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Abstract: The mechanistic target of rapamycin (mTOR) kinase is one of the top drug targets for
promoting health and lifespan extension. Besides rapamycin, only a few other mTOR inhibitors
have been developed and shown to be capable of slowing aging. We used machine learning to
predict novel small molecules targeting mTOR. We selected one small molecule, TKA001, based
on in silico predictions of a high on-target probability, low toxicity, favorable physicochemical
properties, and preferable ADMET profile. We modeled TKA001 binding in silico by molecular
docking and molecular dynamics. TKA001 potently inhibits both TOR complex 1 and 2 signaling
in vitro. Furthermore, TKA001 inhibits human cancer cell proliferation in vitro and extends the
lifespan of Caenorhabditis elegans, suggesting that TKA001 is able to slow aging in vivo.

Keywords: AI drug discovery; mTOR; rapalog; C. elegans; cancer; longevity

1. Introduction

One of the most robust interventions to increase healthspan and lifespan in preclinical
models is the inhibition of the growth-regulating serine/threonine kinase mechanistic
Target of Rapamycin (mTOR). This effect has been demonstrated using genetics in multiple
species, including flies, worms, and mice. In Drosophila, the suppression of TOR signaling
by overexpression of the negative regulators TSC1 or TSC2, or knock-in of dominant
negative forms of TOR or S6K, significantly extended lifespan [1]. In C. elegans, rapamycin
or RNAi-mediated knockdown in adulthood of the conserved TOR pathway components
daf-15 (RAPTOR), rheb-1, raga-1, or ragc-1 all robustly extended lifespan [2–6]. In mice,
while complete knockout of most mTOR components is embryonically lethal, knock-in of a
hypomorphic mTOR allele extends the lifespan by ~25% [7].

The pharmacologic inhibition of mTOR has also been proven to be effective in extend-
ing the lifespan in mice. The mTOR inhibitor rapamycin has repeatedly shown lifespan-
extending effects across sex, strain, and dosing regimens. Effective regimens include dosing
continuously throughout life, intermittently throughout life, transiently early in life, tran-
siently in midlife, and continuously starting late in life [8–12]. These striking preclinical
effects are mediated both directly through the suppression of tumorigenesis and indirectly
via the modulation of lifespan-regulating processes, including insulin and ATF4 signaling
pathways [4,13,14].

Rapamycin and structurally related “rapalogs” have also shown promise in human
trials against age-associated pathologies. In randomized clinical trials, the pharmacological
inhibition of mTOR ameliorated the age-related decline of the immune system and reduced
skin senescence in elderly humans [15,16].
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Despite the clear preclinical promise of rapamycin and related rapalogs, challenges
of drug discovery and development have been well-described, with cost estimates of
over $100 million over ten years or more [17]. However, the use of artificial intelligence
(AI) assisted methods for early drug discovery can fundamentally transform this process,
cutting off years and tens of millions of dollars. We employed an AI method to identify
a potent and selective mTOR inhibitor and validated this compound’s anti-cancer and
pro-longevity effects in cell culture and C. elegans models.

2. Results

To identify and generate compounds that inhibit mTOR, we used generative adver-
sarial networks and reinforcement learning methods. We generated more than 1000 small
molecules predicted to target mTOR. We performed an independent validation using PASS
software [18] to select which generated molecules have a high probability of inhibiting
mTOR. We narrowed down the candidate list to 132 compounds with a high probability
of targeting mTOR (Figure 1A). Since the PASS software can be used to predict toxic and
adverse effects, we filtered these candidate compounds for their likelihood of low toxicity,
of which 29 compounds remained (i.e., 22% of all 132 compounds; Figure 1A, Supplemen-
tary Table S1). Next, we assessed in silico these 29 compounds with preferable ADMET
profiles (absorption, distribution, metabolism, excretion, and toxicity) and found one strong
candidate 1-ethyl-3-(4-(4-morpholino-5,7-dihydrofuro[3,4-d]pyrimidin-2-yl)phenyl)urea,
which we named TKA001 (Figure 1B–D, Supplementary Figure S1).
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candidate TKA001 (C19H23N5O3). (C,D) In silico-predicted physiochemical properties of TKA001.
More details are shown in Supplementary Figure S1.
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To identify the binding pose of the TKA001 to mTOR kinase, we performed molecular
docking using the X-ray structure (PDB ID: 4JT6) based on the fact that the kinase domain
was co-crystalized with a compound in the ATP-binding site that contains a morpholine
moiety presented in the ligand of interest (detailed approach is described in Methods and
Materials). We performed docking with TKA001 and estimated a binding pose to the mTOR
of ∆G = −8.44 kcal/mol (Figure 2A,B). We observed the formation of two hydrogen bonds
between NH groups of urea moiety of the ligand and carboxyl group of Asp2195 as well as
a hydrogen bond between the oxygen of the morpholine ring, which binds to the adenine
pocket, and NH group of Val2240 (Figure 2C). Additional stabilization of the complex is
provided by van der Waals and Pi–alkyl contacts between ligand atoms and amino acid
residues (Figure 2C).

For further analysis of the protein–ligand complex stability as well as intermolecular
interactions within it, we performed 100 ns molecular dynamics of the docked complex. We
found that TKA001 binds tightly to an mTOR kinase based on a root mean square deviation
(RMSD) value of 0.16 nm, which is below the 0.25 nm protein backbone RMSD value
(Supplementary Figure S2A). Furthermore, using root mean square fluctuations (RMSF), we
determined the local conformation changes in the protein chain during molecular dynamics.
We identified twelve regions with RMSF values above 0.3 nm, including two regions with
maximum RMSF values of 1.24 nm and 1.13 nm, which belong to two highly mobile
unstructured parts of protein: Gly1822-Leu1865 and Asp2433-Asn2494 (Supplementary
Figure S2B). TKA001 forms several hydrogen bonds with residues of the ATP-binding
site, and we predicted the most common conformations of the protein–ligand complex
(Figure 2D,E, more details in the Section 4).

Next, we assessed mTOR downstream signaling. The mTOR kinase is found in
two complexes (mTORC1 and mTORC2 [19]). The mTOR complex 1 (mTORC1) phospho-
rylates ribosomal protein S6 kinase (S6K; [20]), whereas the mTOR complex 2 (mTORC2)
phosphorylates AKT [20]. At 1 µM of TKA001, phosphorylation of S6K (S240/244) and
AKT (S473) were reduced in HT1080 cells (Figure 3A), suggesting that TKA001 inhibits
mTOR kinase in both complexes.

Our in silico analysis of TKA001 using CLC-Pred [21] predicted an 85% likelihood
as an effective treatment against prostate cancer. We found that TKA001 inhibits cancer
cell proliferation of epithelial cancer cells from patients with fibrosarcoma (HT-1080; half
maximal inhibitory concentration (IC50) = 200 nM; Figure 3B) and cervical cancer cells
(HeLa; IC50 = 1 µM; Figure 3C). In comparison, IC50 of rapamycin on HT-1080 or HeLa is
1.8 µM and 0.25 µM, respectively [22]. This suggests that TKA001 is a potent inhibitor of
cancer cell proliferation in vitro.

Since TKA001 performed well in silico and in vitro, we next wanted to assess the
in-vivo efficacy of TKA001 on mTOR inhibition. The genetic inhibition of mTORC1 or
mTORC2, knockdown of mTOR/LET-363, or rapamycin treatment increases the lifespan of
C. elegans [2–6,23–25] (Supplementary Figure S3, Supplementary Table S2). To determine
whether TKA001 could also increase the lifespan of C. elegans, we used 100 µM and
200 µM of TKA001 because about 100 µM of rapamycin results in the most robust lifespan
extension [2,4,6]. We found that an adulthood-specific application of 200 µM of TKA001
only extended the maximal lifespan, whereas 100 µM of TKA001 resulted in both a mean
and maximum increase of lifespan (Figure 3D, Supplementary Table S2). Next, we assessed
whether a lower dose would be sufficient to increase lifespan. Indeed, supplementing
C. elegans starting from the young adult stage with 10 µM of TKA001 was sufficient to
extend the lifespan (Figure 3E, Supplementary Figure S3, Supplementary Table S2).



Int. J. Mol. Sci. 2023, 24, 7850 4 of 12

Int. J. Mol. Sci. 2023, 24, 7850 3 of 12 
 

 

To identify the binding pose of the TKA001 to mTOR kinase, we performed molecu-
lar docking using the X-ray structure (PDB ID: 4JT6) based on the fact that the kinase do-
main was co-crystalized with a compound in the ATP-binding site that contains a mor-
pholine moiety presented in the ligand of interest (detailed approach is described in Meth-
ods and Materials). We performed docking with TKA001 and estimated a binding pose to 
the mTOR of ΔG = −8.44 kcal/mol (Figure 2A,B). We observed the formation of two hy-
drogen bonds between NH groups of urea moiety of the ligand and carboxyl group of 
Asp2195 as well as a hydrogen bond between the oxygen of the morpholine ring, which 
binds to the adenine pocket, and NH group of Val2240 (Figure 2C). Additional stabiliza-
tion of the complex is provided by van der Waals and Pi–alkyl contacts between ligand 
atoms and amino acid residues (Figure 2C). 

 
Figure 2. Molecular docking of mTOR with TKA001. (A) Global view of mTOR kinase (PDB ID:4JT6) 
with docked TKA001 ligand in the ATP-binding site. (B) Detailed view of mTOR-TKA001 complex 

Figure 2. Molecular docking of mTOR with TKA001. (A) Global view of mTOR kinase (PDB ID:4JT6)
with docked TKA001 ligand in the ATP-binding site. (B) Detailed view of mTOR-TKA001 complex
centered on the mTOR catalytic cleft obtained by molecular docking. Stick representation of TKA001
(C, dark grey; O, red; N, blue; and H, light grey) and of mTOR residues that took part in interactions.
Green dash lines indicated hydrogen bonds, cyan dash lines—Pi–Alkyl contacts. (C) mTOR-TKA001
interactions on a 2D diagram. Several types of interaction were shown by color with different amino
acid residues. (D,E) The snapshots of the ligand–protein complex from the 100 ns molecular dynamics
simulation. Shown at 50 ns (D) and at 100 ns (E). Stick representation of TKA001 (C, dark grey;
O, red; N, blue; H, light grey) and of mTOR residues that took part in interactions. Green dash
lines indicated hydrogen bonds, cyan dash lines—Pi–Alkyl contacts, orange dash lines—Pi–Cation
contacts, magenta dash lines—Pi–Pi contacts.
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Figure 3. In vitro and in vivo validation of mTOR inhibitor TKA001. (A) Western blot of HT1080
cells pre-treated with increasing concentrations of TKA001. p-S6 indicates phospho-S6 (S240/244),
and p-AKT indicates phospho-AKT (S473). The blots are shown as short and long exposure times,
total AKT, and vinculin loading control. (B) Proliferation assays of TKA001 treatment on HT-1080
cells. Half maximal inhibitory concentration (IC50) = 200 nM. (C) Proliferation assays of TKA001
treatment on HeLa cells. IC50 = 1 µM. (D,E) Feeding 10, 100, or 200 µM TKA001 increased the lifespan
of C. elegans. Two independent biological trials. Control = 0.2% DMSO. p-value determined with Log
Rank. Raw data, statistics, and additional trials are in Supplementary Table S2.

3. Discussion

The nutrient-sensing mTOR kinase is a master growth regulator essential for de-
velopment and tissue homeostasis [26]. However, mTOR activity becomes deregulated
during aging, showing improper and sustained mTOR signaling in older animals [27,28].
Reducing the function of mTOR increases the lifespan in multiple organisms from yeast
to mammals [29]. Despite mTOR being the prime target against many age-related and
chronic pathologies [30], relatively few mTOR inhibitors have been developed to slow the
aging process.

Using deep neuronal artificial learning, we identified many potential mTOR inhibitors
(Supplementary Table S1). Through in silico analysis, we selected one mTOR inhibitor
with predicted low toxicity and a preferable ADMET profile. Our modeling suggests
on-target inhibition by molecular docking to the mTOR kinase. We confirmed these in silico
observations by showing the inhibition of mTOR signaling and cancer cell proliferation
in vitro, and increasing lifespan in vivo.

In a series of rational design and classical medicinal chemistry approaches, structurally
similar mTOR inhibitors were previously developed based on a quaternary-substituted
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dihydrofuropyrimidine [31]. The structurally most similar compounds inhibited mTOR
kinase signaling in vitro at 3–4.4 nM [31] and had an IC50 of 31–1700 nM in cancer cell
proliferation assays (NCI-PC3, MCF7neo/Her2) [31] compared to our IC50 of 200 nM or
1000 nM in HT-1080 or HeLa, respectively. These comparable in vitro results validate our
machine learning approach to identifying novel small molecules for mTOR inhibition. More
importantly, we showed that our mTOR inhibitor TKA001 is able to slow aging in vivo.
Further machine learning approaches hold the potential to speed up drug discovery and
facilitate the selection of compounds for future clinical candidates targeting the mTOR-
mediated healthy longevity benefits.

4. Materials and Methods
4.1. Reagents

TKA001 is 1-ethyl-3-(4-(4-morpholino-5,7-dihydrofuro[3,4-d]pyrimidin-2-yl)phenyl)
urea (C19H23N5O3). Molecular weight: 369.43, Melting point 213 ◦C. TKA001 was syn-
thesized by Otava Chemicals (Concord, ON, Canada). ZINC71297044 (catalog number
27705871).

Dimethyl sulphoxide (DMSO) CAS# 67-68-5 BDH Chemicals (VWR, Dietikon, Zurich,
Switzerland) 500 mL, analytical reagent. Rapamycin (LC Laboratories, Woburn, MA, USA,
Cat. No. R-5000).

4.2. Machine Learning

The list of molecules that are active and inactive on the mTOR target was downloaded
from the ExCAPE database [32]. There were in total 46,679 molecules, and 2878 molecules
were classified as active on the mTOR kinase. We divided these molecules to a test and
training set, and the molecules were converted to an ECFP6 fingerprint with 2048 bits
using RDkit v2023 (https://www.rdkit.org, accessed on 21 January 2023). Random forest
(RF) classifier from scikit-learn [33] was used to train and discriminate between active
and inactive mTOR molecules. The generative adversarial networks and reinforcement
learning methods were used to generate novel molecules that potentially can modulate the
activity of mTOR. Predicted activity on the mTOR target and a quantitative estimate of the
drug-likeness (QED) score were used to evaluate generated compounds.

4.3. In Silico Prediction of the Mechanism of Action and Toxicity of Candidate Compounds

The online web tool PASS v2.0 [18] was used to predict the pharmacological activities of
compounds, as well as their toxicity. PASS indicates the probable activity (Pa) and probable
inactivity (Pi) of ‘drug-like’ substances. Using PASS v2.0 (https://www.way2drug.com/
PASSOnline/index.php, accessed on 21 March 2023), it is possible to obtain an estimated
biological activity profile of a drug-like molecule using only structural formulas. Some of the
predicted activities of PASS software version 2.0 are pharmacological effects, mechanism of
action, as well as toxic and adverse effects.

4.4. In Silico Predicted Physicochemical Properties of TKA001

ADMETlab v2.0 [34] was used to predict the physicochemical properties, drug-likeness,
and toxicity of TKA001.

4.5. Molecular Docking

The structure of TKA001 was drawn using the MarvinSketch v21.16.0 software, af-
ter which the ligand was protonated, and its low-energy conformations were generated
(MarvinSketch version 21.16.0, ChemAxon (https://www.chemaxon.com, accessed on
12 April 2023)). The crystal structure of mTOR kinase (PDB ID:4JT6) was downloaded
from RCSB Protein Data Bank [35]. Using UCSF Chimera 1.16, the protein structure was
prepared for molecular docking by removing all chains except chain B and adding hy-
drogens with subsequent energy minimization of the protein–ligand complex [36]. After
that, the co-crystalized ligand was removed. A molecular docking simulation of protein

https://www.rdkit.org
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https://www.way2drug.com/PASSOnline/index.php
https://www.chemaxon.com
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and ligand was performed using SwissDock web server, which uses the protein–ligand
docking program EADock DSS v3 [37]. A search space of 20 × 20 × 20 Å was used with
a grid box centered on the ATP-binding pocket (X center: −18.24, Y center: −33.14, Z
center: −55.23). Additionally, an accurate docking type was selected with the following
parameters: 5000 binding modes were generated by the DSS engine, relaxation of the most
favorable binding modes was performed by 100 minimization steps using the steepest
descent algorithm followed by 250 steps of adopted-basis Newton–Raphson (ABNR) min-
imization, and 250 binding modes were clustered and evaluated by the FullFitness [38].
Interaction types were evaluated, and images were made with Discovery Studio Visualizer
(BIOVIA, Dassault Systèmes, Discovery Studio Visualizer, v.16.1.0, San Diego, CA, USA:
Dassault Systèmes, 2015). The final choice of the most promising binding pose was based
on the estimated ∆G in kcal/mol, the size of the clusters, and the number of hydrogen
bonds formed between the protein and ligand.

4.6. Molecular Dynamics

A molecular dynamics (MD) simulation was used to estimate ligand stability in the
binding pocket as well as to assess crucial interactions of the protein–ligand complex
obtained by molecular docking. The calculations were carried out using Gromacs 2020.6
software [39] in Charmm36 force field [40].

Before proceeding to molecular dynamics, the missing regions (K1815-Q1866 and K2437-
E2491) of mTOR kinase (PDB ID: 4JT6) were built using the Modeller software v10.4 [41]. In
the newly built model, the coordinates of amino acid residues remained the same as in the
crystallographic structure, while missing loops were built using the AlphaFold2-generated
model as templates.

After that, the mTOR kinase was protonated according to the build-in function in
Gromacs v4.5.3. The topology file for the ligand was generated by SwissParam [42]. The
complex was placed into the center of a periodic dodecahedron box which was filled with
TIP3P water molecules. The minimum distance between the edge of the simulation box and
the complex was 1.0 nm. Na+ and Cl− ions were added to neutralize the system electrostat-
ically with the final 120 mM ionic concentration. To relieve any possible steric clashes and
inappropriate geometry, energy minimization of the complex was performed. The system
was relaxed by applying the steepest descent algorithm (the maximum number of steps
was 50,000). Then, the equilibration was conducted in two phases: under an NVT ensemble
for 100 ps and under an NPT ensemble for 1 ns using the modified Berendsen (V-rescale)
thermostat and Parrinello–Rahman barostat. After that, we launched the MD simulation.
All calculations were performed using the “leap-frog integrator” at the temperature of
300 K and at a constant pressure (1 Bar).

The trajectories were analyzed using Gromacs analysis tools. The obtained results
were plotted by using the XMGrace v5.1.25 software. The percentage of the existence of
intermolecular hydrogen bonds was calculated with the Perl script plot_hbmap.pl provided
by Prof. Justin Lemkul.

4.7. Detailed Analysis of Molecular Docking and Molecular Dynamics

To identify the binding pose of the TKA001-protein system, we performed molecular
docking using the SwissDock server. We chose the X-ray structure (PDB ID: 4JT6) based on
the fact that the kinase was co-crystalized with a compound in the ATP-binding site that
contains a morpholine moiety presented in the ligand of interest. Moreover, the presence of
the ligand optimizes the position of the amino acid residue side chains, which may lead to
more precise results.

To evaluate the accuracy and ability to reproduce co-crystalized binding geometry
and orientation of ligands by the SwissDock engine for particular proteins and ligands, we
performed re-docking. The co-crystalized ligand was retrieved and placed in a random
position and orientation in the space. After that, molecular docking was conducted. Accord-
ing to the results, the binding pose, which belonged to the first cluster with a population of
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eight members and estimated ∆G = −9.33 kcal/mol after superimposing by SMARTS with
crystal conformer, had RMSD values of 0.8095 Å, which are considered appropriate.

The results of the molecular docking of the mTOR kinase and TKA001 using SwissDock
are shown in Figure 2A,B. The binding pose of the ligand, which had an estimated binding
affinity ∆G = −8.44 kcal/mol, was used for analysis. We observed the formation of two
hydrogen bonds between NH groups of urea moiety of the ligand and carboxyl group of
Asp2195 as well as a hydrogen bond between the oxygen of the morpholine ring, which
binds to adenine pocket, and NH group of Val2240. Additional stabilization of the complex
is provided by van der Waals and Pi–alkyl contacts between ligand atoms and amino acid
residues presented in Figure 2C.

For further analysis of the protein–ligand complex stability as well as intermolecular
interactions within it, we performed 100 ns molecular dynamics of the docked complex.
The dynamic stability of the protein–ligand complex was assessed by using calculated
root mean square deviation (RMSD) changes during a full molecular dynamics simulation
except for the first 5 ns. For both the protein and ligand RMSD calculations, the range of
residues from 2000 to 2400, which includes residues of catalytic cleft, was used for the least
squares fit as the presence of two long and highly mobile unstructured regions skew the
results. Supplementary Figure S2A displayed some minor fluctuation in protein RMSD
that remained stable for 100 ns and had an average value of 0.2 nm (black line), while the
average RMSD value for TKA001 is below 0.16 nm (red line). Minor ligand fluctuations may
be caused by forming–breaking H-bonds during simulation. However, since the interaction
between the ligand and protein is considered stable when the RMSD value is under 0.25 nm,
we assume that the TKA001 binds tightly to mTOR kinase.

Root mean square fluctuations (RMSF) were studied to characterize and determine
the local conformation changes in the protein chain during molecular dynamics. As shown
in Supplementary Figure S2B, there were twelve regions with RMSF values above 0.3 nm,
including two regions with maximum RMSF values of 1.24 nm and 1.13 nm, which belong
to two highly mobile unstructured parts of protein: Gly1822-Leu1865 and Asp2433-Asn2494.
However, amino acid residues that belong to the ATP-binding site have RMSF values below
0.25 nm which implies stability and rigidity of the ligand binding site in the presence of
the latter.

According to the results of molecular dynamics, the TKA001 forms several hydrogen
bonds with residues of the ATP-binding site. Around 74% of the simulation time, there
exists a hydrogen bond between the oxygen of the morpholine ring and NH group of
Val2240, around 48% and 55%, and around 74% and 67%—between the first and the second
NH groups of urea moiety and C=O, C–O groups of Asp2195, respectively. Surprisingly, we
observed the presence of another weak hydrogen bond between C=O group of urea moiety
and NH group of Phe2358 for around 51% of the time, which was not determined earlier
by molecular docking. In addition to the presence of numerous weak Pi–alkyl contacts,
we detected the existence of Pi–Cation interactions between the benzene ring of the ligand
and Lys2187, as well as the non-durable formation of a hydrogen bond between the NH3
group of Lys2187 and C=O group of ligand (time of existence was less than 1 ns). The most
common conformations of the protein–ligand complex are shown in Figure 2D,E.

4.8. Human Cell Lines

Cell lines were maintained at 37 ◦C in a 5% CO2 incubator. Cells were maintained in
Dulbecco’s Modified Eagle Medium (DMEM, Thermo Fisher Scientific, Waltham, MA, USA)
supplemented with 10% Hyclone Cosmic Calf Serum (Cytiva, Marlborough, MA, USA)
and 1% penicillin-streptomycin (Thermo Fisher Scientific). Cells were routinely passaged
at 70% confluence. The following cell lines of the American Type Culture Collection
(ATCC) were used: HT1080: ATCC CCL-121, COSMIC Database, sample ID 907064. https:
//cancer.sanger.ac.uk/cell_lines/sample/overview?id=907064, accessed on 14 February
2023 and HeLa: ATCC CRM-CCL-2, COSMIC Database, sample ID 1298134. https://cancer.
sanger.ac.uk/cell_lines/sample/overview?id=1298134, accessed on 14 February 2023.

https://cancer.sanger.ac.uk/cell_lines/sample/overview?id=907064
https://cancer.sanger.ac.uk/cell_lines/sample/overview?id=907064
https://cancer.sanger.ac.uk/cell_lines/sample/overview?id=1298134
https://cancer.sanger.ac.uk/cell_lines/sample/overview?id=1298134
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4.9. Human Cell Proliferation

For the proliferation assays, cells were seeded in 96-well plates at 2000 cells per
well and treated with a vehicle (0.1% DMSO) or TKA001. After 24 h, cells were stained
with Hoechst 33342 (Thermo Fisher Scientific) at 10 µg/mL, followed by imaging using a
Cytation 5 Cell Imaging Multimode Reader (BioTek, Winooski, VT, USA). Cell count was
performed by automated nuclei counting using Gen5 Data Analysis Software v2.0 (BioTek).

4.10. Western Blots

For Western blots, cells were grown to 70% confluence in 6-well plates. Cells were
then treated with a vehicle (0.1% DMSO) or TKA001 for 2.5 h. Cells were then placed on ice,
washed with cold phosphate-buffered saline (PBS), then harvested in 60 µL of cold RIPA
buffer containing protease/phosphatase inhibitors (Thermo Fisher Scientific). Cells were
incubated on ice for 20 min, then centrifuged at 20,000× g for 10 min, and supernatants were
collected. Supernatants were standardized to a concentration of 2 mg/mL and combined
with 6× loading buffer containing SDS, glycerol, beta-mercaptoethanol, and bromophenol
blue. Samples were boiled at 100 ◦C for 10 min, and 15 µL was loaded on a Tris/glycine SDS-
polyacrylamide gel. Proteins were separated by SDS-PAGE, transferred to a polyvinylidene
difluoride (PVDF) membrane, and immunoblotted with indicated antibodies. The primary
antibodies used were pS6 (S240/244): CST 5364, p-AKT (S473): CST 4060, ATK: CST 4691,
and Vinculin: CST 13901. The secondary antibody was HRP-linked anti-rabbit IgG (CST
7074). Immunoblots were imaged using an enhanced chemiluminescent detection kit (ECL,
Bio-Rad, Hercules, CA, USA) and visualized on a LiCor Odyssey Fx Imaging System (LiCor,
Lincoln, NE, USA).

4.11. C. elegans Lifespan

TJ1060 [spe-9(hc88); rrf-3(b26)] C. elegans were grown until the gravid adult stage and
synchronized by bleaching [43]. Hatched overnight cultures of L1 C. elegans were seeded
onto plates covered with heat-inactivated OP50 bacteria and left at a +25 ◦C incubator for
2 days to induce temperature-sensitive spe-9(hc88) mutation to achieve sterility of eggs.
Then, young adult animals were transferred manually by picking 70–75 individuals onto
two 6 cm plates (n ≥ 140 animals per condition) with corresponding TKA001 concentrations
in both agar and heat-inactivated OP50. A further lifespan assay was performed at 20 ◦C
until death [44]. The TKA001 was dissolved in DMSO, resulting in a 0.2% DMSO final
concentration in the NGM plates, and, thus, 0.2% DMSO was used as the empty vehicle
control. All the plates were normalized by 0.2% DMSO to exclude differences in solvent
concentration. Death events were counted every second day and starting from adulthood
day 12 (AD12) on a daily basis. C. elegans with a vulval protrusion, matricide events, dried
on the walls, and abnormally looking were censored [45]. A Kaplan–Meier estimator was
used for analysis in the GraphPad Prism 8 software. A log rank (Mantel–Cox) test was
utilized for statistical analysis (n ≥ 100). Figure 3D: control = 128 death events, TKA001
(100 µM) = 132 death events [+8.9% mean lifespan increase], TKA001 (200 µM) = 132 death
events [+4.7% mean lifespan increase]. Figure 3E: control = 137 death events, TKA001
(10 µM) = 131 death events [+6.3% mean lifespan increase]. For more details and statistics,
see Supplementary Table S2.

4.12. C. elegans Lifespan Assessed with the Lifespan Machine

The setup and lifespan assays were performed as described in Statzer et al., 2022 [46].
In brief, wild type (N2) C. elegans were synchronized via bleaching and seeded onto 10 cm
OP50-seeded plates and left for 48 h at 20 ◦C. After reaching the L4 developmental stage,
C. elegans were shifted to plates containing 100 µM FUdR, ampicillin, and nystatin, seeded
with heat-inactivated OP50 bacteria, with corresponding compounds priorly diluted in
DMSO (0.2% concentration in the final NGM solution, including control). At adulthood
day 12, animals were manually picked to lifespan plates with sealer, supplemented with
the same compounds and heat-inactivated OP50 bacteria, and loaded into the lifespan
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machine [47]. Experiments were conducted in a controlled environment inside ventilated
incubators at 18 ◦C. Raw data from the machine were plotted with JMP 16 software.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24097850/s1.
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