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Abstract: Lavandula austroapennina N.G. Passal., Tundis and Upon has recently been described as a
new species endemic to the southern Apennines (Italy). Locally, this species has a long ethnobotanical
tradition of use for curative and decoration purposes and has been the protagonist of a flourishing
essential oil production chain. Currently, while this tradition has long since ended, attention to the
species is necessary, with a view to enhancing marginal and rural areas, as a recovery of a precious
resource to (i) get insights into its (poly)phenolic fraction and (ii) address new and innovative uses of
all its organs in various application fields (e.g., cosmeceutical sector). Therefore, after field sampling
and dissection of its organs (i.e., corolla, calyx, leaf, stem and root), the latter, previously deterpenated
and defatted, were subjected to accelerated ultrasound extraction and the related alcoholic extracts
were obtained. Chemical composition, explored by UHPLC-QqTOF-MS/MS, and the following
multivariate data analysis showed that the hydroxycinnamoyl derivatives are abundant in the leaf,
stem and root, while flavonoids are more present in corolla and calyx. In particular, coumaroyl
flavonoids with glyconic portion containing also hexuronyl moieties differentiated corolla organ,
while yunnaneic acid D isomers and esculin distinguished root. When antiradical and reducing
properties were evaluated (by means of ABTS, DPPH and PFRAP tests), a similar clustering of organs
was achieved and the marked antioxidant efficacy of leaf, stem and root extracts was found. Thus,
following cytotoxicity screening by MTT test on HaCaT keratinocytes, the protective effects of the
organ extracts were assessed by wound closure observed after the scratch test. In addition, the
extracts from corolla, leaf and stem were particularly active at low doses inducing rapid wound
closure on HaCaT cells at a concentration of 1 µg/mL. The diversity in (poly)phenols of each organ
and the promising bioactivity preliminarily assessed suggest further investigation to be carried out to
fully recover and valorize this precious endemic vascular plant.

Keywords: Lavandula austroapennina; Cilento, Vallo di Diano and Alburni National Park; polyphenols;
UHPLC-QqTOF-MS/MS; HaCaT cell line; antioxidant activity; cytotoxicity; wound-healing property

1. Introduction

Since ancient times, medicinal–aromatic plants (MAPs) have been used to maintain
health and to prevent and treat disease. Nowadays, they are attracting considerable interest
as potential sources of bioactive chemicals [1]. MAPs-derived products have become a new
trend and more and more people are using them, especially in the growing international
market of plant-based products, including cosmetics, spices and health remedies [2].

Therefore, the use of MAPs shows no sign of decreasing, and according to the World
Health Organization (WHO), healthy-plant-based products are currently used by most of
the world population (~80%) and among these are 100 million Europeans [3]. Indeed, there
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are over 1300 native medicinal plants in Europe [4], and the European Plant Conservation
Strategy (EPCS) states that 90% of MAPs native to Europe are still harvested from the
wild. The collection and use of medicinal plants have an ancient tradition in these areas,
while recently ethnobotanical and phytochemical studies aimed at gathering knowledge
of the plant heritage for exploring new resources and also preserving local populations’
traditional culture [4–6]. This is especially important for species in a restricted range and
limited to specific geographical areas (endemic species), where these floristic elements could
provide a profitable medical and economic value for local communities [7]. Among MAPs,
the Lamiaceae family includes a large number of species commonly used for culinary
purposes as aroma and/or flavor enhancers [8,9]. In this family, the genus Lavandula
stands out for its traditional application in the treatment of depression, headache, stress,
migraine and diabetes [10]. Several species of Lavandula (e.g., L. angustifolia Mill., L. latifolia
Medik., L. pedunculata (Mill.) Cav., L. stoechas L. and L. × intermedia Emeric ex Loisel)
have been cultivated since early 20th century for the extraction of their essential oils (EOs)
used in perfumery, cosmetics, food processing and aromatherapy [11]. Only recently, the
awareness of the possibility of recovering bioactive (poly)phenols from different species
belonging to this genus has been increasing. These compounds, broadly differing in
their chemical features, are well-known as antioxidants able to neutralize free radicals,
thus preventing cell and tissue damage and the onset of pathological diseases [9]. The
antioxidant and anti-inflammatory properties of polar extracts of L. angustifolia, L. stoechas,
L. dentata and L. pedunculata [12–14] were recently investigated, thus also enhancing the
economic interest in these species, mainly in the widely cultivated L. angustifolia. The
latter, commonly used as an ornamental plant and known for the high quality of its
EOs, consists of numerous cultivars [15] with a broad distribution from Spain through
France to Italy, where it occurs as a mountain species at altitudes above 1500 m asl. The
enormous natural range of variation of L. angustifolia allowed Upson and Andrews [16] to
observe disjunct populations of L. angustifolia subsp. angustifolia in southern Italy. Thus,
further morphological, genetic and phytochemical analyses of EOs [17,18] led to describe
populations of L. angustifolia subsp. angustifolia from south-eastern Italy as a new Italian
endemic species: Lavandula austroapennina N.G. Passal., Tundis and Upson (Figure 1). This
species, categorized as least concern (LC) in the IUCN Red List of Italian Flora [19], is
restricted to rocky calcareous habitats from 900 to 1750 m asl, in the Southern Apennines
phytogeographic area [17].
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“Spicaddossa” is the local name, as it is popularly used as a remedy, rubbing the leaves,
for disinfectant and soothing purposes [20]. Indeed, until the 1960s, the wild lavender
from Monte Cervati in the Municipality of Sanza (Cilento, Vallo di Diano and Alburni
National Park—Campania Region) was the main actor of the perfume supply chain, so that

https://www.youtube.com/watch?v=txGsa4qmCR4
https://www.youtube.com/watch?v=txGsa4qmCR4


Int. J. Mol. Sci. 2023, 24, 8038 3 of 23

the plant locally collected served for extracting valuable essential oils, which underwent
final processing when exported to France. However, nowadays this local tradition has
abruptly stopped [21]. EOs extracted from plants collected from Monte Pollino (Pollino
Global Geopark—Calabria Region) [17,18] were phytochemically investigated, while, as far
as we know, no data are reported for their (poly)phenolic profile and bioactivity.

In light of the above, the present work aims to increase the occurrence of (poly)phenol
compounds in L. austroapennina organs and to evaluate their antioxidant activity and healing
efficacy. To this aim, after harvesting, the plant was dissected into corolla, calyx, stem,
leaf and root. Then, a sequential ultrasound-assisted maceration (UAM) was performed
using first n-hexane as an extractive solvent, for matrix defatting purposes, and then
methanol, which allowed us to effectively recover (poly)phenol compounds, due to their
polarity and solubility features. The alcoholic extract was chemically profiled by ultra-high
liquid chromatography with high-resolution mass spectrometry (UHPLC-HR-MS/MS).
The antiradical activity was evaluated by DPPH• and ABTS•+ scavenging assays, while the
reducing power of ferric ions was evaluated by the PFRAP test. Cytotoxicity was assessed
on HaCaT cell lines at different treatment times, and healing activity was evaluated by
means of the scratch test.

2. Results and Discussion
2.1. Chemical Investigation of L. austroapennina Alcoholic Extracts

UHPLC-ESI-QqTOF analysis was carried out on all the alcoholic extracts, in order
to achieve their chemical profiles. The Total Ion Chromatograms (TICs), reported in
Figure 2, clearly show the peculiarity of each plant organ in terms of chemical composition.
The heatmap and multivariate analysis confirmed this evidence (for details please see
below—Section 2.2).
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Based on high-resolution tandem mass spectrometry data, 67 compounds were tenta-
tively identified, distinguishable into subclasses (phenylpropenoic and phenylpropanoic
acid derivatives, and flavonoids; Tables 1–3), and discussed separately.
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Table 1. TOF-MS and MS/MS data of phenylpropenoic acid derivatives tentatively identified in polar
extracts from the different Lavandula austroapennina organs. Peak numbers are based on elution order
in the whole reversed-phase chromatograms. RDB = ring and double-bond value. Base peaks are
labeled in bold.

Peak Rt Tentative Assignment Formula
[M-H]−
Found
(m/z)

[M-H]−
calcd.
(m/z)

Error
(ppm) RDB MS/MS Fragment Ions

(m/z)

3 2.083 Caftaric acid C13H12O9
311.0407

623.0903 a 311.0409 −0.5 8 179.0348; 149.0094;
135.0451

5 3.471 Esculin C15H16O9 339.0716 339.0722 −1.6 8 177.0188; 133.0302

6 3.886 p-Coumaric acid hexoside
(isomer 1) C15H18O8 325.0929 325.0929 0.0 7 163.0405; 119.0507

7 4.350 Fertaric acid C14H14O9 325.0565 325.0565 0.0 8
193.0511; 178.0267;
149.0610; 134.0378;

119.0504

8 4.360 Caffeic acid hexoside
(isomer 1) C15H18O9 341.0872 341.0878 −1.8 7 179.0356; 161.0246;

135.0457; 134.0371

9 5.525 p-Coumaric acid dihexoside C21H18O13 487.1467 487.1457 2.0 8 487.14621; 163.0394;
119.0501; 113.0242

10 6.164 Ferulic acid hexoside
(isomer 1) C16H20O9 355.1032 355.1035 0.4 7 193.0508; 149.0613;

134.0377; 133.0294

11 6.535 Caffeoylmalic acid
(isomer 1) C13H12O8 295.0462 295.0459 0.9 8

179.0348; 135.0454;
134.0373; 133.0143;
115.0042; 107.0510

12 6.791 Caffeoylmalic acid
(isomer 2) C13H12O8 295.0463 295.0459 1.2 8

179.0349; 135.0453;
134.0370; 133.0145;

115.0043

13 7.659 p-Coumaric acid hexoside
(isomer 2) C15H18O8 325.0931 325.0929 0.6 7 163.0400; 119.0503

14 7.907 Ferulic acid dihexoside C22H30O14 517.1572 517.1563 1.8 8 517.1600; 193.0510;
149.0615; 134.0372

16 9.347 Caffeic acid hexoside
(isomer 2) C15H18O9 341.0883 341.0878 1.4 7 179.0345; 135.0450;

134.0358

18 10.021 Ferulic acid hexoside
(isomer 2) C16H20O9 355.1038 355.1035 1.0 7 193.0501; 149.0606;

134.0373; 133.0297

61 19.294

[(Z)-2-(3,5-
dihydroxyphenyl)ethenyl]

(E)-3-(3,4-dihydroxyphenyl)-
prop-2-enoate

(Nepetoidin A)

C17H14O6 313.0720 313.0718 0.8 11
161.0246; 151.0401;
133.0296; 123.0438;

105.0345

63 19.770

[(Z)-2-(3,4-
dihydroxyphenyl)ethenyl]

(E)-3-(3,4-dihydroxyphenyl)-
prop-2-enoate
(Nepetoidin B)

C17H14O6 313.0712 313.0718 −1.8 11
161.0243; 151.0400;
150.0318; 133.0292;
132.0213; 123.0450

66 20.861 Tri-p-coumaroyl spermidine C34H37N3O6 582.2626 582.2610 2.8 18

582.2651; 462.2058;
436.2262; 342.1446;
316.1667; 145.0299;

119.0506

a [2M-H]−.

Table 2. TOF-MS and MS/MS data of phenylpropanoic acid derivatives tentatively identified in
polar extracts from the different Lavandula austroapennina organs. Peak numbers are based on elution
order in the whole reversed-phase chromatograms. RDB = ring and double bond. Base peaks are
labeled in bold.

Peak Rt Tentative Assignment Formula
[M-H]−
Found
(m/z)

[M-H]−
calcd.
(m/z)

Error
(ppm) RDB MS/MS Fragment

Ions (m/z)

1 1.023 8-Hydroxydihydrocaffeic
acid (danshensu) C9H10O5 197.0462 197.0455 3.3 5

179.0357; 135.0450;
134.0374; 123.0449;

122.0372
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Table 2. Cont.

Peak Rt Tentative Assignment Formula
[M-H]−
Found
(m/z)

[M-H]−
calcd.
(m/z)

Error
(ppm) RDB MS/MS Fragment

Ions (m/z)

2 1.699 8-Hydroxydihydrocaffeic
acid hexoside C15H20O10 359.0985 359.0984 0.4 6

359.0986; 197.0456;
179.0344; 135.0450;
134.0378; 123.0452

4 2.22 Dihydrocaffeic acid C9H10O4 181.0513 181.0506 3.7 5
163.0401; 135.0452;
134.0376; 119.0501;
117.0353; 107.0499

15 7.991 Dihydroferulic acid
hexoside C16H22O9 357.1192 357.1191 0.3 6

195.0661; 177.0553;
151.0766; 136.0530;

121.0294

19 10.060 Yunnaneic acid E C27H24O14 571.1114 571.1093 3.6 16

527.1224; 483.1327;
439.1417; 329.0678;
285.0777; 241.0878;
215.1082; 197.0461;
179.0359; 135.0457;

109.0302

20 10.325 Lithopermic acid A
hexoside C33H32O17 699.1563 699.1567 −0.5 18

699.1593; 655.1688;
493.1149; 475.1246;
457.1149; 313.0709;
295.0607; 197.0458

27 11.488 Lithospermic acid A C27H22O12 537.1051 537.1039 2.3 17

537.1062; 493.1169;
313.0729; 295.0626;
203.0364; 197.0460;
159.0466; 109.0309

28 11.656 Yunnaneic acid F
(isomer 1) C29H26O14 597.1257 597.1250 1.2 17

597.1256; 553.1345;
491.1338; 329.1041;
311.0900; 293.0781;
267.1002; 197.0447;
179.0330; 135.0448

29 11.915 Yunnaneic acid F
(isomer 2) C29H26O14 597.1250 597.1250 0.0 17

597.1250; 535.1242;
481.1505; 417.0810;
399.0695; 355.0792;
311.0898; 293.0780;
267.1000; 241.1198;
197.0435; 179.0332;

135.0437

30 12.04

6-(3-(1-carboxy-2-(3,4-
dihydroxyphenyl)ethoxy)-

3-oxoprop-1-en-1-yl)-3-
(3,4-dihydroxyphenyl)-8-

hydroxy-7-oxobicyclo
[2.2.2]oct-5-ene-2-

carboxylic acid
(isomer 1)

C27H24O12 539.1204 539.1195 1.7 16

539.1209; 359.0773;
297.0770; 279.0502;
271.0973; 197.0458;
179.0351; 161.0246;
135.0454; 133.0296

31 12.251

6-(3-(1-carboxy-2-(3,4-
dihydroxyphenyl)ethoxy)-

3-oxoprop-1-en-1-yl)-3-
(3,4-dihydroxyphenyl)-8-

hydroxy-7-oxobicyclo
[2.2.2]oct-5-ene-2-

carboxylic acid
(isomer 2)

C27H24O12 539.1205 539.1195 1.9 16

539.1227; 359.0783;
341.0666; 315.0884;
297.0778; 271.0982;
253.0876; 135.0772;
197.0463; 179.0357;
161.0250; 135.0461

35 12.903 Rosmarinic acid hexoside C24H26O13 521.1322 521.1301 4.1 12

521.1333; 359.0782;
323.0775; 197.0460;
179.0353; 161.0248;

135.0454
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Table 2. Cont.

Peak Rt Tentative Assignment Formula
[M-H]−
Found
(m/z)

[M-H]−
calcd.
(m/z)

Error
(ppm) RDB MS/MS Fragment

Ions (m/z)

36 12.979

6-(3-(1-carboxy-2-(3,4-
dihydroxyphenyl)ethoxy)-

3-oxoprop-1-en-1-yl)-3-
(3,4-dihydroxyphenyl)-8-

hydroxy-7-oxobicyclo
[2.2.2]oct-5-ene-2-

carboxylic acid
(isomer 3)

C27H24O12 539.1216 539.1195 3.9 16

539.0781; 297.0778;
279.0665; 197.0460;
179.0355; 161.0250;

135.0455

38 13.293 Rosmarinic acid isomer C18H16O8 359.0775 359.0772 0.7 11
197.0456; 179.0350;
161.0248; 135.0450;
133.0296; 123.0449

40 13.686 Caffeic acid tetramer
hexoside C42H40O21 879.1991 879.1989 0.2 23

879.2054; 835.2154;
699.1620; 681.1519;
655.1727; 637.1608;
519.0959; 501.1071;
483.0963; 457.1167;
321.0401; 295.0621;

197.0462

41 13.963 Rosmarinic acid C18H16O8 359.0769 359.0772 −1.0 11
197.0450; 179.0348;
161.0244; 135.0450;
133.0294; 123.0450

43 14.245 Salvianolic acid B C36H30O16 717.1487 717.1461 3.6 22

717.1494; 673.1598;
537.1062; 519.0953;
493.1158; 475.1054;
339.0511; 321.0400;
295.0609; 179.0351;

135.0453

48 14.447 Yunnaneic acid E
derivative 1 C26H22O12 525.1054 525.1039 3.0 16

507.0953; 327.0507;
309.0395; 283.0612;
257.0803; 239.0705;
211.0758; 179.0346;

135.0452

51 14.867 Yunnaneic acid F
derivative C29H24O13 579.1157 579.1144 2.2 18

579.1161; 491.1359;
399.0720; 293.0807;
355.0823; 311.0920;
293.0807; 267.1020;

135.0451

53 15.665 Yunnaneic acid E
derivative 2 C26H20O12 523.0882 523.0882 0.0 17

523.0882; 505.0769;
479.0978; 325.0335;
299.0545; 255.0642;
237.0530; 211.0746;
179.0333; 135.0442

57 17.567 Salvianolic acid C C26H20O10 491.0997 491.0984 2.7 17
491.1012; 311.0563;
267.0661; 265.0502;

135.0454

58 18.267
Sinapoyl-hexosyl-

rosmarinic
acid

C35H36O17 727.1906 727.1880 3.6 18.0

727.1934; 547.1479;
529.1383; 367.1040;
359.0785; 323.0772;
179.0355; 161.0250

65 20.612 Dihydrosalvianolic
acid A C26H24O10 495.1314 495.1297 3.5 15

495.1329; 315.0886;
297.0775; 271.0975;
197.0451; 179.0349;
135.0455; 134.0374

67 21.596 Salvianolic acid A C26H22O10 493.1137 493.1140 −0.7 16 493.1149; 313.0711;
269.0808; 135.0453
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Table 3. TOF-MS and MS/MS data of flavonoids tentatively identified in polar extracts from the
different Lavandula austroapennina organs. Peak numbers are based on elution order in the whole
reversed-phase chromatograms (RDB = ring and double bond). Base peaks are labeled in bold.

Peak Rt Tentative Assignment Formula
[M-H]−
Found
(m/z)

[M-H]−
calcd.
(m/z)

Error
(ppm) RDB MS/MS Fragment

Ions (m/z)

17 9.450 Dihexosyl hexuronidyl
luteolin C33H38O22 785.1768 785.1782 −1.8 15

785.1768; 665.1341;
623.1254; 503.0831;
461.0719; 447.0917;
327.0521; 285.0405

21 10.507 Apigenin
di-hexuronide C27H26O17 621.1097 621.1097 0.1 15

621.1160; 445.0802;
269.0463; 175.0243;

113.0244

22 10.668 Hexosyl hexuronidyl
apigenin C27H28O18 607.1335 607.1305 5.0 14 607.1343; 431.1007;

269.0457; 113.0246

23 10.750 Luteolin
di-hexuronide C27H26O16 637.1074 637.1046 4.3 15 637.1107; 461.0759;

285.0413

24 10.867 Myricetin hexoside C21H20O13 479.0848 479.0831 3.5 12
479.0841; 317.0305;
316.0214; 271.0238;

178.9977

25 10.988 Luteolin
hexuronyl-hexoside C27H28O17 623.1272 623.1254 2.9 14 623.1269; 447.0938;

285.0395; 284.0316

26 11.295 Dihexuronidyl tricetin C27H26O19 653.1027 653.0996 4.8 15 653.1049; 477.0699;
343.0495; 301.0359

32 12.784 Luteolin hexuronide
(isomer 1) C21H18O12 461.0736 461.0725 2.3 13 285.0406

33 12.839 Dihexosyl
dihexuronidyl tricetin C39H46O29 977.2092 977.2052 4.1 17

977.2052; 815.1562;
801.1844; 639.1281;
477.0647; 301.0354

34 12.898
Dihexosyl

p-coumaroyl
hexuronidyl tricetin

C42H44O25 947.2121 947.2099 2.3 21
947.2099; 785.1555;
771.1813; 609.1244;
463.0855; 301.0354

37 12.991 Luteolin hexoside C21H20O11 447.0931 447.0933 −0.4 12 447.0940; 285.0401;
284.0324

39 13.482 Malonylhexosyl
hexuronidyl apigenin C30H30O19 693.1338 693.1309 4.3 16

649.1464; 607.1354;
473.1118; 431.1012;
269.0450; 113.0240

42 13.966 Kaempferol hexoside C21H20O11 447.0954 447.0933 4.7 12

447.0951; 327.0487;
285.0405; 284.0337;
255.0302; 227.0357;

151.0024

44 14.321 Apigenin hexuronide C21H18O11 445.0794 445.0776 −1.7 13 269.0455; 113.0245

45 14.376 Apigenin hexoside C21H20O10 431.0984 431.0984 0.1 12 269.0454; 113.0249

46 14.42
Dihexosyl

p-coumaroyl
hexuronidyl luteolin

C42H44O24 931.2188 931.2150 4.1 21
931.2150; 769.1641;
593.1320; 447.0951;

285.0416

47 14.446 Luteolin hexuronide
(isomer 2) C21H18O12 461.0730 461.0725 1.0 13 285.0400

49 14.616 Trihexosyl
p-coumaroyl luteolin C39H50O25 917.2375 917.2357 1.9 20

917.2357; 755.1865;
609.1611; 593.1303;
489.1149; 447.0961;
325.0911; 285.0405
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Table 3. Cont.

Peak Rt Tentative Assignment Formula
[M-H]−
Found
(m/z)

[M-H]−
calcd.
(m/z)

Error
(ppm) RDB MS/MS Fragment

Ions (m/z)

50 14.745 Tricetin C15H10O7 301.0352 301.0354 −0.6 11
301.0352; 255.0312;
239.0331; 215.0394;
191.0345; 149.0246

52 15.394 Luteolin
malonyl-hexoside C24H22O14 533.0947 533.0937 1.9 14 489.1065; 285.0402;

284.0324

54 15.924 Dihexosyl
p-coumaroyl tricetin C36H36O19 771.1814 771.1778 4.7 19

771.1778; 609.1245;
463.0889; 301.0354;

300.0283

55 16.848
Apigenin

acetyl-hexoside
(isomer 1)

C23H22O11 473.1100 473.1089 2.3 13 473.1115; 413.0882;
269.0444; 268.0375

56 17.018 Luteolin C15H10O5 285.0404 285.0405 −0.2 11 285.0408; 175.0393;
151.0022; 133.0288

59 18.777
Apigenin

acetyl-hexoside
(isomer 2)

C23H22O11 473.1098 473.1089 1.8 13 473.1106; 269.0441;
268.0369; 239.0312

60 19.033 Apigenin C15H10O5 269.0458 269.0455 0.9 11 269.0454; 151.0028;
117.0341

62 19.468 Tricetin p-coumaroyl
hexoside C30H26O14 609.1263 609.1250 2.2 18 609.1263; 301.0354

64 20.339 Apigenin p-coumaroyl
hexoside C30H26O12 577.1371 577.1352 3.3 18 577.1352; 269.0440

2.1.1. Phenylpropenoic Acid Derivatives

Different hydroxycinnamic acids with p-coumaroyl, caffeoyl and feruloyl base skele-
tons were tentatively identified (Table 1), some of which have been recently reported in
oil-exhausted aerial part biomasses of L. angustifolia and L. × intermedia cv. “Grosso” [22].

Compound 3 was tentatively identified as caftaric acid, due to the fragment ion at
m/z 149.0094, corresponding to the deprotonated tartaric acid. It was previously found in
O. basilicum L., O. vulgare L. and T. vulgaris L. aerial parts by UHPLC-MS/MS analyses [23].
Fertaric (feruloyl tartaric) acid was also recognized (7).

Furthermore, compounds 11 and 12 with the [M-H]− ion at m/z 295.0462(3) were likely
to be two isomers of caffeoylmalic acid.

Compounds 8 and 16 with the [M-H]− ion at m/z 341.0872(83) were putatively caffeoyl
hexosides, which were observed in Lavandula x intermedia Emeric (ex Loisel) waste [24] as
well as in L. pedunculata (Mill.) Cav. flowering stems with inflorescence [25]. Compound 5,
likely esculin, was mainly abundant in the root extract.

The other hydroxycinnamic acids were also found as glycosides. Indeed, p-coumaric
acid dihexoside (9) was tentatively identified. The neutral loss of a dehydrated di-hexose
(324.10 Da) from the deprotonated molecular ion provided fragment ions at m/z 163.0394
(p-coumarate ion) and its decarboxylated ion at m/z 119.0501. Accordingly, metabolites
6 and 13 were tentatively identified as p-coumaric acid hexosides. Lavandula x intermedia
Emeric (ex Loisel) methanol waste extracts were rich in p-coumaroyl derivatives [24].
Compounds 10 and 18 were feruloyl hexoses, which occurred together with the dihexosyl
derivative 14. The deprotonated aglycone ion appeared at m/z 193.05 and, in line with
the other hydroxycinnamates, lost CO2 generating the base peak at m/z 149.06. It is
worthy of note that the Lamiaceae family is a rich source of ferulic acid and its derivatives,
which were found in the ethanolic extracts of L. angustifolia Miller, Teucrium spp. and
Micromeria thymifolia (Scop.) Fritsch. [26]. In particular, within the Lavandula genus, the
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4-O-β-D-glucopyranosyl derivative of ferulic acid was isolated from L. angustifolia subsp.
angustifolia (=L. spica L.) flowers [27].

Compounds 61 and 63 were putatively recognized as two isomers of (dihydroxyphenyl)
ethenyl-3-(dihydroxyphenyl)prop-2-enoate, whose assigned trivial names are nepetoidin A
and B (Figure S1), respectively, based on literature data [28].

Finally, a tri-p-coumaroylspermidine (66; m/z 582.2626), recently described for Salvia
officinalis, S. lavandulifolia, S. sclarea, S. cadmica, S. nemorosa, S. tomentosa and Lavandula
augustifolia Mill. [29], was also detected. The loss of one (or two) hydroxystyrene unit
(120.05 Da) gave rise to fragment ions at m/z 462.2058 and 342.1466, respectively, whereas
the loss of dehydrated p-coumaric acid provided fragment ion at m/z 436.2262 [30].

2.1.2. Phenylpropanoic Acid Derivatives

Compounds 1 and 2 were tentatively 8-hydroxy-dihydrocaffeic acid (danshensu)
and its hexosyl derivative, respectively (Table 2). In fact, TOF-MS/MS spectra of com-
pound 2 exhibited the neutral loss of 162.05 Da (hexose moiety) providing fragment ion at
m/z 197.0456, from which the fragment ion at m/z 179.0344(57) was generated by H2O loss
(Figure S2). Metabolite 4 was likely dihydrocaffeic acid, whereas the HR-MS/MS spectrum
of compound 15 was in accordance with a dihydroferulic acid hexoside. In fact, following
the loss of the saccharidic moiety, the aglycone ion at m/z 195.0661 generated the base peak
at m/z 151.0766 (-CO2), which in turn underwent methyl radical loss to give the ion at
m/z 136.0530.

Danshensu was also embedded in the molecular skeleton of rosmarinic acid and sal-
vianolic acids. The salvianolic acids have been used in traditional Chinese medicine for the
treatment of cardiovascular diseases for more than a thousand years [31]. Compared with
other phenolic compounds, salvianolic acids have stronger antioxidant activity and other
biological activities, such as hepatic and neural protection, and anticancer activity [32–35].
Herein, three salvianolic acids were recognized, eluting based on their decreasing polarity.
Salvianolic acid B (43) is constituted of three danshensu and one caffeic acid units. From
its [M-H]− ion (at m/z 717.1487), the neutral loss of a danshensu moiety (or its dehydrated
form) provided fragment ions at m/z 537.1062 (−180 Da) and 519.0953 (−198 Da), whereas
one of the free carboxylic groups underwent decarboxylation, generating the product
ion at m/z 673.1598 [25]. Further similar fragmentation pathways led to the base peak at
m/z 295.0609 (Figure S3). Deprotonated compounds 57 (at m/z 491.0997) and 67 (at
m/z 493.1163) were likely to be salvianolic acid C and salvianolic acid A, respectively
(Figure S4). In both TOF-MS/MS spectra, the loss of 180.04 Da and then of 44 Da generated
fragment ions at m/z 311.0563 and 267.0661 for salvianolic acid C and fragment ions at
m/z 313.0711 and 269.0808 for salvianolic acid A. Based on the similar fragmentation pattern,
compound 65 was tentatively identified as dihydrosalvianolic acid A. The [M-H]− ion
detected for metabolite 27 at m/z 537.1051 was in line with lithospermic acid A (Figure 3A).

As for salvianolic acid B, its occurrence was previously reported in Portuguese
Lavandula pedunculata extracts [25]. Its hexoside was found in metabolite 20 (C33H32O17),
whose hypothesized structure is depicted in Figure 3B, together with the TOF-MS/MS
spectrum and fragmentation pathway.

Compound 35 was identified as rosmarinic acid hexoside, while rosmarinic acid was
recognized in compound 41 with deprotonated molecular ion at m/z 359.0769. The isomer
(38) of this latter was further detected. This compound is widespread in the Lamiaceae
family, including the leaf ethanol extract of Lavandula angustifolia L. [36]. Health-related
properties of rosmarinic acid have been deeply studied, so that a broad range of applications
have gained attention, from the food sector to cosmetics [37–40].
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Finally, compound 40 was supposed to be structurally related to rosmarinic acid. It
could be a hexosyl caffeic acid tetramer, also regarded as rosmarinic acid dimer
(e.g., radbosiin), based on the [M-H]− ion at m/z 879.1991 (Figure 4). This compound,
isolated and identified from the stem of Rabdosia japonica for the first time, was recently
characterized from Origanum vulgare [41]. To the best of our knowledge, this is the first
report of its occurrence in the Lavandula genus.
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Moreover, the TOF-MS/MS spectrum of metabolite 58 was in accordance with sinapoyl-
hexosyl-rosmarinic acid, recently identified in Salvia bulleyana Diels aerial parts [42] and
isolated for the first time from Dracocephalum foetidum Bunge, both belonging to Lami-
aceae [43]. The loss of 368.10 Da (dehydrated sinapoyl-hexose) from the deprotonated
molecular ion provided fragment ion at m/z 359.0785, whereas the loss of 198.06 Da (dan-
shensu) and 180.04 (danshensu-H2O) provided fragment ions at m/z 529.1383 and 547.1479,
respectively. From the latter, the loss of 224.06 Da (sinapic acid) led to the fragment ion at
m/z 323.0772.

The TOF-MS and MS/MS spectra recorded for metabolite 19 suggested the occurrence
of yunnaneic acid E, whose fragmentation pathway is reported in Figure 5.
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Briefly, three decarboxylation reactions took place, each followed by the loss of the
danshensu moiety (198.0528 Da), which appeared also as a base peak, further dissociating in
the product ions, as previously described for compound 1. It was present in a considerable
amount in the aerial parts of different Salvia species (S. blepharochlaena Hedge and Hub.,
S. euphratica Montbret and Aucher, S. verticillata L. subsp. amasiaca Freyn and Bornm.) [44].
Based on this structure and related TOF-MS/MS spectrum, metabolite 48 was putatively
identified as a derivative of yunnaneic acid E, formed through decarboxylative reduc-
tion. The deprotonated molecular ion was easily dehydrated to give the fragment ion at
m/z 507.0953, characterized by an anhydride function. Then, it lost danshensu, following
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the mechanism previously described for yunnaneic acid E (Figure S5). Furthermore, com-
pound 53, which exhibited the [M-H]− ion at m/z 523.0882, was likely a reduced derivative
of compound 48. Its putative structure and pivotal fragment ions are depicted in Figure S6,
together with its HR-MS/MS spectrum. To the best of our knowledge, they have never
been reported before in the literature.

Two isomers of yunnaneic acid F (28 and 29) were tentatively identified, as well as
their putative dehydrated derivative (51) with [M-H]− ion at m/z 579.1157.

Compounds 30, 31 and 36 were identified as isomers of 6-(3-(1-carboxy-2-(3,4-dihydrox-
yphenyl)ethoxy)-3-oxoprop-1-en-1-yl)-3-(3,4-dihydroxyphenyl)-8-hydroxy-7-oxobicyclo
[2.2.2]oct-5-ene-2-carboxylic acid (e.g., yunnaneic acid D isomers). From the precursor
ion, a neutral loss of caffeic acid through a retro-Diels Alder reaction generated the frag-
ment at m/z 359.08 (rosmarinic acid). As an alternative route, they fragmented in a con-
certed mechanism, losing the carboxylic group and danshensu, giving the product ion at
m/z 297.0770(8). Thus, the latter could correspond to deprotonated 9-(3,4-dihydroxyphenyl)-
7-hydroxy-1,6,7,8a-tetrahydro-1,6-methanonaphthalene-2,8-dione. This hypothesis is re-
ported in Figure S7.

2.1.3. Flavonoids

Flavonoids were mainly detected in calyx and corolla extracts, followed by leaf and
stem ones. On the contrary, they were almost absent in root extract, in line with their role
in response to plant biotic and abiotic stressors, which justify their abundance in vegetative
and reproductive organs [45].

Herein, glycosylated derivatives of tricetin, luteolin and apigenin (which also oc-
curred as aglycones—56, 60 and 50, respectively) were tentatively identified (Table 3;
Figure S8), while compounds 24 and 42 were myricetin and kaempferol hexosides, respec-
tively (Figure S9).

Compounds 21, 22, 39, 44, 45, 55, 59 and 64 were apigenin derivatives. The TOF-
MS/MS spectrum of compound 21 was in accordance with an apigenin di-hexuronide;
considering that most commonly the hydroxyl group at C-5 position is involved in a H-
bond with the carbonylic function, the two units of hexuronic acid are likely linked to
positions 7 and 4′ [46]. They were lost as dehydrated form (176.03 Da), providing the
fragment ions at m/z 445.0802 and 269.0463. In compound 22, one hexuronic acid residue
was substituted by a hexose. Accordingly, the molecular formula showed two H atoms
instead of an oxygen, and the neutral losses leading to aglycone ions corresponded to
176 and 162 Da. Compound 39 differed from this latter for the presence of an acyl group
linked to the hexose, identified as malonic acid. In fact, apart from a decarboxylation
reaction giving the fragment at m/z 649.1464, the loss of the dehydrated malonyl moiety
(C3H2O3; 86.0004 Da) likely led to compound 22 (at m/z 607.13). Thus, it was tentatively
characterized as malonylhexosyl hexuronidyl apigenin.

The saccharidic units, whose cleavage led to metabolites 44 (at m/z 445.0794; C21H18O11),
45 (at m/z 431.0984), 55 and 59 (at m/z 473.1100/473.1098), were in accordance with a hex-
uronic acid, a hexose (−162.05 Da) and two acetyl-hexoses (−204.06 Da), respectively.
Moreover, the [M−H]− ion detected for metabolite 64 at m/z 577.1371 was likely at-
tributed to apigenin p-coumaroyl-hexoside, identified by the neutral loss of 308.09 Da
(p-coumaroylhexose-H2O). These apigenin derivatives have been already identified in the
methanol extract of Lavandula angustifolia Mill. [47], L. multifida L. leaves [48], L. coronopifolia
Poir. aerial parts and exhausted aerial parts of both L. angustifolia Mill. and L. × intermedia [22].

Luteolin hexuronyl-dihexoside (17), dihexuronide (23), hexuronyl-hexoside (25), hex-
uronides (32 and 47) and hexoside (37) were also recognized. The identification of the
glyconic moieties followed the same neutral losses discussed before. Luteolin deriva-
tives were depicted in methanolic extract of L. multifida leaves [48] and L. × intermedia
cv. super aerial part waste [24]. The di-glycosylated flavonoid was already reported in
the hydroalcoholic extract of L. angustifolia Mill. and L. × intermedia cv. super waste of
aerial part [22], as well as in L. dentata and L. stoechas through a metabolomic approach [49].
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The TOF-MS/MS spectrum of compound 52 (at m/z 533.0947) was in accordance with
the malonyl ester of luteolin hexoside. In fact, the losses of CO2 (44 Da) from the acyl
group and of 248.05 Da (dehydrated glucuronic acid + malonyl group) were observed.
This compound was reported in an ethanolic extract from L. angustifolia leafy stalks and
flowers [50]. Collision-induced fragmentation of metabolite 49 (at m/z 917.2357) allowed
us to detect the presence of three hexosyl residues and a p-coumaroyl one on the aglycone
skeleton, whereas in compound 46 (at m/z 931.2188) one of them occurred in the oxidized
form (hexuronic acid) (Figure S10). Finally, five tricetin-derived metabolites were detected.
They were well separated in RP chromatography, due to the peculiar substitution pattern,
which was recognized as dihexuronidyl (26), dihexuronidyl dihexosyl (33), hexuronidyl
dihexosyl p-coumaroyl (34), dihexosyl p-coumaroyl (54) and hexosyl p-coumaroyl (62)
moiety (Figure S11).

2.2. Relative Quantitation of Polyphenols in Lavandula austroapennina Organs

A multivariate analysis approach was carried out to explore and clarify the relative
quantitation of the tentatively identified compounds in each organ, highlighting cluster
segregation occurrence (Figure 6A).
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Leaf and stem grouped together due to their abundance in compounds based on (or
deriving from) hydroxycinnamoyl skeleton or its 8-hydroxydehydro derivative. Yunnaneic
acid D isomers (30, 31 and 36) were in the root, which also appeared rich in nepetoidins
61 and 63. Esculin (5) content further distinguished root extract. Indeed, in the data
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set about chemical composition profiles of the investigated extracts, the leaf and stem
composition was close to each other in the Principal Component Analysis (PCA) score plot
of the first two PCs. This provides a map of how the organs relate to each other based on
their (poly)phenolic content. In fact, the first component, PC1, which accounts for 43.5%
of the variation, allowed corolla and calyx, with a higher abundance of flavonoids, to be
positioned in the negative score, while the other organs, characterized by a lower content in
these constituents, were at the end of the positive axis. In addition, the second component,
PC2, reaching 36.3% of the variance, was responsible for a further separation of the organ
groups of both quadrants. In particular concerning to corolla and calyx, although both of
these epigeal organs are mainly made up of flavonoids, the corolla is distinguished not only
by the higher relative abundance of these compounds but also by the exclusive presence of
glycosylated acylated flavonoids. The latter is characterized by having a glyconic portion
with also hexuronic acid residues. A coumaroyl moiety characterized the acyl moiety.
Regarding the root organ, it was located at the end of the negative score of the PC2 axis,
while the leaf and stem in the positive one due to the different chemical compositions
described at the beginning of this paragraph.

2.3. Antioxidant Activity of Lavandula austroapennina Alcoholic Extracts

Data from the in vitro antiradical capability assessment of the alcoholic extracts from
L. austroapennina organs were preliminarily analyzed by cluster analysis, to explore the
degree of dissimilarity values between test types and plant organs.

An average linkage agglomeration criterion and Jaccard Index as dissimilarity coeffi-
cient were applied to each (6 organs × 5 concentrations) of the data matrix from radical
scavenging activity (ABTS•+, and DPPH•) and reducing power (PFRAP). The obtained
dendrograms (Figure 7A–C) distinctly displayed different clustering patterns based on
the applied antioxidant tests. The dendrogram through ABTS data assay highlighted two
main clusters, with a dissimilarity value of 24%. According to the chemical composition
results, the first cluster contained corolla and calyx (Figure 7A(I)), while the second con-
sisted of two subclusters, including leaf and stem (Figure 7A(II.a)) on one side and root
on the other (Figure 7A(II.b)). An equal correlation was found considering DPPH assay
data, whereas PFRAP assay data distinguished leaf from stem and root as subgroups of
cluster II (Figure 7C(II.a,II.b)). Based on the cluster analysis outcome, antioxidant activity
data were organized accordingly (Figure 7Aa–Ca). It is evident that for all the assays, the
values of leaf, stem and root extracts were grouped into a single cluster, which involved
two subclusters sharing the same actors for both the antiradical tests, while leaf extract
occupied alone subcluster CII.a in PFRAP dataset. Corolla and calyx were always in cluster
I and showed a similar concentration-dependent trend, resulting in the organs with the
least bioactivity at the lowest doses tested. Moreover, leaving aside the response observed
in the DPPH assay, it appears that all the organs exerted a strong antioxidant efficacy at
the highest concentrations (from 25 to 100 µg/mL). In fact, the data were pooled with
decreasing activity from corolla and calyx (cluster I) to leaf, stem and root (cluster II). The
marked antioxidant efficacy of leaf, stem and root extracts could be due to their diversity in
HCA-derived polyphenols showing free catechol moieties, able to easily transfer two elec-
trons and their poor content in flavonoid glycosides, which were abundant in corolla and
calyx extracts [51–53]. In fact, glycosylation appears to impact negatively the antioxidant
capability [54]. Indeed, saccharidic moieties linkage to flavonoids affects also their rates of
absorption and metabolization, and it was suggested that the effects of glycosylation on
flavonoid bioactivity in vitro may differ from that observed in vivo [55].
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(C) carried out using the alcoholic extract of the different Lavandula austroapennina organs. Radical
scavenging capacity (RSC, %) of values expressed as mean ± SD following ABTS method (Aa) and
DPPH method (Ba). Reducing Power (RP%) data are in (Ca). All the data are expressed as mean ± SD
of three experiments, independently carried out, each of which in triplicate.

In the literature, there are various data relating to the antioxidant efficacy of different
cultivars of Lavandula angustifolia and other species such as L. hybrida or L. viridis, although,
for the most part, the investigation is limited to the aerial portions of the species [56].

2.4. Cytotoxic Screening of Alcoholic Extract from Lavandula austroapennina Organs

The HaCaT human keratinocyte cell line was used to preliminarily evaluate by means
of MTT assay the cytotoxicity of alcoholic extracts from L. austroapennina organs, using
a broad range of dose levels (from 1 µg/mL to 100 µg/mL), at different exposure times
(3, 6, 12 and 24 h). Human keratinocytes are a valid, in vitro, model for studying the
toxicity profile of botanical products, as well as the inflammatory response, the healing
properties and also for assuring dermoprotection against ROS-induced stress [57–60].
Data obtained, analyzed as the mean of three replicates, were organized into data matrix
(5 organs × 5 concentrations × 4 treatment times) and processed by cluster analysis to
explore the dissimilarity degree between plant organs, tested concentrations and treatment
times. An agglomeration criterion of mean linkage and the Jaccard index as a coefficient
of dissimilarity were applied. The obtained dendrograms (Figure 8A) highlighted the
different clustering pattern of the dose levels tested in relation to the organs with two main
clusters reaching a dissimilarity value of 80%.

The first group (cluster I) included concentrations able to reduce mitochondrial cell
viability to less than 25% (1, 5, 10 µg/mL), while the second cluster grouped dose levels at
50 and 100 µg/mL, which showed higher %RAI (cluster II). Based on clustering, data were
plotted to highlight the cytotoxicity trends in relation to the tested extract concentrations
and exposure time (Figure 8B). This is with the only exception of leaf extract, which showed
an inhibition of mitochondrial redox activity equal to 38.4% after 6 h of treatment time.
Cluster II represented the tested 50 and 100 µg/mL dose levels, whose higher cytotoxic
activity occurred as exposure time rises. Notably, the root alcoholic sample was the only
one whose bioactivity at 50 µg/mL disclosed a redox activity inhibition equal to 12.32%.
Exceptionally, cytotoxicity decrease was remarkable after 12 h (corolla, RAI% = 22.87 ± 0.40;
calyx, RAI% = 31.95 ± 0.21; stem, RAI% = 22.65 ± 0.67). Data acquired reveal that 12 h
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of time treatment may be the optimum to allow the bioactivity of specialized metabolites
involved in each extract to provide maximum skin health benefits.
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organ and different exposure times (3, 6, 12 and 24 h) ordered as depicted by dendrogram (B). RAI,
Redox activity inhibition: values are expressed as mean ± SD of two independent experiments, each
of which in six replicates.

2.5. Alcoholic Extracts from Lavandula austroapennina Exert Wound-Healing Activity

The effects of non-cytotoxic doses of the prepared extracts from L. austroapennina on
skin cell migration were evaluated by in vitro analysis of the scratch wound on HaCaT cell
monolayers. The ability of HaCaT keratinocytes to migrate closing the wound allowed
the evaluation of the healing process by measuring the wound width immediately after
the wound and at considered time intervals. The extracts from corolla, leaf and stem were
particularly active at low doses. In fact, they induced rapid wound closure on HaCaT cells
at a concentration of 1 µg/mL (Figure 9B). In particular, stem extract provided a closure
equal to−36.8% after 6 h. This could be due to its being a mixture of small hydroxycinnamic
acid derivatives, such as compounds 7, 9, 11, 16 and flavonoid glycosides.

Indeed, hydroxycinnamic acid derivatives are intensively explored in pharmaceu-
tical, biomedical, nutraceutical and cosmeceutical fields due to their broad spectrum of
activity resulting from their chemical structure. The benzene ring and acrylic acid residue
enable various chemical modifications with improved bioactive properties, enhanced
electron withdrawn ability, modified lipophilicity and improved absorption and biodis-
tribution [61,62]. These compounds have also been widely used in cosmetics for their
UV-absorbing and filtering properties, antioxidant, or for skin/hair conditioning, or also as
antimicrobial ingredients [63]. In addition, they have been investigated for their depigment-
ing activity onto a model of UVB-induced hyperpigmentation via tyrosinase inhibition,
thus acting as a skin-whitening agent [64]. Moreover, they could act at different levels
in the wound-healing steps, even in chronic situations. Ghaisas et al. [65] evaluated the
involvement of HCAs activity on specific molecular targets, such as NO (nitric oxide),
SOD (superoxide dismutase), glutathione (GSH), hydroxyproline and hexosamine, being
efficacious in reducing inflammation, activating antioxidant pathways and promoting new
skin tissue formation. Ferulic acid proved to be active in an induced AD mouse model,
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reducing the expression of cytokines, such as IL-4, IL-6, TNF-α and IL-31, and suppress-
ing the immune-mediated response of T helper type 2 (Th2) cells [66]. In addition, the
caffeic acid derivative evidenced high anti-inflammatory activity in atopic dermatitis by
suppressing pro-inflammatory cytokines and NF-κB protein production in keratinocyte
cells [67]. Rosmarinic acid was mostly investigated for psoriasis chronic skin disorder. Its
topic administration was demonstrated to statistically reduce levels of IL-6, IL-8, TNF-α
and NF-κB involved in inflammatory response of epidermal keratinocytes [68]. Lavandula
angustifolia Mill. extract, rich in rosmarinic acid, proved to interfere the JAK1/STAT2
signaling pathway, inducing downregulation of NF-κB gene expression and affecting the
PI3K/AKT signaling, engaged in the psoriasis condition [69]. Among HCA derivatives, sal-
vianolic acids are reported to be stronger antioxidant than other phenolic compounds [32].
Salvianolic acid B is reported to have pro-angiogenesis, antiapoptosis and antioxidative
stress effects by stimulating autophagy that enhances the survival of skin flaps and wound
healing [70]. Guo et al. [71] suggested that salvianolic acid B-microemulsion formulation
could be a good candidate for topical antipsoriasis treatment by reducing inflammatory
response through down-regulating IL-23/IL-17 pathway, inhibiting abnormal proliferation
of keratinocytes and moisturizing dry skin. In addition, salvianolic acid B and danshensu
elicited proliferative activity for Detroit 551 fibroblast cells as well as the ability to increase
collagen (type I and V) production, likely through the activation of the TGF-β/Smads
fibroblast signaling pathway. These compounds may also be able to suppress melanin
production by inhibiting the enzyme tyrosinase. Furthermore, they could potentially be
used as an agent for the treatment of hyperpigmentation and wound healing [72]. The
role of flavonoid compounds should also be considered, so that flavonoid aglycones are
components of various pharmaceutical, medical and cosmetic applications due to their
antioxidative, anti-inflammatory, antimutagenic and antiaging properties [73,74]. Indeed,
the bioactivity of flavonoids depends on the arrangement of functional groups around
the core structure and appears to be markedly affected by glycosylation, which confers
decreasing activity, as well as the number of glyconic moieties is related to the decrease in
both compound lipophilicity and transdermal bioavailability [75].
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3. Materials and Methods
3.1. Plant Collection and Extraction

Lavandula austroapennina plants were collected in July 2021 from Mt. Cervati (Sanza
Municipality, 40◦15′19.6′′ N 15◦28′42.8′′ E, 11,801,250 m asl) in the Cilento, Vallo di Diano
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and Alburni National Park (Southern Italy). Taxonomic identification was performed
following Pignatti et al. [76,77]. A voucher specimen has been deposited in the Herbarium
Austroitalicum (IT, acronym follow Thiers 2023 [78]) of the University of Campania Luigi
Vanvitelli (Caserta, Italy).

After harvesting, each plant material was in situ divided into corolla, calyx, leaf, stem
and root, then marked and immediately stored in liquid nitrogen. Each plant organ was first
lyophilized and pulverized by a rotating knife homogenizer (Knife Mill PULVERISETTE
11, Buch & Holm, Herlev, Denmark). Dried material underwent sequential extraction
by ultrasound-assisted maceration (UAM; Branson UltrasonicsTM BransonicTM M3800-E;
Danbury, CT, USA) using sequentially n-hexane and methanol as extractive solvents in a
plant matrix:solvent ratio as 1:20 (g plant matrix:mL solvent). Three UAM cycles by each
solvent were carried out (30 min each; Figure 10).
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3.2. UHPLC-ESI-QqTOF-MS and MS/MS Analyses

The methanolic extract was investigated using the NEXERA UHPLC system (Shi-
madzu, Tokyo, Japan) equipped with a Luna® Omega C-18 column (50 × 2.1 mm i.d.,
1.6 µm particle size). Two µL of each sample were injected. The mobile phase was con-
stituted by water (solvent A) and acetonitrile (solvent B), both acidified with formic acid
(0.1% v/v). A linear gradient was used as follows: 0–10 min, 5%→32% B; 10–28 min,
32→75% B; 28–29 min, 75%→95% B; 29–30 min, 95% B; 30–32 min, column re-equilibration.
The flow rate was set at 400 µL/min. High-Resolution Mass Spectrometry (HR-MS) data
were obtained by an AB SCIEX Triple TOF® 4600 mass spectrometer (AB Sciex, Concord,
ON, Canada), equipped with a DuoSprayTM ion source (AB Sciex, Concord, ON, Canada)
operating in the negative ElectroSpray (ESI) mode. A full-scan Time-Of-Flight (TOF) survey
and 8 information-dependent acquisition MS/MS scans were acquired, using the follow-
ing parameters: curtain gas 35 psi, nebulizer and heated gases 60 psi, ion spray voltage
4500 V, ion source temperature 600 ◦C, declustering potential −80 V and collision energy
−40 ± 15 V. The instrument was controlled by Analyst® TF 1.7 software (AB Sciex, Con-
cord, ON, Canada), whereas MS data were processed by PeakView® software version 2.2
(AB Sciex, Concord, ON, Canada).

3.3. Antioxidant Assessment

The alcoholic extracts from L. austroapennina organs were tested at 2.5, 10, 20, 50 and
100 µg/mL towards the ABTS [2,2′-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid)] radical
cation and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical.
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The previously prepared ABTS•+ solution was diluted in phosphate buffer saline (PBS;
pH 7.4) to achieve an absorbance of 0.7 recorded at 734 nm [79] and added to extracts in
order to achieve the final tested dose levels. The absorbance values were taken after 6 min
by a Victor3 spectrophotometer (Perkin Elmer/Wallac; Waltham, MA, USA) and plotted
vs. the blank. The DPPH• free radical scavenging capacity was also evaluated as previously
described [79], and absorbances were recorded at 517 nm. Three replicate measurements
for each sample (three for each concentration) were performed.

The potassium ferricyanide reducing power (PFRAP) assay was also performed to
estimate the reducing power of the investigated methanolic extracts (2.5, 10, 20, 50 and
100 µg/mL; final concentration levels). The absorbance was measured at 700 nm [79]. A
blank was considered, preparing a solution with PFRAP reagent without samples. All data
were expressed as mean ± standard deviation (SD).

3.4. Cell Culture and Cytotoxic Screening

Human primary keratinocytes cell lines (HaCaT) were cultured in Dulbecco’s Modified
Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum, 50.0 U/mL of
penicillin and 100.0 µg/mL of streptomycin, at 37 ◦C in a humidified atmosphere containing
5% CO2. Cells were seeded in 96-multiwell plates at a density of 1.5 × 104 cells/well and
were treated with the organ polar extracts at 1, 5, 10, 50 and 100 µg/mL, at different
treatment times (3, 6, 12 and 24 h). Then, the inhibition of mitochondrial redox activity
(RAI %) was determined with the MTT cell test [79]. Two independent experiments were
carried out with six replicate measurements for each concentration of each extract. Data
were expressed as mean ± standard deviation (SD).

3.5. Wound Scratch Assay

HaCaT cells (5 × 105) were seeded in a 60-mm dish. After 24 h, as a confluent
monolayer was reached, a wound was simulated by manually scraping the cell monolayer
with a p200-pipette tip, and the cell layer was washed three times using PBS (1 mL × 3).
Cells were thus treated with non-cytotoxic dose levels of the extracts (1, 5 and 10 µg/mL);
quercetin 10 µM was used as a positive control, while cells treated only with culture
medium served as a negative control. The initial wound quantification was performed
on images collected 3 h after wounding when the wound size had stabilized. Additional
images were collected at 6, 12, 24 and 48 h after wounding. Wound healing over time
was calculated manually using Photoshop 2008 applying the following proportion: FOV
(Microscope Field of View) × Size (Photoshop)/Diameter (Photoshop) [80]. The FOV value
was obtained from the NIKON TE300 microscope datasheet source. The data, which were
from two independent measurements, each one in triplicate, were reprocessed as %Wound
closure [81].

3.6. Statistical Analyses

A multivariate analysis approach by ClustVis (https://biit.cs.ut.ee/clustvis/, accessed
on 15 September 2022) was adopted to explore and clarify quali-quantitative compositive
data of compounds, as acquired by UHPLC-QqTOF-ESI-MS analysis, in each organ. Nu-
merical clustering of antioxidant (DPPH, ABTS and PFRAP) and cytotoxic (MTT) assay
data was made on the basis of mean values of three and six replicates for each of the five
extract concentrations tested for each of the five L. austroapennina organs (corolla, calyx,
stems, leaf, stem and root), using the SYN-TAX software (SYN-TAX 2000, Syntax, Berlin,
Germany) [82].

4. Conclusions

A systematic analysis aimed at getting insights into the chemistry of each organ of
L. austroapennina has been carried out. The UHPLC-QqTOF-MS/MS analyses have high-
lighted the specific distribution of (poly)phenolic compounds in the different organs
of corolla, calyx, leaf, stem and root. The diversity in both glycosylated and acylated
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flavonoids in the corolla contrasts with the high presence of derivatives of hydroxycin-
namic acids (e.g., in the stem) and the 8-hydroxy phenylpropanoic acid. Salvianolic acids
and yunnaneic acids are highly present in hypogeal organs. The data underline a richness
in polyphenolic bioactive metabolites that make each organ a potential resource highly
exploitable in the health field. Considering the past use in cosmetic sector, the deepening
of the antiradical and reducing effectiveness of mixtures from each organ, as well as the
definition of the cytotoxicity profile in keratinocyte cells, lays the foundation for evaluating
the positive response in wound-healing assay. Beyond the corolla, which has found em-
ployment for obtaining essential oils, parts such as leaf and stem show promising activities
that suggest further investigations for the full recovery of this local good.
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