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Abstract: Ligusticopsis litangensis is identified and described as a cryptic species from Sichuan Province,
China. Although the distribution of this cryptic species overlaps with that of Ligusticopsis capillacea and
Ligusticopsis dielsiana, the morphological boundaries between them are explicit and have obviously
distinguishable characters. The main distinguishing features of the cryptic species are as follows:
long conical multi-branched roots, very short pedicels in compound umbels, unequal rays, oblong-
globose fruits, 1–2 vittae per furrow and 3–4 vittae on the commissure. The above-mentioned features
differ somewhat from other species within the genus Ligusticopsis, but generally coincide with the
morphological boundaries defined for the genus Ligusticopsis. To determine the taxonomic position
of L. litangensis, we sequenced and assembled the plastomes of L. litangensis and compared them with
the plastomes of 11 other species of the genus Ligusticopsis. Notably, both phylogenetic analyses based
on ITS sequences and the complete chloroplast genome robustly supported that three accessions of
L. litangensis are monophyletic clade and then nested in Ligusticopsis genus. Moreover, the plastid
genomes of 12 Ligusticopsis species, including the new species, were highly conserved in terms of
gene order, gene content, codon bias, IR boundaries and SSR content. Overall, the integration of
morphological, comparative genomic and phylogenetic evidence indicates that Ligusticopsis litangensis
actually represents a new species.

Keywords: Ligusticopsis; cryptic species; morphology; plastome; phylogenetic analysis

1. Introduction

Ligusticopsis Leute is a genus of Apioideae within the Apiacae family, which was
established by Leute in 1969 with the type species Ligusticopsis rechingeriana Leute [1],
containing 14 species. Subsequently, Pimenov recognized 18 species of Ligusticopsis in
China based on morphological observation and specimen examination [2]. However,
this genus has not been commonly accepted and its independent status has been contro-
versial due to the blurred morphological delimitation with the genus Ligusticum. For
instance, some scholars have supported the merging of Ligusticopsis into Ligusticum
solely by morphological researches of pollen, fruit and leaf epidermis [3,4]. Neverthe-
less, Li et al. [5] recently conducted a comprehensive research of the genus Ligusticopsis
and clearly demonstrated that Ligusticopsis is a separate genus based on phylogenetic
reconstruction, plastid comparative genomic studies and morphological approaches.
They identified nine “true Ligusticopsis species” and redefined the morphological de-
limitations of Ligusticopsis, including fibrous remnant sheaths at the stem base, nearly
equal umbrella length, pinnate bracts, bracteoles longer than the umbrella length and
rarely undivided, well-developed calyx teeth, strongly compressed back of mericarps,
dorsal and intermediate ribs filamentous to keel convex, winged lateral ribs and multiple
long vittae in each furrow and commissure [5]. Likewise, the results of the plastid
phylogenomics of the genus Ligusticum by Ren et al. [6] further support the conclusion
that the genus Ligusticopsis has an independent phylogenetic status. Additionally, the
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relevant molecular phylogenetic research indicates that Ligusticopsis is positioned in the
Selineae of the Apioidae [7]. In conclusion, the above-mentioned studies associated with
the genus Ligusticopsis provide a powerful foundation for research on this new species.

The Hengduan Mountain region (HDM) in southwest China is one of the 34 biodi-
versity hotspots on Earth and has the most flora diverse in the North temperate zone [8].
Litang County is located in the middle of Hengduan Mountain Range, with an average
elevation of more than 4000 m. The region has experienced complex geographical and
climatic changes, leading to diverse species and unique floras [9].

During a botanical expedition related to the Apiaceae species in Litang County in
2022, a distinctive Apiaceae species with short peduncles, unequal rays and pinnately
divided bracteoles was collected (Figure 1). We discovered a species that is incongruent
with other known analogous species and investigated this taxon in detail in terms
of morphology and molecular phylogeny. Consulting a large number of specimens
and making detailed field investigations, we found this species is close to Ligusticopsis
species but is distinctly different from all previously published Ligusticopsis members,
which was also supported by molecular phylogenetic analyses. Hence, integrating the
morphological, genomic and phylogenetic evidence, we found that the species actually
represents a new species.
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2. Results
2.1. Morphological Analysis

Several specimens of L. litangensis were collected from Litang County, Sichuan Province,
growing in the alpine meadows at an elevation of 4100–4300 m. We performed detailed
macroscopic and micromorphological anatomical characterization of this unknown species
in the laboratory. Hence, we compared and analyzed the morphological characteristics of L.
litangensis and related species (L. capillacea, L. hispida, L. rechingeriana) (Table S1), such as the
stem base covered with fibrous remnant sheaths, the clearly developed calyx teeth and the
fruit oblong-ovoid dorsoventrally compressed with the enlarged and winglike lateral ribs
of L. litangensis, and found that they are shared with other species of Ligusticopsis. However,
the significant characteristics of this new species (extremely conspicuous single umbels,
unequal length umbrellas and a small number of commissural vittae) obviously differ from
those of the other described Ligusticopsis members. During our field investigations, when
we first spotted this unknown species, at first glance some of its external morphological
features resembled those of Cortia depressa. However, after careful indoor morphological
anatomical examination, we identified numerous very conspicuous and distinguishable
morphological features between these two species, particularly mirrored in the mericarp
structure, which is an essential discriminating feature in Apiaceae (Figure 2). For example,
L. litangensis and C. depressa were dominated by single umbels, but L. litangensis was distin-
guished from C. depressa by the fact that the bracteoles were longer than the umbellules and
the dorsal and intermediate ribs were keeled. Consequently, we are able to conclude that the
morphological characteristics of L. litangensis coincide with the morphological boundaries of
the genus Ligusticopsis, such as the root neck densely covered with a fibrous withered leaf
sheaths, pinnate bracts, calyx teeth developed, strongly compressed mericarps, keeled dorsal
and middle ribs, winged lateral ribs, 1–2 vittae per furrow and 3–4 vittae on the commissure.

2.2. Comparative Plastome Analyses

The total length of 12 plastomes of newly sequenced L. litangensis and related
groups downloaded online ranged from 147,482 bp to 148,633 bp (Table 1). Each of the
twelve plastomes exhibited the typical quadripartite structure consisting of a pair of IR
regions (19,127–19,529 bp) separated by LSC regions (91,559–92,305 bp) and SSC regions
(17,503–17,669 bp). There was little difference in the total GC content of the twelve
plastomes and the GC content of the LSC, SSC and IR regions. However, the IR region
had a higher GC content (43.6–44.1%) than the other two regions (LSC, 35.9–36.0%; SSC,
30.9–31.0%). The typical quadripartite structure of the L. litangensis genome is shown in
Figure 3. Under the unified parameter setting and annotation standard, 129 genes were
annotated in the whole plastome of L. litangensis, which included 85 protein-coding
genes (PCGs), 36 transfer RNA genes (tRNAs), 8 ribosomal RNA genes (Ribosomal
RNA genes), rRNAs) and 2 pseudogenes.

Table 1. Comparison of genome content of 12 Ligusticopsis species plastomes. Pseudogenes not included.

Species LSC Length
(bp)

SSC Length
(bp)

IR Length
(bp)

Total Genome Number of Genes

Length (bp) GC (%) Total CDS rRNA tRNA

L. litangensis 91,559 17,669 19,127 147,482 37.4 129 85 8 36
L. dielsiana 91,666 17,582 19,415 148,078 37.4 129 85 8 36
L. capillacea 91,907 17,503 19,199 147,808 37.5 129 85 8 36

L. scapiformis 92,214 17,581 19,156 148,107 37.5 129 85 8 36
L. rechingerana 91,813 17,654 19,529 148,525 37.3 129 85 8 36
L. brachyloba 92,265 17,588 19,390 148,633 37.4 129 85 8 36

L. hispida 91,846 17,627 19,162 147,797 37.4 129 85 8 36
L. integrifolia 92,305 17,575 19,158 148,196 37.5 129 85 8 36
L. involucrata 91,782 17,560 19,205 147,752 37.4 129 85 8 36
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Table 1. Cont.

Species LSC Length
(bp)

SSC Length
(bp)

IR Length
(bp)

Total Genome Number of Genes

Length (bp) GC (%) Total CDS rRNA tRNA

L. modesta 92,247 17,568 19,159 148,133 37.5 129 85 8 36
L. wallichiana 92,281 17,567 19,373 148,594 37.4 129 85 8 36
L. oliveriana 92,262 17,558 19,279 148,378 37.5 129 85 8 36
L. litangensis 91,559 17,669 19,127 147,482 37.4 129 85 8 36
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Figure 2. Morphology of Ligusticopsis litangensis (A) root; (B) stem (base); (C) flower; (D) leaf;
(E) inflorescence; (F) infructescence; (G) bracteoles; (H–J) oblong-globose fruit; (K–M) mericarp
transverse section.
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Figure 3. Gene map of the Ligusticopsis litangensis chloroplast genome.

The IR boundary map was generated by comparing the plastid genomes of 12 Ligus-
ticopsis species, including the new species (Figure 4). The graphic visualizes the gene
distribution in the sequence boundary region as well as the expansion and contraction
of the boundary, revealing that the plastome structure and sequence boundary gene dis-
tribution are conserved and similar among these 12 Ligusticopsis species. Specifically, we
detected comparable structures in the JLB and JLA lines of the 12 plastid genomes. For
instance, the trnH gene of all 12 plastomes are situated on the right side of the JLA line, and
the distance from the trnH gene to the JLA line is consistent for the new species and the
other 10 plastids all at 6 bp, except for L. dielsiana (13 bp). Furthermore, the base number
extending from the LSC to the IRb region of the ycf2 gene varied particularly insignificantly
in the 12 plastomes, all ranging from 576–585 bp. Meanwhile, the base distance of the trnL
gene to the JLA line varied only within a small range of divergence (1809–2177 bp). It was
evident that the ndhF gene of the plastomes of the new species and 10 other species, except
L. capillacea, was completely encompassed in the SSC region and the distance of the ndhF
gene from the JSB line was minimal (6–86 bp).
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the LSC and IRb. JSA: the junction of SSC and IRa. JSB: the junction of SSC and IRb.

The mauve visualization graphs indicated that the gene arrangement in the 12 plas-
tomes was highly conserved and no significant gene rearrangements or losses were
detected (Figure 5). Using the mVISTA program, we analyzed the sequence diversity
of plastomes of 12 Ligusticopsis species. The results demonstrated that these 12 taxa
were highly conserved and the coding regions tended to be more conserved than the
non-coding regions. (Figure 6). Moreover, the partial gene regions (trnH-psbA, ycf1, ycf2,
rpoC2, rpl32, ndhF) exhibited a highly similar degree of differentiation. The above com-
parative genomic analysis showed that the plastome structure of L. litangensis was similar
to that of other Ligusticopsis species, indicating the plastome structure of Ligusticopsis
species was highly conserved.

2.3. Codon Usage Analyses

We extracted and linked 53 protein-coding genes from each species to calculate the
codon usage frequency of 12 plastomes. The RSCU value is a measure of synonymous
codons usage bias in a gene coding sequence, if the RSCU value of a codon is greater
than 1.0, it is preferable to use the codon and vice versa. The heatmap shows the codon
usage bias is similar and conserved among the 12 species of the genus Ligusticopsis,
including the new species. These protein sequences encode 19,909–22,622 codons. Of
these, the codon encoding leucine (Leu) has the most protein sequences, while the
codon encoding cysteine (Cys) has the least protein sequences (Table S2). In addition,
the heatmap shows that the relative synonymous codon usage (RSCU) values of all
codons are between 0.34 and 2.00, and about 30 codons have RSCU values greater
than 1 (Figure 7). The UAA codon had the highest value in the L. brachyloba plastome
(RSCU = 2.0), while the AGC codon had the lowest value in L. capillacea, L. involucrata
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and L. dielsiana plastomes (RSCU = 0.34). Furthermore, all the amino acids in these
12 plastid sequences except methionine (Met) and tryptophan (Trp) were encoded by
two or more codons, indicating a codon bias. Among the three termination codons
(TAA, TAG, TGA), the plastomes of these 12 species had the highest RSCU values for
the stop codon TAA, all of which ranged from 1.70 to 1.75.
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2.4. Simple Sequence Repeats Analyses (SSRs)

We discovered the total number of SSRs varied from 68 to 84 in the 12 plastomes
(Table S3). These SSR sequences were divided into six types, and the most common
sequence was the single nucleotide repeat (53.84%). It was followed by the dinucleotide
repeat (26.32%), tetraconucleotide repeat (12.72%), trinucleotide repeat (3.18%), pen-
taucleotide repeat (2.74%) and trinucleotide repeat (1.21%) (Figure 8B). Only five types
of SSR (lack of hexa-) were detected in the whole genome of plastomes of L. brachyloba,
L. scapiformis, L. involucrata and L. wallichiana and six types of SSR could be detected in
other species of Ligusticopsis (Figure 8A).
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Figure 6. mVISTA visualization of alignment for 12 plastomes. Ligusticopsis rechingeriana is the
reference. Blue and pink represent coding and non-coding regions, respectively. The Latin name in
red represents the new species.
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2.5. Phylogenetic Analysis

We used 41 ITS sequences and 40 plastomes sequences of Apioideae for the phyloge-
netic analysis (Table S4). The tree topologies obtained from the ML and BI analyses based
on the ITS data and plastid genome data are presented in Figure 9. It is obvious that the
topologies obtained from both the ITS and plastid sequences clearly demonstrate that the
12 Ligusticopsis species are clustered into a stable and robust monophyletic clade located
within the Selineae (ML/BS ≥ 95, BI/PP ≥ 1.00). Additionally, although the topologies
between ITS sequence and plastid genome sequence were slightly different, both robustly
supported that three individual sequences of L. litangensis are monophyletic clade and then
nested in the Ligusticopsis genus (ML/BS ≥ 95, BI/PP ≥ 0.95).
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Figure 9. Phylogenetic relationships of Ligusticopsis and its related genus inferred from (A) ITS and
(B) CDS based on ML and BI methods. ML BS (bootstrap) and BI PP (posterior probability) values
are shown above the branches. The short line denotes values <50%. * = maximum support in both
analyses. Red markers represent new species, and yellow markers represent branch of the genus
Ligusticopsis.

3. Discussion
3.1. Plastome Characteristic

We report the newly sequenced and assembled complete plastomes of L. litangensis
and compare them with 11 other species of the genus Ligusticopsis. The results revealed
that all 12 plastomes exhibited the typical quadripartite structure containing a large single-
copy region (LSC), a small single-copy region (SSC) and two inverted repeat sequence
regions (IR) separating the SSC from the LSC [10–13]. Additionally, all plastomes were
similar and conserved in genome size, gene order and GC content. These circumstances
are more common in other genera of the family Apiaceae [14–17], which may be related to
stable plastid function. Meanwhile, we also evaluated the SSRs of the plastid genomes of
12 Ligusticopsis species. SSRs are usually small tandem mononucleotide repeats, showing
differences in the number of intraspecial repeats [18,19]. These sites are often used to
develop molecular markers due to their high degree of variability [20]. For example, a
hexanucleotide simple sequence repeat (ATATAC) was found in plastomes of L. rechingerana,
but not in other plastomes, which can be used as a specific molecular marker to identify L.
rechingerana. A total of (68–84) SSRs were obtained in this study. Most of these SSRs were
mononucleotides and dinucleotides, which were consistent in number with the results of
other Apiaceae [21]. The fewest SSRs were found in the plastome of L. hispida, which may
be due to the small number of single nucleotides and the short LSC region. The research on
SSRs can provide evidence for the population genetics of this genus. Consequently, these
outcomes indicate that the plastid characteristics of L. litangensis are almost identical to
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other species of the genus Ligusticopsis and generally endorse L. litangensis as a new species
of the genus Ligusticopsis.

3.2. Comparison of Ligusticopsis Plastomes

IR contraction and expansion are the most common causes of plastome size variation,
which are very common in angiosperm plastomes [22–25]. Here, we compare the IR/SC
boundaries and find that IRa/SSC/IRb/LSC overlap and the surrounding genes are
identical. Hence, it can be clearly concluded that the plastid structure and sequence
boundary gene distribution are conserved and similar among these 12 Ligusticopsis
species. In terms of the degree of sequence divergence, the plastids of the new species
and other species of the genus Ligusticopsis showed a consistent degree of sequence
divergence, and the IR region is more conserved, with the most substitutions occurring
in the SSC and LSC regions.

Codon bias is related to carrying genetic information and proteins with biochemical
functions. The analysis of codon bias in different species may contribute to the exploration
of the phylogenetic relationships between them [22–24]. Relative synonymous codon usage
(RSCU) is a method to measure the usage bias of a synonymous codon in coding sequences.
When the RSCU value is less than 1, it means no preference, while when the RSCU value is
greater than 1 means that the codon is preferred. Figure 7 shows that 30 codons have RSCU
values greater than 1.00, and the codons of AUG and UGG are unbiased (RSCU = 1.00).
Similar relative synonymous codon usage (RSCU) values indicated that the plastomes
of L. litangensis and other species of the genus Ligusticopsis have a similar codon bias,
further emphasizing the validity of the status of L. litangensis as a new species of the genus
Ligusticopsis. Certainly, these findings on the codon bias assist us in obtaining a deeper
insight into the evolutionary process and gene expression of Ligusticopsis.

In conclusion, the above comparative genomic analysis showed that the plastome
structure of L. litangensis was analogous to that of other Ligusticopsis species, further
supporting that L. litangensis belongs to the genus Ligusticopsis.

3.3. Phylogenetic Analysis

Plastome is one of the three genetic systems of plants. Although the gene content and
gene order of the plastid genome are usually highly conserved, it exhibits a high degree
of variable characteristics. Therefore, an increasing number of researchers are utilizing
plastomes for phylogenetic and comparative genomic studies [26–32], which help resolve
many complex phylogenetic taxonomic problems.

In our research, a robust phylogenetic framework was constructed based on ITS and
the plastid data to decipher the phylogenetic position of L. litangensis. The tree topologies
obtained from ML and BI analyses based on the ITS data and plastome data firmly supported
that three individuals of L. litangensis are monophyletic clade and then nested in Ligusticopsis
genus (ML/BS ≥ 95, BI/PP ≥ 0.95). Although L. litangensis was related to L. capillacea with
weak support in the ITS tree, L. litangensis can be discriminated from L. capillacea by its very
short pedicels in the compound umbels (versus the long pedicels in compound umbels),
oblong-globose mericarp (versus ovate) and a style that is significantly longer than petals
(versus a style that is significantly shorter than petals). Similarly, although L. litangensis was
related to L. dielsiana in the cpDNA tree, L. litangensis can be distinguished from L. dielsiana by
its height of 5–10 cm (versus 20–50 cm), very short pedicels in compound umbels (versus long
pedicels in compound umbels), subulate calyx teeth (versus linear-lanceolate), 1–2 vallecular
vittae (versus 1–3) and 3–4 commissure vittae (versus 4–6).

Consequently, there is no doubt that L. litangensis is a new member of Ligusticopsis in
terms of the morphological characteristics and phylogenetic evidence. Furthermore, our
results support prior research identifying Ligusticopsis as an independent natural genus [6]
and provide new insights for subsequent studies on the phylogenetic relationships and
evolutionary processes of Ligusticopsis.
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3.4. Taxonomic Treatment

Ligusticopsis litangensis R.M. Tian and S.D. Zhou sp. nov. (Figures 1 and 2).
Diagnosis: Ligusticopsis litangensis can be identified by the following morphological

features such as fibrous remnant sheaths covering the base of the stem, obviously developed
calyx teeth, oblong-ovoid fruit dorsoventrally compressed, enlarged and winglike lateral
ribs, extremely conspicuous single umbels, unequal length umbrellas and a small number
of commissural vittae.

Type: CHINA. Sichuan: Litang County, in alpine grassland; 30◦12′46.31′’N, 99◦54′38.6′’E;
elevation 4100 m a.s.l., 29 September 2022, TRM 2022092901 (holotype: SZ) (Figure S1).

Etymology: The species is named after Litang County, Sichuan Province, China, where
it is the type locality.

Description: Perennial low stem grass, plants 5–15 cm. Roots long conical, 5–8 cm long,
multi-branched, stem base densely covered with fibrous remnant sheaths. Leaves basal,
petiole base expanded into sheaths; leaves’ blade outline oblong-lanceolate, 5–8 × 1–3 cm,
2-pinnate; pinnae 4–7 pairs, sessile, 2–3 × 0.6–1 cm, ultimate segments lanceolate. Very
short pedicels in compound umbels; rays 10–15, unequal, glabrous, up to about 15 cm
long. Bracts 2–4, 1-pinnate; bracteoles 12–15, 1-pinnate, white pubescent. Developed calyx
teeth, linear to lanceolate. Petals white, obovate, apex reflexed; stylopodium conical, style
reflexed. Fruit oblong-ovoid, dorsoventral compressed, dorsal and intermediate ribs keeled,
winged lateral ribs; 1–2 vittae in each furrow, 4 on commissure; plane seed face.

Phenology: the flowering and fruiting period is from August to October.
Distribution, habitat: Ligusticopsis litangensis is distributed in Litang County, western

Sichuan, China, and grows in the alpine meadow at an altitude of 4000–4500 m.
Key to the Ligusticopsis species:

1
Plants densely villous or strigose 2
Plants nearly smooth 4

2
Rays of umbel almost draw from the base, extremely elongated L. hispida
Plants compound umbels with long pedicels, umbrella not elongated 3

3
Bracts well developed, 2-pinnately divided L. involucratum
Bracts caducous, 1-pinnately divided L. capillaceum

4
Umbels predominantly simple, rays drawn from base very unequal L. litangensis
Compound umbels, rays subequal 5

5
Basal leaves and lower stem leaves are 1-pinnately compound L. integrifolia
Basal leaves and lower stem leaves are 2–4-pinnately compound 6

6
Calyx teeth inconspicuous 7
Calyx teeth prominent 8

7
Bracteoles margin not membranous L. modesta
Bracteoles with white membranous margin L. oliverianum

8
Stems unbranched, scapiform, cauline leaves usually absent L. scapiforme
Stems simple or branched, cauline leaves present 9

9
Calyx teeth linear 10
Calyx teeth subulate 11

10
Bracteoles with broad white membranous margins L. wallichiana
Bracteoles without white membranous margins L. brachyloba

11
Leaf blade 1-2-pinnate, ultimate segments ovate to oblong-ovate L. rechingeriana
Leaf blade 3-4-pinnate, ultimate segments linear L. dielsiana

4. Materials and Methods
4.1. Plant Sample, Morphological Observation and Anatomy

The samples were collected in Litang County, Sichuan Province, China. The fresh green
leaves were dried with silica gel and the mature fruits and inflorescences were preserved
by the formaldehyde-acetic acid-ethanol method. The voucher specimens were stored in
the Herbarium of Sichuan University (SZ) under the deposition number TRM2022092901.
Based on the conservation of this new species and subsequent research, we collected
10 individuals with mature fruits and 3 individuals with inflorescences in the field and
brought them back to the laboratory for relevant morphological observation and anatomical



Int. J. Mol. Sci. 2023, 24, 7419 13 of 17

research and preservation as type specimens. Regarding the important fruit anatomy study,
we selected three fruits in each individual plant for the investigation, in order to ensure
the comprehensiveness and credibility of the results. In addition, all type specimens of
closely related species on the website were consulted and carefully compared with the
new species.

The morphological identification characteristics of the genus Ligusticopsis, which have
a widely recognized practical value, have been described more clearly by Li et al. [5].
Therefore, we define the morphology of the new species and closely related species with
reference to the criteria proposed by Li et al. [5] in combination with the type of specimens
and the flora of China. The morphological features were observed with a Nikon SMZ25
stereoscopic microscope (Nikon, Tokyo, Japan) (Figure 2). The morphology of the roots,
stems, leaves, inflorescences and bracts of this new species was observed directly under
the stereomicroscope by photographing and recording the relevant features. The mature
mericarps collected in the field were preserved in FAA fixative and used for subsequent
experiments in the laboratory. The mericarps with well-preserved structures were selected,
blotted with absorbent paper to absorb the excess FAA fluid, dried naturally and then
photographed under the stereomicroscope to preserve their dorsal views. Our preliminary
observations revealed that the furrowed vittae and commissure vittae of all mericarps were
long. In the formal operation, vertical horizontal slices of the central part of the mericarps
were made with a double-layer blade, and the cross-sectional slices were placed under a
stereomicroscope for observation and photography. Ten mericarps with well-preserved
structures were randomly selected and the number of furrowed vittae and commissural
vittae was directly counted. All these features were compared with the taxon of genus
Ligusticopsis (Table S1).

4.2. DNA Extraction, Sequencing, Assembly and Annotation

Total genomic DNA was extracted from silica gel dried leaves with a modified CTAB
method [33]. The ITS sequence was amplified using the forward primers ITS4 (5’ -TCC TCC
GCT TAT TGA TAT GC-3’) and reverse primers ITS5 (5’ -GGA AGT AAG TCG TAA ACA
GG-3’) [34]. We operated a 30 µL amplification system, including 15 µL 2 × Taq MasterMix
(CWBIO, Beijing, China), 10 µL ddH2O, 1.5 µL forward primer, 1.5 µL reverse primer, and
2 µL total DNA. The PCR reflected parameters of amplification were initial denaturation
at 94 ◦C for 3 min, followed by denaturation at 94 ◦C for 45 s, annealing at 54 ◦C for 60 s,
extension at 72 ◦C for 90 s, 30 cycles and finally extension at 72 ◦C for 10 min. All PCR
products were separated on 1.5% (w/v) agarose TAE gels, and qualified PCR products were
sent to Sangon Bioengineering Company (Sangon, Shanghai, China) for sequencing. In
addition, 50 µL of extracted total DNA solution was sent to Novogene (Beijing, China)
for total genomic DNA sequencing and library construction, with a sequencing depth
of 5 G. The sequencing platform was Illumina Novaseq 6000 (Illumina, San Diego, CA,
USA), and Nova-PE150 sequencing strategy was used for double-ended sequencing. The
obtained clean data were assembled using NOVOPlasty v.2.7.1 [35] for plastids whole
genome sequence. Seed selection of L.involucratum rbcL gene (GenBank accession No:
NC049054). GENEIOUS R11 [36] was used to annotate the whole plastid genome, the
seed sequence was used as the reference sequence and manual correction was performed.
The PhyloSuite program was used to extract protein-coding sequences (CDS) from plastid
genomes [37]. A physical map of the plastid genome of a new species was generated using
OGDraw v1.3.1 [38].

Meanwhile, the newly sequenced ITS sequences and plastid genome data were sub-
mitted into the NCBI and the accession numbers were presented in Table S4.

4.3. Phylogenetic Analyses

To determine the phylogenetic position of L.litangensis, 41 ITS sequences and 40 protein-
coding sequences (CDS) were utilized to reconstruct the phylogenetic tree (Table S4).
Among them, Bupleurum krylovianum Schischk. ex Kryl. and Bupleurum chinense DC. were
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chosen as the outgroup according to previous studies [39]. Two datasets were aligned using
MAFFT v7.221 [40] and then manually adjusted in MEGA7.0 [41] respectively. Maximum
likelihood analysis and Bayesian inference were performed to build the tree. ML analysis
was performed in RAxML v8.2.8 [42] software, and phylogenetic trees were constructed
using the GTR + G + I model and 1000 bootstrap tests (BS) replicates. For the BI analyses,
ModelFinder [43] was used to test the optimal models (GTR + G) for them, respectively.
Bayesian inference (BI) was carried out in the MrBayes 3.2.7 [44] software, with running
1 × 107 generations of Markov Chain Monte Carlo (MCMC), sampling every 1000 genera-
tions and discarding the first 20% of the tree as burn-in. Results of phylogenetic analyses
were visualized by the online tool iTOL [45].

4.4. Comparative Plastome Analyses

With the development of the second-generation sequencing technology, an increasing
number of researchers are using the plastid genome for the phylogenetic and genomic
comparative studies [46–51], helping to address some phylogenetic problems that cannot
be resolved solely by molecular fragments.

The whole plastid genomes of twelve annotated Ligusticopsis species were uploaded
onto the online program IRscope [52] for comparison. The boundary images of the LSC,
SSC and IR regions of the whole plastid genome were mapped online, and then the final
view of IR boundary was obtained by manual revision.

To determine whether specific patterns of structural variation existed in the 12 plas-
tomes, a comparative visual analysis of gene arrangement was performed using the Mauve
comparison program [53], which was set by default in Geneious v9.0.2 [36].

The online program mVISTA [54] was used to analyze the sequence diversity of the
plastid genome sequences of these twelve Ligusticopsis species. The parameters were set
according to the Shuffle-LAGAN model, and the model species L. rechingerana was used as
the reference.

4.5. Codon Usage and SSRs Analyses

The coding protein sequence (CDS) was screened from 12 plastomes of Ligusticopsis
using Geneious v9.0.2 [36]. After removing the CDS with bases less than 300 bp and
duplicates, a total of 53 CDS were selected. Then, the 53 CDS were connected end to end
and analyzed for codon bias for each species of Ligusticopsis using the CodonW v1.4.2
program [55]. Finally, a heatmap was drawn using TBtools [56].

Simple sequence repeats are widely distributed in the genomes of higher organ-
isms [57]. In our research, the MISA software [58] was used to identify simple repeated
sequences in the whole genome of 12 species of Ligusticopsis. The corresponding parameters
are set as follows: the minimum repetition of the mononucleotide is 10, the minimum
repetition of dinucleotides is 5, the minimum number of repeats of trinucleotides is 4, and
the minimum number of repeats of tetranucleotides, pentanucleotide and hexanucleotides
are all 3.

5. Conclusions

The complete plastomes of L. litangensis were sequenced, assembled and annotated in
our research. Based on comparative plastomes analysis, we concluded that the plastomes
of 12 Ligusticopsis species, including the new species, are highly conserved in terms of
genome structure, gene content and type, number and type of SSRs and codon usage bias.
Significantly, the tree topologies obtained from ML and BI analyses based on the ITS data
and plastome data firmly supported that three individuals of L. litangensis are monophyletic
clade and then nested in the Ligusticopsis genus (ML/BS ≥ 95, BI/PP ≥ 0.95). Furthermore,
the morphological characteristics of L. litangensis, such as the root neck densely covered with
fibrous withered leaf sheaths, pinnate bracts, developed calyx teeth, strongly compressed
mericarps, keeled dorsal and middle ribs, winged lateral ribs, 1–2 vittae per furrow and
3–4 vittae on the commissure. In conclusion, our plastid phylogenomic and morphological
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evidence robustly supports that L. litangensis is a new member of Ligusticopsis, and the
results of our research have substantial implications for the phylogeny, taxonomy and
evolution of the Ligusticopsis genus.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24087419/s1.
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