccine strains and two
wild-type strains of vvIBDV and varIBDV were first described [93]. Subsequent studies
have identified several very virulent strains whose major putative parents are vaccine
strains but whose hypervariable regions are from vvIBDV, with recombination breakpoints
mainly at 636 nt and 1743 nt [94]. Recently, homologous recombination was also found
to occur between a nVarIBDV and an intermediate vaccine strain, resulting in increased
pathogenicity of the nVarIBDV strain to chicken embryos, with recombination breakpoints
at 1538 nt [134]. Another study has shown that a field isolate underwent both reassortment
and recombination, resulting in enhanced virulence of the intermediate vaccine strain, with
recombination breakpoints at 1468 nt and 1648 nt [95]. These events suggest that genetic
recombination could occur naturally between different strains and plays a role in IBDV
genetic diversity. Interestingly, almost all of the recombination breakpoints identified to
date have occurred at either end of the VP2 hypervariable regions, which appear to have a
unique propensity for recombination. The role of these regions in the genetic evolution of
IBDV requires further investigation.

As the genetic factors affecting IBDV–host interactions are complex and diverse,
mutations, reassortment, and recombination are among the important factors influencing
the interaction. This variability of IBDV may affect its infectivity and virulence for host
cells, as well as its ability for immune escape. Further studies on the genetic evolution
and genotyping of IBDV are crucial for a better understanding of the pathogenesis of
IBDV infection.
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5. Role of Reverse Genetics in Research on IBDV Genomic Function and
Vaccine Development

Reverse genetics is a powerful tool for studying the function of viral genomes. Since
the successful construction and rescue of the IBDV infectious clone [135,136], significant
progress has been made in understanding the relationship between the genetic variation of
IBDV and its pathogenesis [137,138]. Most of the aforementioned findings have been made
using reverse genetic techniques. In addition to exploring the function of the viral genome,
reverse genetic techniques are a promising tool for the development of vaccines.

Several excellent reviews have covered the development of vaccines against
IBDV [5,26,105]. Although various types of vaccines have been developed for IBDV, there
is still a large demand for novel effective vaccines. Emerging variant strains can overcome
maternal immunity induced by commercial vaccines, indicating that current vaccines are
not suitable for the control of the epidemics caused by such strains [9,31,100,129,139]. The
reverse genetic technique provides a new tool for vaccine development compared to tra-
ditional inactivated and attenuated vaccines. To date, reverse genetic technique has been
employed to generate different rescued strains with great potential for vaccine candidates.
By inserting the VP2 sequence from circulating strains into the backbone of vaccine strains,
several chimeric viruses have been generated, and vaccination of chickens with the chimeric
viruses could effectively protect flocks against parental strains [39,140,141]. Knocking out
VP5 of IBDV produced a VP5-deficient strain, and chickens immunized with this strain
were resistant to challenges with the parental virus [138,142]. Attenuated IBDV, produced
by reducing the RNA polymerase activity of VP1, can induce immune protection [143]. In
addition, the recombinant viruses generated by introducing the Q253H/A284T mutation
into VP2 of the endemic strain and replacing it in the backbone of the attenuated strain
could confer immune protection against nVarIBDV [88]. As novel mutant strains of IBDV
continue to emerge, the current strategies for the prevention and control of IBD encounter
new challenges. The reverse genetic techniques provide an effective approach to the devel-
opment of novel IBDV vaccines that may hold great promise for the prevention and control
of IBD.

6. Conclusions

Investigation into the pathogenesis and immune control of IBDV has been ongoing for
decades. Although excellent progress has been made, frequent occurrences of IBD serve
as a reminder that prevention and control methods for IBD need to be further explored.
As studies of the IBDV genome and protein function progress, several questions need to
be addressed. For example, what are the consequences of the involvement of genomic
changes in the IBDV–host interaction? Can reverse genetic techniques be used to develop an
optimal live vaccine that can provide full protection against IBD without causing damage
to the bursa of Fabricius? In addition, what is the exact mechanism underlying amino acid
mutations that alter the virulence of IBDV? Of note, as different chicken breeds have varying
susceptibility to IBDV [32], anti-defense breeding approaches are also worth exploring to
combat IBDV infection. Although live attenuated vaccines have been routinely used for the
clinical control of IBD, the rapid generation of attenuated vaccine strains by reverse genetic
techniques is definitely a promising option to combat the variant strains. However, potential
threats, such as reassortment between vaccine and endemic strains and reversion of live
vaccine virulence, must be carefully considered in vaccine development. Considering that
the elucidation of the genomic diversity and variability of IBDV is crucial for understanding
viral evolution, antigenicity, pathogenicity, and vaccine development, more efforts will
be required to delve deeper into the mechanisms of IBDV–host interactions to provide
necessary clues for the manipulation of IBDV by reverse genetics, which ultimately lead to
the development of novel effective vaccines for prevention and control of IBD outbreaks.
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