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Abstract: Given their tumor-specific and stage-specific gene expression, long non-coding RNAs
(lncRNAs) have demonstrated to be potential molecular biomarkers for diagnosis, prognosis, and
treatment response. Particularly, the lncRNAs DSCAM-AS1 and GATA3-AS1 serve as examples of
this because of their high subtype-specific expression profile in luminal B-like breast cancer. This
makes them candidates to use as molecular biomarkers in clinical practice. However, lncRNA studies
in breast cancer are limited in sample size and are restricted to the determination of their biological
function, which represents an obstacle for its inclusion as molecular biomarkers of clinical utility.
Nevertheless, due to their expression specificity among diseases, such as cancer, and their stability
in body fluids, lncRNAs are promising molecular biomarkers that could improve the reliability,
sensitivity, and specificity of molecular techniques used in clinical diagnosis. The development of
lncRNA-based diagnostics and lncRNA-based therapeutics will be useful in routine medical practice
to improve patient clinical management and quality of life.

Keywords: lncRNA; breast cancer; biomarkers

1. Introduction

Long non-coding RNAs (lncRNAs) are known to be tissue [1], cancer specific [2],
and disease specific in breast cancer [3]. In particular, their expression has also been
reported to be distinct under several conditions, for example, in cancer progression or
in disease resistant to systemic treatments [4]. Currently, several examples of lncRNAs
have been described as potential clinical biomarkers for predicting response to therapy
or for prognosis in breast cancer, such as HOTAIR, H19, and DSCAM-AS1. HOTAIR, a
−2 kb lncRNA located in chromosome 12, regulates gene expression by recruiting PRC2
and LSD1 complexes to their target gene regions, modulating the enrichment of H3K27 and
H3K4 methylation [5], and it has also been described that HOTAIR overexpression increases
cell proliferation by an enhanced estrogen receptor signaling pathway [6]. H19 is also a
−2 kb lncRNA, located in chromosome 11, and evidence suggests that it modulates gene
expression by the miRNA sponge mechanism [7]. These two lncRNAs, HOTAIR and H19,
have been demonstrated to be overexpressed in breast cancer; this has been related with
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predictive value to assess resistance to neoadjuvant chemotherapy in breast cancer [8,9].
HOTAIR has been particularly associated with metastasis in breast cancer [10]. Additionally,
DSCAM-AS1 is another lncRNA of −1 kb of length, located in chromosome 21, whose
molecular mechanism is still unknown, but several studies suggest that it has a miRNA
sponge function, particularly in carcinogenesis [11], and its silencing induces a reduction
in proliferation in breast cancer cell lines [12]; its overexpression has been associated with
resistance to tamoxifen therapy [13]. Additionally, GATA3-AS1 was first identified as
a lncRNA, differentially expressed in breast cancer patients by Zhang, et al. [14]. This
lncRNA of ~2 kb of length is in chromosome 10, and it has also been associated with Th2
lymphocytes differentiation [15] by regulating its adjacent gene GATA3, a transcriptional
factor involved in immune response [16] and breast cancer [17]. The mechanisms by which
GATA3-AS1 regulates the function of GATA3 are not fully understood, but Gibbons et al.
described a molecular mechanism in human T lymphocytes in which GATA3-AS1 forms an
R-Loop in GATA3 locus; this structure allows for the recruitment of a chromatin remodeler,
such as MLL, leading to the activation of GATA3 transcription [16]. Because of its expression
in breast cancer, GATA3-AS1 has also been proposed as a potential biomarker of response
to neoadjuvant chemotherapy in patients with locally advanced breast cancer of Luminal B
subtype [17]; it is also related to the immune response since it regulates the differentiation
of Th2 lymphocytes, as mentioned before [16]. Furthermore, Zhang et al. reported that its
expression is related to the immune response of mammary tumors by stabilizing protein
levels of PD-L1 in triple negative breast cancer [18]. Taken together, these results suggest
that GATA3-AS1 could be used in clinical practice as a biomarker that would form a part of
targeted therapy strategies for PD-L1 positive tumors in triple negative breast cancer, for
which pertuzumab, atezolizumab, and nab-paclitaxel are implemented as treatments [19].
Thus, lncRNAs are associated with several clinical conditions, such as resistance to therapy
or metastasis development in breast cancer. This gives the possibility to propose them as
novel molecular biomarkers for clinical practice. However, as is the case for many lncRNAs,
the research to determine their clinical application is limited by several factors, including
study design and the number of samples used to determine the clinical utility of lncRNAs.

2. Sample Size Calculation for Biomarker Discovery in Clinical Research

Currently, it is necessary to direct research efforts towards the use of lncRNAs in
targeted therapies with sample sizes that enable adequate sensitivity and specificity [20].
For example, the studies performed by Contreras-Espinosa et al. and other research
works in translational medicine, in which they identified the lncRNAs GATA3-AS1 [17],
LINC02544 [21], and H19 [9], are related to neoadjuvant chemotherapy response in luminal
breast cancer phenotypes, while lncRNA AC009283.1 was associated with tumorigenic
cell signaling pathways in HER-2 enriched breast cancer phenotypes [22]; together, these
results demonstrated the association of lncRNAs with different clinical characteristics in
breast cancer. However, a common characteristic of these studies is the small sample
size. For the identification of a molecule as a novel biomarker, like a lncRNA, the study
population should be as large as the study needs to obtain from it a reliable result about
lncRNAs to be candidates for biomarker development, which means that the study must be
planned with adequate statistical criteria, considering the lowest possible p-value (p-value
< 0.05), which would allow obtaining lncRNAs as biomarker candidates. To identify the
greatest potential for predictive biomarkers with clinical applicability, several requirements
have been described previously by Pepe et al. who designed the prospective-specimen-
collection, retrospective-blinded-evaluation (ProBE) for selecting samples [23], including
specific criteria, such as the definition of biomarker performance and the proportion of
useful markers that the study should identify and the tolerable number of useless markers.
This represents the guidelines that are now applied routinely in validation research, but
not in discovery research, and they could help improve the quality, as well as usefulness, in
lncRNA biomarker discovery.
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To achieve this goal, the sample size must be properly determined depending on the
phase of the study and the type of study to be carried out [24]. For the discovery phase in
preclinical studies for biomarker discovery, based on RNA expression, it is important to consider
implementing the Next Generation Sequencing approach, due to its ability to analyze the
entire transcriptome through the RNA-Seq technique [25]. Particularly, in the discovery phase
for preclinical studies based on RNA-Seq data analysis, the sample size can be small (n > 3)
because the statistical power of the study relies on the type of transcript of interest (protein
coding genes or ncRNAs) and in the reduction of the dispersion generated by the biological
heterogeneity [26,27]. The principal parameters that can be used to improve statistical power
are the design of the library (a paired-end library enhances more statistical power compared
to single-end libraries), the design of the study (a tissue level expression analysis decreases
dispersion compared to population study), and the depth of the sequencing (a study with a
depth greater than 25 million reads increases the statistical power) [26]. However, it is desirable
to have at least three biological replicates for each biological condition to be analyzed, for
example, for the discovery of predictive biomarkers, three samples per each responder patient
and three samples per each non-responder patient should be considered in the experimental
design of a case-control study (n = 6) [28]. Additionally, it is necessary to determine the data
distribution for subsequent statistical analysis, which includes the use of normal distribution
tests, such as Kolmogorov-Smirnov and Shapiro-Wilk tests [29]. If data is normally distributed,
then parametric tests, such as t-test, ANOVA test, linear regression, and Pearson correlation
test, are implemented to determine the clinical association of the candidate lncRNA [30]. If
data follows a non-normal distribution, then non-parametric tests, such as Fisher’s exact test,
Mann-Whitney U test, and Spearman correlation test, are implemented to determine these
associations [31], which should be validated in a larger and independent cohort of patients [32].

For the validation phase, it is assumed that the results of the discovery phase will be
replicated, and to achieve this, we must consider fitting the sample size of the replication phase
based on the conditional power calculation, which is the probability that the replication study
leads to a statistically significant conclusion, as is described by Micheloud and Held [28]. Once
the candidates for use as predictive biomarkers are selected, the results should be validated
in larger cohorts in the Replication Phase, considering only the expression levels of candidate
RNAs and their predictive value. This must be done by determining the data distribution,
calculating sensitivity, and specificity for each candidate or for the whole set, which leads to
the development of a molecular signature, which assumes normal distribution [33,34]. The aim
of this method is to determine the true positives plus false negatives value based on the pre-
established distribution value (Z = 1.96), sensitivity, specificity, and the maximum confidence
interval of 95% (W = 0.1). For biomarkers, in general, the minimum acceptable values for
sensitivity and specificity are 0.8 (80%) and 0.6 (60%), respectively [35]; thus, it is desirable to set
these values for further calculations and determination of the optimal sample size (N). Finally,
each sample size (sensitivity and specificity) is added to obtain the total sample size required
for the study [33], which is statistically optimal for obtaining reliable information to determine
the utility of the candidate biomarker in clinical practice. Here, we present a compilation
of the scientific literature dealing with lncRNAs, and their clinical utility in breast cancer is
presented, for which we performed an exhaustive search conducted by Pubmed, Google Scholar,
and Connected Papers using keywords relating to lncRNAs and their clinical application in
breast cancer, which includes “biomarkers”, “non-coding RNAs”, “lncRNAs”, “breast cancer”,
“prognosis”, “prediction”, “RNA-Seq”, “transcriptome”, “sample size”, and “clinical trials”.

Sample Size Determination for lncRNA Studies in Breast Cancer Research

One example of optimal sample size is the study of Niknafs et al., in which they included
946 patients for the discovery phase and 758 patients for the validation phase. They described
the usefulness of the lncRNA DSCAM-AS1 as a biomarker of resistance to tamoxifen in en-
docrine therapy because of its overexpression in patients with estrogen receptor positive breast
cancer [13], as it is also the case for GATA3-AS1 [17], for which the accurate sample size for the
replication phase should be 1295 patients [33]. Despite this, the use of a convenient sample size
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in studies for lncRNA biomarker discovery is also relevant for the identification of predictive
biomarkers because several studies have identified predictive biomarkers in neoadjuvant
chemotherapy, such as H19 [9], MALAT1 [36], and LINC02544 [21], which, despite the reduced
sample size, showed a potential utility in clinical application. Additionally, public databases
in which the results of the expression analyses are stored by massive parallel sequencing
of coding genes, such as GEPIA [37], as well as non-coding genes, such as TANRIC [38],
both corresponding to the expression profiles of patients found in the Cancer Genome Atlas
(TCGA) cohorts, validates the results obtained in studies such as those mentioned above, in
which it was not possible to obtain more samples. In summary, the importance of properly
implementing the design of a clinical study ensures the reliability of the obtained data in the
results, and therefore, it could be validated in a replication phase to determine the clinical
value of a biomarker based on lncRNA.

3. The Current Use of lncRNAs as Clinical Biomarkers in Clinical Practice

Although their usefulness in clinical practice is poorly understood, the use of lncRNAs
as predictive biomarkers in response to therapy has advantages compared to protein-based
and mRNA-based biomarkers [39] since they present tissue and stage specific expres-
sion [40]; this gives them greater sensitivity and specificity [41], particularly in tumors with
hormone sensitivity, such as the prostatic adenocarcinoma, in which some lncRNAs with
clinical utility, such as SChLAP1 [42], lncRNA-p21 [43], and PCA3 [44], have been identified.
As their association with prostate cancer has already been established, this allows for their
use in clinical practice. For example, SChLAP1 is a lncRNA whose length is 854 nt, is
transcribed from chromosome 2, and is differentially expressed in bladder normal tissue
and prostate cancer tissue. It was first identified in paraffin-embedded tissue biopsies by in
situ hybridization (ISH). The biological function of SChLAP1 is related to the regulation of
the SWI/SNF chromatin-modifying complex; this lncRNA antagonizes the genome-wide
localization of this protein complex, which is related to the promotion of invasiveness
and metastasis in LNCaP and 22Rv1, as well as in Du145 cancer cell lines [45]. Moreover,
SChLAP1 expression has also been associated with metastasis (odds ratio [OR] 2.45, 95% CI
1.70–3.53; p-value < 0·0001) and cancer progression (hazard ratio = 1.99, p-value = 0.032)
in prostate cancer patients [46]. Additionally, lincRNA-p21, which is a lncRNA, has been
shown to be differentially expressed in prostate cancer [47]; its biological function is princi-
pally the regulation of apoptosis, cell proliferation [48], and cell cycle by its interaction with
MDM2 and STAT3 [47]. lincRNA-p21 has also been related to disease progression in prostate
cancer in preclinical studies, as its overexpression in castration-resistant patients who were
treated with enzalutamide is associated with less overall survival (p-value = 0.04), which
indicates that lincRNA-p21 could also be a useful predictive biomarker for enzalutamide
treatment [47]. Finally, the Prostate Cancer Antigen 3 (PCA3), a lncRNA of 3 Kb in length
transcribed in chromosome 9, is present in prostate cancer with high tissue-expression
specificity, described first by Bussemakers et al. in 1999 [49]. Currently, PCA3 is also
an auxiliary biomarker in prostate cancer; its use was approved by the Food and Drug
Administration (FDA) in 2012 [44] due to its clinical utility by reducing the number of
unnecessary biopsies in patients. Additionally, PCA3 has been reported to be related to the
survival of prostate tumor cells by regulating the androgen receptor signaling pathway,
as well as regulating the epithelial-mesenchymal transition (EMT) by modulating some
targets, such as E-cadherin and TWIST [50,51]. Furthermore, it has been used in gene
signature PROGENSA to determine which patients with a previous negative biopsy [52]
need a second biopsy [53]. As described above, the use of molecular biomarkers based on
lncRNA expression for prostate cancer has demonstrated the utility of this RNA biotype in
clinical practice. Likewise, this could be extended to breast cancer clinical application since
both carcinomas are characterized as hormone-sensitive [54], and there is experimental
evidence of lncRNA expression related with clinical outcome, such as lincRNA-ROR, in
which PCA3 regulates EMT by modulating E-cadherin functions [55]. Thus, it is necessary
to implement more research to have similar results in biomarker discovery for breast cancer.
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Moreover, in prostate cancer research, it has been established that, although the
lncRNA expression itself has clinical utility, the identification and detection of different
biotypes, such as mRNAs, and genetic fusions also has utility in clinical practice [56].
Indeed, there are reports in scientific literature that demonstrate that the combination of
lncRNA, mRNA, and genetic fusions in molecular signatures has improved the sensitivity
or specificity of assays based priorly only in the expression of one gene [57]. One example
is PROGENSA, which is based on PCA3 expression and is associated with a sensitivity of
66–72% and a specificity of 58–76% [58,59], while Mi Prostate Score, an urinary test based
on the detection of PSA (mRNA), PCA3 (lncRNA), and TMPRSS2-ERG (genetic fusion) [60],
has an associated sensitivity value of 95%. This demonstrates that the combinatorial use
of mRNAs, lncRNAs, and genetic fusions can improve the results of laboratory tests for
prostate cancer, and this could be extended to breast cancer research.

3.1. Challenges and Perspectives for lncRNA Clinical Application as Predictive Biomarkers for
Breast Cancer Management

For breast cancer, there are few studies that support the use of lncRNAs or the com-
bination with other biotypes as molecular predictive or prognostic biomarkers in clinical
practice, and none of them have been approved for commercial distribution in prostate can-
cer, as in the case of PROGENSA, although there is already evidence in scientific literature
about their potential as biomarkers in decision-making for the management of breast cancer
patients [61–63]. The best example to describe the potential clinical utility of a lncRNA in
patients with breast cancer is the study performed by Berger et al. in which the existence
of lncRNA-coding gene regulation networks, such as NEAT1, TERC, and TUG1, together
with other mRNAs, such as ESR1, AR, and SOX2, make it possible to classify patients with
gynecological cancers and breast cancer into 6 clusters, which are related directly to their
phenotypes and mainly to the immune response, as well as to the expression of hormone
receptors in patients particularly associated with the estrogen receptor signaling pathway. This
biomarker can be used for diagnostic, predictive, and prognostic purposes in breast cancer
patients [64]. Furthermore, this has also been demonstrated by Niknafs et al., who described
the use of DSCAM-AS1 expression as part of the characteristics of luminal tumors that are
positive to hormone receptor expression [13]. It has also been described by Contreras-Espinosa
et al. for GATA3-AS1 [17] and for the LINC01087, which expression profile is also related
with luminal phenotypes in breast cancer [65]. This suggests that GATA3-AS1 expression
may be a relevant molecular characteristic that defines luminal tumors [66]. However, there
are additional emerging lncRNAs that have been described as potential biomarkers in can-
cer, such as HOTAIR, DSCAM-AS1, and GATA3-AS1 in breast cancer [8,13,17], MALAT1 in
lung cancer [67], H19 in colorectal cancer [68], HULC in liver cancer [69], UCA1 in bladder
cancer [70], and DLEU1 in endometrial cancer [71]. Among other lincRNAs [72], the appli-
cability of lncRNAs in the molecular diagnostic area and their use in laboratory tests for
clinical diagnosis in the near future largely depends on the expansion of knowledge about
their association with different clinical variables, such as response to treatment and overall
survival, as well as their inclusion in clinical trials in order to determine and validate the
benefits of their use in clinical routine, as it has been made for coding genes before [73]. Thus,
there are still many studies to be carried out in order to include lncRNAs more frequently
in laboratory tests for the patient’s workup and treatment, not only in oncology, but also for
other pathologies, like cardiovascular diseases [74] and diabetes [75], which are also leading
causes of morbidity worldwide [76]. Taken together, these results suggest that lncRNAs
may be relevant biomolecules that could allow oncologists to differentiate patients who do
not respond to therapy, regardless of the molecular heterogeneity of breast tumors, which
represents an important challenge in oncology practice [77].

3.2. The Use of lncRNAs as Molecular Biomarkers in the RNA-Based Therapeutics Era

A molecular feature advantage that distinguishes lncRNAs is their stability in biologi-
cal samples, such as blood, urine, or saliva (median half-life ~3.5 h) [78]. This is due to their
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transport in exosomes, microvesicles, apoptotic bodies, high density lipoprotein capsules,
or into circulating tumor cells [79], in contrast with mRNAs, which are characterized by
their instability in body fluids (median half-life < 2 h) [80]. This allows the detection of
lncRNAs by non-invasive techniques through the use of liquid biopsies, such as urine and
saliva, and less-invasive methods, such as serum and plasma [40], as has been reported
for lncRNAs HOTAIR [8] and H19 [9] in breast cancer, as well as for MALAT1, which has
been shown to be a serological marker in breast cancer [36] and a diagnostic biomarker for
oral squamous cell carcinoma that can be detected by saliva testing [81]. The detection of
these lncRNA is performed by a quantitative polymerase chain reaction (qPCR) in RNA
extracted from serum or saliva obtained from patients. Likewise, it is possible to detect
lncRNAs with the use of other techniques with higher sensitivity, such as ISH-RNA, which
has been used for the rapid detection of markers, such as HER2 in breast cancer, [82]
with greater sensitivity and specificity (99% and 98%, respectively) when compared to
HER2 immunohistochemistry (IHC) assay detection (95% and 98%, respectively) [83]. The
ISH-RNA assay has also allowed the detection of lncRNA SNHG3 as a potential diagnostic
biomarker, distinguishing between normal breast tissue and cancerous breast tissues [84].
Furthermore, there are novel molecular approaches, such as spatial transcriptomics, which
allow for the identification of a signature based on 798 transcripts, including the lncRNA
LINC00657, that could be implemented in machine learning methods to distinguish inva-
sive breast cancer [62]. In summary, the implementation of molecular biology techniques
for lncRNA-based biomarkers detection in clinical practice could improve the reliability of
the results of laboratory tests and the accuracy of oncological diagnosis.

As discussed above, the implementation of PCA3, DSCAM-AS1, and GATA3-AS1 as
other lncRNA molecular biomarkers represents a novel approach for the clinical manage-
ment of the oncological patient (Figure 1) since their expression is tissue-specific, disease-
specific, and is associated to a particular stability in body fluids [2], contributing to the
development of precision medicine; this is because lncRNA-based biomarkers offer simple
and reliable tests [85]. Altogether, this represents the lncRNA-based diagnostics [86,87],
a new concept in medicine which integrates the potential use of lncRNAs as molecular
biomarkers, with application in clinical practice, that will improve patient management in
three main aspects. The first is the use of non-invasive techniques for laboratory tests (e.g.,
liquid biopsies); this has proven to be useful in clinical routines as the urine analysis, which
is currently in practice with the use of PCA3 [88]. The implementation of these molecular
assays, with fluids like urine and saliva, have the main objective of benefitting patient
management because these methods allow the oncologists to perform the diagnostic and
follow up of patients in less invasive manners, with the accuracy improved, due to the
capability of these non-invasive methods to avoid some bias, like tumor cell heterogene-
ity [89]. Hence, the detection of lncRNAs by the implementation of non-invasive methods,
such as urine and saliva analysis, is a promising improvement in clinical routine. Second,
the use of time and cost-efficient detection techniques, such as qPCR, which take ~2 h to get
results [90] in contrast to IHC, which takes approximately 2 days or more [91], will directly
impact the optimization of the oncologist decision making, for example, in the decision for
treatment selection for breast cancer patients. Third, the improvement in result accuracy for
laboratory tests. Because of the high specific expression profile of lncRNAs, as well as their
sensibility and specificity, differential diagnosis and early diagnosis are easier and can also
be combined with pathological imaging processing that involves the use of X-ray imaging,
magnetic resonance imaging, nuclear medicine imaging, and ultrasound imaging, which
are techniques with routinary use in clinical practice [92]. Thus, the combinatorial use of
molecular and image biomarkers could lead to the improvement in diagnosis, prediction,
and prognosis values [93], which have been demonstrated by the implementation of ma-
chine learning algorithms for the integration of molecular imaging and clinical data [94–96].
However, to achieve the implementation of combinatorial biomarkers in breast cancer, the
development of appropriate research protocols is necessary to demonstrate and validate
their usefulness in clinical practice.
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Figure 1. Workflow for lncRNA validation as biomarkers with clinical utility and application.
The process of implementing a lncRNA-based biomarker consists of 5 principal steps: discovery,
validation, verification, clinical application, and clinical utility [97]. In the discovery step, the objective
is to select a lncRNA (or a set) differentially expressed in the condition of interest, like treatment
response, and implement it in selected patients. In the validation step, the sample size is increased
to determine lncRNA robustness to define the clinical condition of interest and follow the sample
size calculation recommended in [20]. In the verification step, lncRNA expression is determined
by a clinical laboratory technique, such as qPCR, to verify its viability to be detected in the clinical
routine. In the clinical application step, the functionality of the lncRNA as a biomarker for diagnosis,
prediction, or prognosis is determined by assessing its sensibility and specificity [20]. Finally, in the
clinical utility step, the accuracy of the lncRNA as biomarker is tested in a larger sample size and
could be included in clinical trials. (A) PCA3 is an example of a lncRNA that has been validated for
clinical application in prostate cancer diagnosis because it represents an FDA-approved lncRNA for
clinical purposes. It was discovered from a sample size of 11 patients in the discovery phase [49]
and 507 male patients were included in the validation phase in a clinical trial [53]. Additionally,
PCA3 is associated with a sensitivity ranging from 54% to 82% and a specificity range of 56.3% to
89%, which justifies its use in clinical practice [50]. Although PCA3 was identified by Northern blot
technique [49], it has been validated in other studies by high throughput sequencing technologies,
which is the principal tool for current biomarker discovery [98]. (B) EPIC1 is a lncRNA that was
identified from the analysis of 6475 tumor samples in the discovery phase and 534 samples in the
validation phase [99]. However, it has not yet been verified as a biomarker for clinical utility or for
clinical application in the prognosis of breast cancer. (C) GATA3-AS1 is a lncRNA proposed as a
potential clinical biomarker in predicting treatment response in breast cancer because it has been
demonstrated by Zhang et al. that it is overexpressed in breast neoplasia in a differential expression
analysis for 85 paired tumor-normal samples and 830 tumor samples in the discovery phase. For
the validation step, 50 paired tumor-normal samples and 23 healthy samples were included [14].
Recently, Contreras-Espinosa et al. also identified this lncRNA by a machine learning approach in
a sample size of 11 patients for the discovery step and 68 patients for the validation step, which
demonstrated its utility as a predictive biomarker [17]. However, it has not been validated for clinical
application yet, as other lncRNA which have been proposed as molecular biomarkers for treatment
response prediction in breast cancer, like HOTAIR [8] and MALAT1 [36], have not been included
in clinical trials for the analysis of their applicability in diagnosis. lncRNA: long non-coding RNA;
ISH: in situ hybridization; PCR: Polymerase Chain Reaction; qPCR: quantitative PCR. Created in
BioRender.com.
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3.3. The Current Challenges for lncRNA Research and for Their Implementation as Molecular
Biomarkers in Routine Clinical Practice

Finally, it should be noted that the principal objectives in the investigation of the use
of lncRNAs as current molecular biomarkers in breast cancer have mostly been aimed at
determining the biological function of lncRNA [100,101] or their ability to describe mammary
tumors molecularly, as is the case of lncRNA EPIC1 described by Wang et al., which has been
identified as an oncogene in breast cancer that promotes cell cycle and has been associated
with poor overall survival (hazard ratio ~2, p-value = 0.005) [99]. However, it has not yet
been possible to apply this knowledge in biomarker development for routine used in clinical
practice, as it occurs with PCA3 in prostate cancer [44]. This happens because of three
main reasons: (1) the sample size used for the discovery and validation of these potential
biomarkers, (2) the lack of clinical trials focused on exploring the association of lncRNAs
with clinical variables, and (3) the lack of clarity and accurate use of clinical definitions
that involve biomarkers and clinical assessments, which make the development of new
clinical tools based on novel molecular markers, such as lncRNAs, and their inclusion in
clinical practice difficult [102]. However, their advantages over other biomolecules, such
as proteins and mRNAs, have been demonstrated [40], as is the case of GATA3-AS1, which
predicts neoadjuvant chemotherapy resistance in luminal B-like breast cancer patients with a
sensitivity of 92% and specificity of 75% (p-value = 0.0001) [17] compared to Ki-67, a clinical
biomarker for neoadjuvant chemotherapy response prediction in breast cancer (sensitivity:
95.7%, specificity: 54.3%, p-value = 0.002) [103]. Another example is H19 [68,104] and DSCAM-
AS1 [13,105]; not only has their biological function been described, but so has their applicability
in clinical practice by establishing associations with clinical variables, such as estrogen receptor
expression, which has potential application for diagnosis (sensitivity, 100.0%; specificity, 97.0%;
p-value < 0.001), as well as predictive and prognostic features [105]. Furthermore, there are
also studies for lncRNAs that are used as genetic signatures [4,14,106]. Wang et al. reported the
use of a gene signature based on lncRNA expression that included NEAT1, and its predictive
value for neoadjuvant chemotherapy response was described (sensitivity, 69.9%; specificity,
77.8%; p-value < 0.0001) [106]. However, the sample size in these studies is small and this has
not allowed for the scale up of the applications of lncRNAs to the dimensions of a clinical
trial, as is the case of H19 [9], HOTAIR [8], MALAT1 [36], and GATA3-AS1 [17], which have
predictive value for neoadjuvant chemotherapy response. Furthermore, in general, there are
few studies in the clinical setting that investigate the potential use of lncRNAs as diagnostic,
predictive, or prognostic biomarkers in clinical practice for cancer (Supplementary Table S1)
since there are only a few studies in preclinical stages and only three clinical trials that include
lncRNAs as biomarkers developed specifically for breast cancer research (Table 1) and are
not specifically dedicated to a particular lncRNA or do not yet have a publication related to
lncRNA application [107–109]. This is despite the evidence for their roles as regulators of cell
proliferation and survival in mammary tumors (Table 1), which represents a disadvantage
in the development of lncRNA-based biomarkers in breast cancer, particularly in locally
advanced stages, and makes their inclusion to molecular signatures harder, even if their utility
could improve the sensibility and specificity of molecular biomarkers based on coding genes.
This has been demonstrated for H19, which has a sensitivity of 56% in the identification of
metastatic breast cancer [110] compared with CA-15-3, a tumor marker with a sensitivity of
42% in the same prognostic application [111]. This is evidence that lncRNA inclusion enhances
gene signatures for clinical trials.
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Table 1. List of clinical trials and preclinical studies in breast cancer research that also included lncRNAs.

Clinical Trials for lncRNA *

Clinical Trial ID Title Disease Number of Participants Phase

NCT02641847

TA(E)C-GP Versus
A(E)C-T for the High

Risk TNBC Patients and
Validation of the
mRNA-lncRNA

Signature.

Triple Negative Breast
Cancer, Breast Cancer. 503 Phase 2

Phase 3

NCT03000764

RNA and Heat Shock
Protein Biomarkers in

Radiation-induced
Fibrosis in Breast

Cancer (SPLICI-Rad).

Breast Carcinoma,
Fibrosis. 20 Not Applicable

NCT02221999

Weekly Paclitaxel and
Cisplatin to Treat

Hormone Receptor
Positive and Triple

Negative Breast Cancer
Patients (SHPD002).

Tubular Breast Cancer,
Mucinous Breast Cancer,
Invasive Ductal Breast
Cancer, Inflammatory

Breast Cancer.

250 Phase 2
Phase 3

LncRNA in Preclinical studies

LncRNA Biological Function + Disease Application Reference

LINP1 Proliferation and
migration

Triple Negative Breast
Cancer Predictive biomarker for radiotherapy response [112,113]

NR2F1-AS1 (NAS1) EMT and invasion Lung Metastasis Breast
Cancer

Prognostic biomarker for metastasis-free survival
and relapse-free survival [114]

DILA1 Cell cycle progression
and proliferation

ER-Positive Breast
Cancer

Predictive biomarker for tamoxifen response.
Prognostic biomarker for relapse-free survival [115]

LINK-A Proliferation and
survival

Triple Negative Breast
Cancer

Biomarker for stratification of Triple Negative Breast
Cancer Patients [116,117]

IRENA Proliferation Invasive Breast
Carcinoma Prognostic biomarker. Disease-free survival [118]

BDNF-AS Proliferation Triple Negative Breast
Cancer Predictive biomarker for tamoxifen response [119]

LINC01271 Proliferation and
migration Breast Cancer Metastasis-related biomarker [120]

* Clinical trials were consulted in https://clinicaltrials.gov/ (accessed on 13 January 2023). Search terms:
[LncRNA] AND [Breast Cancer]. + Studies performed in breast cancer cell lines.

Practice, as is shown by Liu et al., with the comparison of 5-gene signature integrated
by 4 mRNAs (OR7C1, TBX2, RSPH4A, and C2orf61) and the lncRNA AC10538, with 21-gene
signature Oncotype Dx, in predicting overall survival in early-stage breast cancer patients
showed that a 5-gene signature performed better in prognosis value than 21-gene in a
TCGA cohort (areas under curves 0.807 and 0.572, respectively) [121]. This demonstrates
that the integration of lncRNA to an mRNA signature could improve the prognosis value,
as was also demonstrated for the combinatorial use of lncRNA MALAT1 and Oncotype Dx,
for predicting the diagnosis of early-stage breast cancer [122].

Similar results have been reported for Acute Lymphoblastic Leukemia, in which a
7-gene signature, including one lncRNA, LINC00652, and six mRNAs, INSL3, NIPAL2,
REN, RIMS2, RPRM, and SNAP91, had an area under the curve of 0.9 for predicting
5-year overall survival [123]. Moreover, Zhou and collaborators described a 12 lncRNA
gene expression panel that is capable of predicting the risk of recurrence in breast cancer
patients [124]. Another example is the study performed by Shen and collaborators, in which
they demonstrated that a 11-lncRNA gene signature, that has an associated prognostic value
(HR = 1.328 in univariate Cox regression analysis, with p-value < 0.001 and HR = 1.266 in
multivariate Cox regression analysis, with p-value < 0.001), is also related with immune
cell infiltration in breast tumors, which could have a clinical application for breast cancer
immunotherapy [125]. Additional studies of the identification of molecular signature
biomarkers based on lncRNA expression profiles are listed in Supplementary Table S2.
This evidence suggests the utility of lncRNAs, in clinical practice, as molecular biomarkers
of treatment response prediction and prognosis in cancer and their potential inclusion in
already used molecular signatures, like Oncotype Dx [126]. The usefulness of lncRNAs

https://clinicaltrials.gov/
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in breast cancer, particularly for locally advanced stages, can therefore be more than
just identifying biological properties and treatment response to systemic therapy [39],
as is the case of HOTAIR, which is related to lymph node metastasis [10] and HUMT
(p-value < 0.001) [127].

As well as the above examples, there are numerous examples of other lncRNAs that
have shown potential as biomarkers for predicting the response to treatment in breast
cancer in studies conducted in mouse animal models at the preclinical level (Table 2).
However, as discussed above, efforts need to be directed to move this research to phase I
clinical studies, not only for response prediction biomarkers, but also to biomarkers with
diagnostic and prognostic applications in order to determine the benefits that they can
bring to the management of oncology patients, including in other areas, such as surgery.

Table 2. Studies in mouse models for lncRNA biomarker discovery in breast cancer.

LncRNA Drug Expression Status Response Reference

linc00518 Doxorubicin Upregulated Promotes resistance [128]

PTENP1 Doxorubicin Downregulated Promotes resistance [129]

LOC645166 Doxorubicin Upregulated Promotes resistance [130]

UCA1
Doxorubicin
Tamoxifen
Paclitaxel

Upregulated Promotes resistance [131,132]

CBR3-AS1 Doxorubicin Upregulated Promotes resistance [133]

EGFR-AS1 Docetaxel Upregulated Promotes resistance [134]

NONHSAG048143.2 Docetaxel Upregulated Promotes resistance [135]

DILA1 Tamoxifen Upregulated Promotes resistance [115]

BDNF-AS Tamoxifen Upregulated Promotes resistance [119]

LINP1 Tamoxifen Upregulated Promotes resistance [112]

H19 Tamoxifen
Paclitaxel Upregulated Promotes resistance [136,137]

ATXN8OS Tamoxifen Upregulated Promotes resistance [138]

OIP5-AS1 Trastuzumab Upregulated Promotes resistance [139]

ZNF649-AS1 Trastuzumab Upregulated Promotes resistance [140]

SNHG7 Trastuzumab Upregulated Promotes resistance [141]

LINC00160 Paclitaxel Upregulated Promotes resistance [142]

CASC2 Paclitaxel Upregulated Promotes resistance [143]

DLX6-AS1 Cisplatin, Carboplatin Upregulated Promotes resistance [144]

MIR200CHG Cisplatin, Carboplatin Upregulated Promotes resistance [145]

PRLB 5-Fluorouracil Upregulated Promotes resistance [146]

CCAT2 5-Fluorouracil Upregulated Promotes resistance [147,148]

SNORD3A 5-Fluorouracil Upregulated Promotes resistance [149]

MIAT 5-Fluorouracil Upregulated Promotes resistance [150]

Additionally, in surgical practice, they could help in predicting lymph node burden
and, therefore, avoid extensive axillary surgery in patients eligible for genomic tests [151],
as it has been done recently with epigenetic signatures [152]. They could also work as
biomarkers to predict objective response rates (ORR) to specific therapies in the neoadju-
vant setting so tumor downstaging could be more precisely inferred [153]. In metastatic
disease, these molecules can also help us to identify progression free survival in specific
settings [154], such as oligometastatic disease in luminal-like tumors [155]. In the neoad-
juvant setting, differential expression of lncRNAs could help to identify the probability
of achieving low residual cancer burden (RCB) [156], and perhaps even its expression
in residual disease might identify luminal-like patients that could benefit from adjuvant
therapies if their absence/presence is associated with recurrence or death, since pathologic
complete response is not an adequate biological surrogate of survival in this molecular
subtype [157]. In addition, lncRNAs could have an impact on the development of new
therapies based on RNA or RNA-based therapeutics [158] for breast cancer patients. Par-
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ticularly, lncRNA could be incorporated for immunotherapy purposes [159], for example,
as enhancers of a cancer vaccine’s response, as is the case of LINK-A, a lncRNA whose
inhibition by locked nucleic acids synergistically suppresses tumor progression when it
is combined with immune checkpoint blockers (or ICB therapy) [160], which have the
same effect that the PVX-410 cancer vaccine [161] has. This in turn suggests that LINK-A
could be a biomarker for PVX-410 vaccine response or a sensitizer for this vaccine [162].
Another example of the potential use of lncRNAs in cancer therapy is their use as targeted
therapies for the treatment of metastatic cancer with the use of systems of release, such
as the MALAT-1 antisense oligonucleotide, stabilized in antisense oligonucleotide-loaded
nanostructure, co-functionalized in Au nanoparticles, which reduced metastatic tumors
in vivo [163]. Altogether, these results show the potential applicability of lncRNA in differ-
ent RNA-based therapies, including immunotherapy, which is one of the most promising
perspectives for lncRNA therapeutics in cancer.

4. Conclusions

The trend of lncRNA research in breast cancer is based on the proposal of a new type of
precision medicine that relies on the use of ncRNAs, since it is still in the dark matter of hu-
man genome [164] and since its application in the clinical area has not been explored deeply.
This is due to the persistence of the exclusively and prioritized persistence of coding genes
as biomarkers [165–167], although they continue to be of clinical utility when merging with
gene signature tests, such as Oncotype Dx, Mammaprint, and Prosigna/PAM50 [168]. It
has been shown that they do not represent the complete molecular description of mammary
tumors [169], for which it is necessary to integrate the knowledge that research areas, such
as genomics, transcriptomics, proteomics, epigenomics, metabolomics, and interactomics,
have provided [170,171]. In the future, this will allow for the development of precision
medicine for the benefit of cancer patients [97].

Thus, the new era of molecular diagnosis should consider the issues discussed above
and, at least, allow for the reflection of three perspectives in its development. First, the
integration of lncRNAs in clinical trials for the study and analysis of their potential applica-
bility in clinical diagnosis. Second, the use of lncRNAs as diagnostic molecular biomarkers
using non-invasive tests, as is the case for PCA3 detection in urine and for other promising
lncRNAs, such as HOTAIR in serological tests and MALAT-1 in salivary tests, which repre-
sent an advance in the proper management of oncology patients, as we discussed before.
Third, the integration of lncRNAs in commercial gene signatures and laboratory tests with
diagnostic purposes, as was previously discussed, to improve the accuracy and reliability
of diagnostic results, which will be reflected in the enhancement of oncology management
strategies and in the amelioration of cancer patients’ quality of life. Finally, lncRNAs are
part of the RNA world that have potential use as molecular biomarkers, which could be
used in the near future as part of routine testing in breast cancer management.
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43. Işın, M.; Uysaler, E.; Özgür, E.; Köseoğlu, H.; Şanlı, Ö.; Yücel, Ö.B.; Gezer, U.; Dalay, N. Exosomal LncRNA-P21 Levels May Help
to Distinguish Prostate Cancer from Benign Disease. Front. Genet. 2015, 6, 168. [CrossRef] [PubMed]

44. Lemos, A.E.G.; Matos, A.D.R.; Ferreira, L.B.; Gimba, E.R.P. The Long Non-Coding RNA PCA3: An Update of Its Functions and
Clinical Applications as a Biomarker in Prostate Cancer. Oncotarget 2019, 10, 6589–6603. [CrossRef] [PubMed]

https://doi.org/10.1016/j.jmoldx.2021.07.014
https://doi.org/10.1111/cpr.12855
https://doi.org/10.1007/s11864-019-0682-x
https://doi.org/10.1158/1055-9965.EPI-14-1227
https://www.ncbi.nlm.nih.gov/pubmed/25837819
https://doi.org/10.26355/eurrev_202010_23413
https://www.ncbi.nlm.nih.gov/pubmed/33155214
https://doi.org/10.1038/s41598-020-69905-z
https://www.ncbi.nlm.nih.gov/pubmed/32753692
https://doi.org/10.1093/jnci/djn326
https://www.ncbi.nlm.nih.gov/pubmed/18840817
https://doi.org/10.1191/0962280204sm369ra
https://doi.org/10.1534/genetics.110.114983
https://doi.org/10.1038/s41598-020-76881-x
https://doi.org/10.1038/s41576-019-0150-2
https://doi.org/10.1214/21-STS828
https://doi.org/10.4103/aca.ACA_157_18
https://doi.org/10.1093/bib/bbr004
https://doi.org/10.22114/ajem.v0i0.158
https://doi.org/10.1177/0272989X9701700111
https://www.ncbi.nlm.nih.gov/pubmed/8994156
https://doi.org/10.1097/ALN.0b013e3181d47604
https://doi.org/10.1016/j.cancergen.2017.11.005
https://doi.org/10.1093/nar/gkx247
https://doi.org/10.1158/0008-5472.CAN-15-0273
https://www.ncbi.nlm.nih.gov/pubmed/26208906
https://doi.org/10.1016/j.omtn.2021.08.005
https://www.ncbi.nlm.nih.gov/pubmed/34589282
https://doi.org/10.3390/ncrna3010009
https://www.ncbi.nlm.nih.gov/pubmed/29657281
https://doi.org/10.1093/nar/gkz621
https://doi.org/10.1016/j.eururo.2015.12.003
https://doi.org/10.3389/fgene.2015.00168
https://www.ncbi.nlm.nih.gov/pubmed/25999983
https://doi.org/10.18632/oncotarget.27284
https://www.ncbi.nlm.nih.gov/pubmed/31762940


Int. J. Mol. Sci. 2023, 24, 7426 14 of 20

45. Prensner, J.R.; Iyer, M.K.; Sahu, A.; Asangani, I.A.; Cao, Q.; Patel, L.; Vergara, I.A.; Davicioni, E.; Erho, N.; Ghadessi, M.; et al. The
Long Noncoding RNA SChLAP1 Promotes Aggressive Prostate Cancer and Antagonizes the SWI/SNF Complex. Nat. Genet.
2013, 45, 1392–1398. [CrossRef]

46. Mehra, R.; Shi, Y.; Udager, A.M.; Prensner, J.R.; Sahu, A.; Iyer, M.K.; Siddiqui, J.; Cao, X.; Wei, J.; Jiang, H.; et al. A Novel RNA in
Situ Hybridization Assay for the Long Noncoding RNA SChLAP1 Predicts Poor Clinical Outcome after Radical Prostatectomy in
Clinically Localized Prostate Cancer. Neoplasia 2014, 16, 1121–1127. [CrossRef] [PubMed]

47. Luo, J.; Wang, K.; Yeh, S.; Sun, Y.; Liang, L.; Xiao, Y.; Xu, W.; Niu, Y.; Cheng, L.; Maity, S.N.; et al. LncRNA-P21 Alters
the Antiandrogen Enzalutamide-Induced Prostate Cancer Neuroendocrine Differentiation via Modulating the EZH2/STAT3
Signaling. Nat. Commun. 2019, 10, 2571. [CrossRef] [PubMed]

48. Amirinejad, R.; Rezaei, M.; Shirvani-Farsani, Z. An Update on Long Intergenic Noncoding RNA P21: A Regulatory Molecule
with Various Significant Functions in Cancer. Cell Biosci. 2020, 10, 82. [CrossRef]

49. Bussemakers, M.J.; van Bokhoven, A.; Verhaegh, G.W.; Smit, F.P.; Karthaus, H.F.; Schalken, J.A.; Debruyne, F.M.; Ru, N.; Isaacs,
W.B. DD3: A New Prostate-Specific Gene, Highly Overexpressed in Prostate Cancer. Cancer Res. 1999, 59, 5975–5979.

50. Xue, W.-J.; Ying, X.-L.; Jiang, J.-H.; Xu, Y.-H. Prostate Cancer Antigen 3 as a Biomarker in the Urine for Prostate Cancer Diagnosis:
A Meta-Analysis. J. Cancer Res. Ther. 2014, 10 (Suppl. S3), C218–C221. [CrossRef]

51. Jiang, G.; Su, Z.; Liang, X.; Huang, Y.; Lan, Z.; Jiang, X. Long Non-Coding RNAs in Prostate Tumorigenesis and Therapy (Review).
Mol. Clin. Oncol. 2020, 13, 76. [CrossRef]

52. Reid, J.; Gen-Probe, Incorporated. Clinical Evaluation of the PROGENSA(R) PCA3 Assay in Men with a Previous Negative
Biopsy Result; Clinical Trial ID: NCT01024959. 2012. Available online: https://beta.clinicaltrials.gov/study/NCT01024959?
distance=50&term=NCT01024959&rank=1 (accessed on 22 February 2023).

53. Durand, X.; Moutereau, S.; Xylinas, E.; de la Taille, A. ProgensaTM PCA3 Test for Prostate Cancer. Expert Rev. Mol. Diagn. 2011, 11,
137–144. [CrossRef]

54. Chaput, G.; Sumar, N. Endocrine Therapies for Breast and Prostate Cancers. Can. Fam. Physician 2022, 68, 271–276. [CrossRef]
[PubMed]

55. Hou, P.; Zhao, Y.; Li, Z.; Yao, R.; Ma, M.; Gao, Y.; Zhao, L.; Zhang, Y.; Huang, B.; Lu, J. LincRNA-ROR Induces Epithelial-
to-Mesenchymal Transition and Contributes to Breast Cancer Tumorigenesis and Metastasis. Cell Death Dis. 2014, 5, e1287.
[CrossRef] [PubMed]

56. Udager, A.M.; Tomlins, S.A. Molecular Biomarkers in the Clinical Management of Prostate Cancer. Cold Spring Harb. Perspect.
Med. 2018, 8, a030601. [CrossRef]

57. Alarcón-Zendejas, A.P.; Scavuzzo, A.; Jiménez-Ríos, M.A.; Álvarez-Gómez, R.M.; Montiel-Manríquez, R.; Castro-Hernández, C.;
Jiménez-Dávila, M.A.; Pérez-Montiel, D.; González-Barrios, R.; Jiménez-Trejo, F.; et al. The Promising Role of New Molecular
Biomarkers in Prostate Cancer: From Coding and Non-Coding Genes to Artificial Intelligence Approaches. Prostate Cancer
Prostatic Dis. 2022, 25, 431–443. [CrossRef] [PubMed]

58. Ramos, C.G.; Valdevenito, R.; Vergara, I.; Anabalon, P.; Sanchez, C.; Fulla, J. PCA3 Sensitivity and Specificity for Prostate Cancer
Detection in Patients with Abnormal PSA and/or Suspicious Digital Rectal Examination. First Latin American Experience. Urol.
Oncol. 2013, 31, 1522–1526. [CrossRef]

59. van Gils, M.P.M.Q.; Hessels, D.; van Hooij, O.; Jannink, S.A.; Peelen, W.P.; Hanssen, S.L.J.; Witjes, J.A.; Cornel, E.B.; Karthaus,
H.F.M.; Smits, G.A.H.J.; et al. The Time-Resolved Fluorescence-Based PCA3 Test on Urinary Sediments after Digital Rectal
Examination; a Dutch Multicenter Validation of the Diagnostic Performance. Clin. Cancer Res. 2007, 13, 939–943. [CrossRef]

60. Tosoian, J.J.; Trock, B.J.; Morgan, T.M.; Salami, S.S.; Tomlins, S.A.; Spratt, D.E.; Siddiqui, J.; Kunju, L.P.; Botbyl, R.; Chopra, Z.;
et al. Use of the MyProstateScore Test to Rule Out Clinically Significant Cancer: Validation of a Straightforward Clinical Testing
Approach. J. Urol. 2021, 205, 732–739. [CrossRef]

61. Guo, W.; Wang, Q.; Zhan, Y.; Chen, X.; Yu, Q.; Zhang, J.; Wang, Y.; Xu, X.; Zhu, L. Transcriptome Sequencing Uncovers a
Three–Long Noncoding RNA Signature in Predicting Breast Cancer Survival. Sci. Rep. 2016, 6, 27931. [CrossRef]

62. Yoosuf, N.; Navarro, J.F.; Salmén, F.; Ståhl, P.L.; Daub, C.O. Identification and Transfer of Spatial Transcriptomics Signatures for
Cancer Diagnosis. Breast Cancer Res. 2020, 22, 6. [CrossRef]

63. Fan, C.-N.; Ma, L.; Liu, N. Systematic Analysis of LncRNA-MiRNA-MRNA Competing Endogenous RNA Network Identifies
Four-LncRNA Signature as a Prognostic Biomarker for Breast Cancer. J. Transl. Med. 2018, 16, 264. [CrossRef]

64. Berger, A.C.; Korkut, A.; Kanchi, R.S.; Hegde, A.M.; Lenoir, W.; Liu, W.; Liu, Y.; Fan, H.; Shen, H.; Ravikumar, V.; et al. A
Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. Cancer Cell 2018, 33, 690–705.e9. [CrossRef]

65. De Palma, F.D.E.; Del Monaco, V.; Pol, J.G.; Kremer, M.; D’Argenio, V.; Stoll, G.; Montanaro, D.; Uszczyńska-Ratajczak, B.; Klein,
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