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Abstract: Single-cell RNA sequencing (RNA-seq) has been demonstrated to be a proven method for
quantifying gene-expression heterogeneity and providing insight into the transcriptome at the single-
cell level. When combining multiple single-cell transcriptome datasets for analysis, it is common to
first correct the batch effect. Most of the state-of-the-art processing methods are unsupervised, i.e.,
they do not utilize single-cell cluster labeling information, which could improve the performance
of batch correction methods, especially in the case of multiple cell types. To better utilize known
labels for complex dataset scenarios, we propose a novel deep learning model named IMAAE
(i.e., integrating multiple single-cell datasets via an adversarial autoencoder) to correct the batch
effects. After conducting experiments with various dataset scenarios, the results show that IMAAE
outperforms existing methods for both qualitative measures and quantitative evaluation. In addition,
IMAAE is able to retain both corrected dimension reduction data and corrected gene expression data.
These features make it a potential new option for large-scale single-cell gene expression data analysis.

Keywords: scRNA-seq; batch effect; deep learning; adversarial autoencoders

1. Introduction

The rapid development of high-throughput single-cell RNA sequencing (scRNA-
seq) technologies has facilitated the study of the transcriptomic characterization of cell
heterogeneity and dynamics [1–4]. In recent years, researchers have collected a large
amount of single-cell gene expression data from different experiments at different times
and on different sequencing platforms [5,6]. Inevitably, these data will have unexpected
batch effects due to differences in time and experimental protocols, which may lead to
spurious findings [7]. Therefore, correcting the batch effect should be an essential part of
the analysis of multi-batch scRNA-seq data.

At present, researchers have proposed a number of methods for batch effect correc-
tion [8]. However, almost all of these methods are unsupervised, i.e., they do not use cell-
type information, including cell similarity-based methods such as MNN [9], BBKNN [10],
Scanorama [11], clustering-based methods such as Harmony [12], DESC [13], a low-rank
subspace ensemble framework [14], SCCLRR [15], and a novel strategy based on Autoen-
coders [16]. Although all of these methods have achieved some results, their effectiveness
may vary depending on the complexity of the dataset. Therefore, it is important to care-
fully consider which method to use for a particular dataset, taking into account its unique
characteristics and limitations.

After an in-depth analysis of the scRNA-seq datasets, we identified three different
scenarios (Figure 1): Closed set, where each batch contains exactly the same cell type;
partial set, where the set of cell types in one batch is a subset of those in another batch;
and open set, where each batch contains both the same and different types of cells, making
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it the most complex and realistic situation that current unsupervised methods cannot
effectively resolve.
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Figure 1. Closed set: each batch has the same type of cells. Partial set: the set of cell types in one
batch is a subset of those in another batch. Open set: each batch contains both the same and different
types of cells. Only two batches are illustrated; multiple batches can be analogous to the example.

Fortunately, the development of single-cell study and annotation methods is rapidly
advancing [17–19]. As a result, an increasing number of publicly available annotated
single-cell datasets [8] are now available, making it easier to capture information on cell
types. Building on this progress, we developed a supervised method IMAAE to correct
the batch effect in the above three scenarios. IMAAE utilizes cell type information to
establish associations of the same type of cells between different batches. The method can
either build a new batch or select one of the existing batches as an anchor and then use an
adversarial autoencoder to convert the remaining batches to the anchor batch, effectively
correcting the batch effect.

We compare IMAAE with a variety of advanced batch correction methods, including
the most widely used MNN, the more recent iMAP [20], and SCALEX [21] based on
deep learning techniques and a supervised method, scGEN [22]. Experimentally, our
method proved to be better than other methods in the standard set of evaluation metrics.
IMAAE can obtain both corrected low-dimensional data and corrected gene expression
data, providing strong support for downstream analysis.

2. Materials and Methods

Our IMAAE framework workflow includes 3 major phases. There are two tasks
in the first phase, data annotation, and processing. It aims to produce normalized data
and neighbor connectivity maps after initial denoising (Figure 2a,b). The second phase
is the anchor selection phase, where a certain batch is selected as the anchor batch, or an
intermediate batch is established as the anchor batch (Figure 2c). The third phase is the batch
effect correction phase (Figure 2d,e), where, based on the established mapping relationships,
all batches of cells as the input data of the antagonistic autoencoder, and the anchor batch
cells as the ideal output data for training, and then the batch effect can be corrected by the
trained network. IMAAE is available at https://github.com/dongzuoyk/IMAAE (last
access date: 9 March 2023).

https://github.com/dongzuoyk/IMAAE
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Figure 2. The overall description of the proposed IMAAE framework. (a) Get the annotated scRNA-
seq dataset. (b) Data preprocessing. (c) Establish mapping relationships for different batches of the
same type of cells and select the anchor batch. (d) The preprocessed data is fed to the adversarial
autoencoder for training according to the mapping relationship. (e) Batch effects are corrected using
a trained adversarial autoencoder.

2.1. Data Preparation and Data Preprocessing

The data used in this study are publicly available annotated datasets.
Human peripheral blood mononuclear cell dataset (PBMC) [23]. The data included

two batches of human peripheral blood mononuclear cells from two healthy donors, which
were generated by the 3′and 5′Genomics protocols, respectively. Each batch contained
12 different cell types, including 8098 cells in the 3′ batch and 7378 cells in the 5′ batch, with
33,694 genes per cell.

Human pancreas dataset (Pancreas) [24–28]. This dataset was constructed using
human pancreatic data from five different sources. Each batch contained 15 different cell
types, for a total of 14,890 cells with 34,363 genes per cell.

The data preprocessing step includes (Figure 2b): (1) Filtering, i.e., removing unwanted
cells and genes according to user-defined rules. Cells expressing less than 600 genes and
genes expressed in less than 3 cells were excluded from this study. (2) Selecting highly
variable genes. Since the original gene dimension is very high and contains a large number
of zero values, the study should focus on those high-variable genes. In this study, 2000 high-
variable genes were selected for the study. (3) Normalization. Each cell was normalized by
the total counts of all genes so that each cell had the same total count after normalization.
The target total count for this study was 20,000. (4) Logarithmization. To logarithmize
the gene expression data, in this paper, we used X = log(X + 1). (5) Principal component
analysis (PCA). PCA was performed on the logarithmically scaled data to obtain the
reduced dimensional data for constructing similar cell connectivity graphs. (6) Building
connected graphs. Constructing connectivity graphs between cells of identical types across
distinct batches. The cells on the connected graph are highly similar, and the spatial
distance is smaller than other cells of the same type across batches. Note that steps (5) and
(6) are the procedures for constructing the cross-batch similarity cell connected graph in
the IMGG model [29], which are optional in the IMAAE model. The difference is that if
these steps are not used, random selection will be adopted when establishing mappings
between different batches of cells of the same type in subsequent steps. This method is
fast and convenient, and the corrected data distribution will be more uniform, but the
ability to identify cell subtypes will be lost. In contrast, if steps (5) and (6) are used, cells
on the connected graph will be selected when establishing mappings between different
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batches of cells of the same type in subsequent steps, and the corrected data will still retain
some batch-specific features that can theoretically be used for subtype analysis. We further
elaborate on this in Additional Experiment 2.

2.2. Determining the Anchor Batch

IMAAE is a flexible anchor-based method. Unlike other anchor-based methods,
IMAAE can not only choose a certain batch as the anchor batch but likewise choose to
construct an intermediate batch as the anchor batch, such as IMGG.

In this work, we provide three ways to select an anchor batch:

(1) Similar to IMMG, an intermediate batch is established as an anchor batch using the
balanced mode.

(2) A batch with a larger standard deviation is selected as the anchor batch. A larger
standard deviation means that there is greater variability in the cells within the batch,
which may cover more cell types.

(3) The user can choose a batch as the anchor batch themselves.

Different methods of establishing the anchor batch result in slightly different outcomes,
but experimental results show that regardless of the method used, the IMAAE correction
effect is always excellent (Additional Experiment 3). Unless otherwise specified, in this
paper, the intermediate batch established using the balanced mode is used as the anchor
batch for all other experiments.

2.3. Correcting the Batch Effect Using an Adversarial Autoencoder

Our purpose is to transform all batches of cells to the anchor batch to correct the batch
effect. Converting one batch to another is similar to style migration in the image domain,
and the methods generally used are autoencoder and generative adversarial networks. We
chose to design an adversarial autoencoder because autoencoder and generative adversarial
networks have their own limitations in dealing with complex dataset scenarios (Additional
Experiment 1).

2.3.1. Adversarial Autoencoder Network

To address the limitations of the autoencoder and generative adversarial networks, we
decided to design an adversarial autoencoder network by fusing the structures of the au-
toencoder and generative adversarial networks (Figure 2d). Our model contains three parts:
encoder, decoder, and discriminator. The encoder and decoder can form a self-encoder
network, and the encoder and discriminator can form a generative adversarial network.

First, we input all batches of gene expression data x into the encoder to obtain the
latent code z, which is distributed as q(z). Next, z is fed to the decoder for training to obtain
data matching the features of the anchor batch, while the encoder and discriminator form
a generative adversarial network to match the distribution q(z) of z with the true prior
distribution p(z). Eventually, IMAAE can learn the parameters for converting all batches
into anchor batches. In our work, we used the normal Gaussian distribution N(0, I) for the
prior distribution p(z).

2.3.2. Loss Functions

The reconstruction loss function of the autoencoder:

LR =
1
n

n

∑
i=1

(xi − x̃i)
2 (1)

where n denotes the number of cells in the dataset, xi denotes the original gene expression
of the i-th cell, and x̃i denotes the gene expression generated by the autoencoder for cell i.

The discriminant loss function for generative adversarial networks:

LD = −Ez∼pdata(z)[D(z)] + Ez′∼p(z′)

[
D
(
z′
)
+ λEẑ∼pẑ(ẑ)[ (‖∇ẑD(ẑ)‖2 − 1)2] (2)
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where z is the true sample, pdata(z) is the true data distribution, ẑ is the interpolated sample
obtained by sampling uniformly between the true sample z and the noisy sample z′, λ is
the weight of the gradient penalty term, ‖ · ‖2 is the L2 parametrization, and ∇ẑD(ẑ) is the
gradient of the discriminator at ẑ.

p ẑ ( ẑ ) is the distribution of the interpolated samples, defined as:

pẑ(ẑ) = Eα∼U(0,1)
[
δ
(
ẑ− αz + (1− α)z′

)]
(3)

where U(0, 1) is a uniform distribution over the interval (0, 1) and δ is a Dirac delta
function.

The generator loss function for generative adversarial networks:

LG = −Ez′∼p(z′)
[
D
(
z′
)]

(4)

where z′ is the noise sampled from the prior distribution p(z′), D(·) is the discriminator
function, and E is the expectation operator.

2.3.3. Hyperparameters

We used the Adam optimizer [30] with parameters β1 = 0.5 and β2 = 0.999, a learning
rate of 0.0002, a batch size of 1024, and an epoch number of 100. The encoder, decoder, and
discriminator all consisted of a fully connected neural network. By default, the number of
encoder nodes is 2000, 1000, 500, and 250, the number of decoder nodes is 250, 500, 1000,
and 2000, and the number of discriminator nodes is 250, 125, 64, 8, and 1. It should be
noted that the ReLU activation function [31] must be used at the end of the decoder, which
ensures that the output will not have negative numbers. We also use the reparameterization
technique at the end of the encoder. In addition, we have a hyperparameter “n_critic” to
adjust the training ratio between the generative adversarial network and the self-encoder,
e.g., when set to 2, the generative adversarial network will be trained twice and the self-
encoder once. We recommend keeping the size of “n_critic” the same as the number
of batches.

2.4. Comparison Methods

This study compared the performance of batch correction using scGen, MNN, iMAP,
SCALEX, and Harmony methods, respectively. The first three methods can only obtain
corrected gene expression data, Harmony can only obtain corrected low-dimensional data,
and SCALEX, similar to our IMAAE, can obtain both corrected low-dimensional data
and corrected gene expression data. We used the same data preprocessing method for
all methods (except SCALEX, which has an integrated preprocessing module). For each
method, we run with default parameters. To assess the performance of each method,
including IMAAE, the top 50 PC vectors extracted from the batch-corrected expression
matrix were used for the calculation of evaluation metrics and visualization.

2.5. Evaluation Metrics

To evaluate the batch correction performance of IMAAE and the other methods
described above, we used three quantitative assessment metrics, average silhouette width
(ASW) score [32], adjusted rand index (ARI) score [33], and normalized mutual information
(NMI) score [34], and two qualitative assessment metric, uniform manifold approximation
and projection (UMAP) visualization [35] and t-distributed stochastic neighbor embedding
(t-SNE) visualization [36]. The UMAP plot and t-SNE plot can visualize the change before
and after correcting the batch effect. ASW, ARI, and NMI are metrics used to evaluate
clustering quality. ASW measures the similarity of data points within a cluster to those in
other clusters and evaluates cluster separation and compactness. ARI measures clustering
similarity while accounting for chance agreement, often used for comparing ground truth
and clustering results. NMI measures mutual information between two clustering results
and is normalized by entropy. Lower ASW, ARI, and NMI scores indicate better results
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when using batch as a label, while higher scores indicate better results when using cell
type as a label. For comparison purposes, we calculated the F1 score for each metric (e.g.,

F1ASW =
2×(1−ASWbatch)×ASWcelltype

1−ASWbatch+ASWcelltype
), so that higher values indicate better performance. All

scoring metrics were calculated only for the cell types that were co-occurring in each batch.

3. Results

We simulated three different scenarios using the PBMC dataset, the Pancreas dataset,
and their subsets, i.e., closed set, partial set, and open set, respectively.

The closed set scenario has the PBMC dataset (Figure 3a), Pancreas dataset (Figure 3e);
the partial set scenario has the PBMC-subset2 dataset (Figure 3c, compared to the PBMC
dataset, we removed B cells, CD4 T cells, and monocyte-CD14 cells in 3p batch), PBMC-
subset3 dataset (Figure 3d, compared to PBMC dataset, we removed B cells and CD4 cells
in B cells in the 3p batch); the open set scenario has the PBMC-subset1 dataset (Figure 3b,
which consists of B cells and CD4 cells in the 3p batch and CD4 cells and CD4 naïve T cells
in the 5p batch of the PBMC dataset) and the Pancreas-subset dataset (Figure 3f, compared
to the Pancreas dataset, we removed ‘ductal’ and ‘beta’ cells in the indrop batch, acinar
and beta cells in the smartseq2 batch, acinar and delta cells in the celseq2 batch, acinar and
delta cells in the celseq batch, and acinar and delta cells in the fluidigmc1 batch).
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(f) Pancreas-subset dataset.

3.1. IMAAE Performance for the Closed Set Scenarios

We first conducted experiments on the Pancreas and PBMC datasets to evaluate the
performance of the batch correction method in closed-set scenarios.

On the Pancreas dataset and PBMC dataset, the first qualitative assessment was
performed, and both UMAP visualization (Figure 4) and t-SNE visualization (Figure 5)
showed that the original data had a large batch effect, while after correction by IMAAE,
scGen, iMAP, and SCALEX, the batch effect has largely disappeared. On the Pancreas
dataset UMAP plots show that IMAAE can discriminate some cell clusters with low
numbers, and on the PBMC dataset t-SNE plots show clearer boundaries of different types
of cell clusters compared to other methods IMAAE. The least effective method is MNN,
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which can only reduce the batch effect but cannot mix different batches of the same type of
cells. Then quantitative assessment was performed (Table 1), and IMAAE had the highest
F1 scores for all three assessment metrics and also obtained the highest scores in terms of
cell types and substantially outperformed the other methods, with no significant difference
between IMAAE and the other methods in terms of mixing different batches (the difference
in scores was less than 0.1).
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Figure 4. Qualitative evaluation of each batch correction method using UMAP visualization on (a) the
Pancreas dataset and (b) the PBMC dataset. Each method contains two UMAP plots. On the left,
coloring by batch type, and on the right, coloring by cell type.
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Table 1. Quantitative assessment of batch effect correction methods using ASW, ARI, NMI, and
corresponding F1 scores.

Data Method ASWbatch ASWcelltype F1ASW ARIbatch ARIcelltype F1ARI NMIbatch NMIcelltype F1NMI

Pancreas

IMAAE −0.1798 0.6930 0.8731 0.0091 0.9064 0.9468 0.0295 0.9183 0.9437
scGen −0.1293 0.3339 0.5154 −0.0019 0.7491 0.8572 0.0302 0.8359 0.8979
MNN −0.1055 0.1786 0.3075 0.0095 0.5468 0.7046 0.0310 0.7667 0.8561
iMAP −0.0630 0.2087 0.3488 −0.0015 0.8659 0.9288 0.0296 0.8259 0.8923

SCALEX −0.0442 0.2879 0.4514 0.0083 0.5870 0.7375 0.0182 0.7424 0.8455

PBMC

IMAAE 0.0084 0.3405 0.5069 0.0095 0.8172 0.8955 0.0059 0.8842 0.9359
scGen 0.0092 0.3449 0.5116 0.0094 0.7031 0.8224 0.0059 0.8436 0.9127
MNN 0.0140 0.1912 0.3203 0.0100 0.6280 0.7685 0.0063 0.7678 0.8662
iMAP 0.0068 0.1732 0.2949 0.0098 0.5621 0.7171 0.0062 0.7321 0.8431

SCALEX 0.0065 0.2385 0.3846 0.0085 0.5343 0.6944 0.0052 0.7285 0.8411

PBMC
subset2

IMAAE 0.0094 0.4378 0.6072 0.0094 0.7946 0.8818 0.0059 0.8655 0.9253
scGen 0.0180 0.4181 0.5865 0.0115 0.8094 0.8900 0.0053 0.8477 0.9153
MNN 0.0154 0.1954 0.3261 0.0131 0.6796 0.8049 0.0061 0.7794 0.8737
iMAP 0.0094 0.1466 0.2554 0.0148 0.5967 0.7432 0.0075 0.7022 0.8225

SCALEX 0.0438 0.2075 0.3409 0.0060 0.6185 0.7625 0.0018 0.6810 0.8096

The above two experiments show that all methods except the MNN method can
effectively deal with the closed set problem. At the same time, our IMAAE performs
optimally on each evaluation metric. We also note that these three quantitative evaluation
methods cannot effectively assess the degree of batch mixing (the difference in scores for
each method is less than 0.1 and does not match the UMAP visualization plot).

3.2. IMAAE Performance for the Partial Set Scenarios

We carried out experiments on the PBMC-subset2 dataset to evaluate the performance
of the batch correction method in partial set scenarios.

On the PBMC-subset2 dataset, the qualitative evaluation was first performed, and the
UMAP visualization plot (Figure 6a) showed that the original data had a large batch effect.
Meanwhile, after correction by IMAAE, scGen, and iMAP, the batch effect had largely
disappeared, and IMAAE was better than other methods in distinguishing different cell
types, while SCALEX did not achieve the desired effect. We speculated that SCALEX was
not applicable to the scenario, and the MNN method was similarly unsatisfactory. Then the
quantitative assessment was performed (Table 1), and IMAAE had the highest F1 scores for
all three assessment metrics.

At the same time, we identified an often-overlooked problem, where if a certain type of
cell appears in only one batch, improper processing will result in mapping to a nonexistent
space, and the corrected data will be questioned. We used the PBMC-subset3 dataset for
illustration, where B cells only appear in the pbmc_5p batch. We compared only the iMAP
and IMAAE methods because the MNN effect was too poor, and the corrected data from
SCALEX and scGen did not match the true gene expression data. Since B cells are present in
only one batch, the usual practice is to correct B cells with the help of corrected parameters
obtained using other cells using the same parameters. We expect to correct the batch effect
of other cells while making B cells corrected as well. However, by converting pbmc_5p to
pbmc_3p and then comparing the corrected pbmc_5p data with the uncensored pbmc_3p
data, we found that the pbmc_5p batch of B cells did not overlap with the pbmc_3p batch
of B cells (Figure 6b) so that whether the corrected B cells are still biologically meaningful
would be questioned. Therefore, in IMAAE, we did not convert the cells that appeared in
only one batch but kept the status quo.
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Figure 6. (a) Qualitative evaluation of each batch correction method using UMAP visualization on
PBMC-subset2 dataset. (b) Mismapping phenomenon of PBMC-subset3 dataset before and after
correction. Each method contains two UMAP plots. On the left, coloring by batch type, and on the
right, coloring by cell type.

3.3. IMAAE Performance for the Open Set Scenarios

Experiments were also implemented on the PBMC-subset1 dataset to evaluate the
performance of the batch correction method in an open-set scenario.

On the PBMC-subset1 dataset, the first qualitative assessment was performed. The
UMAP visualization plot (Figure 7) showed that the raw data had a large batch effect.
IMAAE could mix different batches and keep different cell types separated, iMAP and
SCALEX incorrectly mixed CD4 T cells with CD4 naive T cells, and scGen and MNN were
less effective. Since we can already judge the performance of the method by UMAP plots
alone, no quantitative analysis was performed in this experiment. It is worth mentioning
that this dataset was carefully designed by us, CD4T cells and CD4 naive T cells have
large similarities, and the similarity is greater than a certain degree. Almost all existing
unsupervised methods failed, and only supervised methods can be used to deal with it.
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3.4. IMAAE Performance on Low-Dimensional Data and Gene Expression Data

Another advantage of IMAAE over other methods is that it is easy to obtain cor-
rected data in low-dimensional space and gene expression data because of the adversarial
autoencoder structure.

Harmony and SCALEX can also obtain corrected low-dimensional data, but they have
limitations in terms of dimensionality setting. Harmony can only obtain 50-dimensional
data, and SCALEX can only obtain 10-dimensional data. In contrast, IMAAE is more flexible
in this aspect, allowing researchers to select low-dimensional data based on different needs
and preserve maximum original data information for downstream analysis tasks. We
conducted experiments on the Pancreas dataset, and the UMAP plot shows (Figure 8) that
IMAAE performs well at dimension 50, and the batch mixing effect is better than Harmony.
At dimension 10, the delta cells of IMAAE overlap with beta cells and alpha cells, and the
effect is worse than SCALEX. Therefore, we suggest that the hidden space of the IMAAE
dimension should not be set too small.
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Figure 8. UMAP visualization plots of IMAAE, Harmony, and SCALEX corrected low-dimensional
data on the Pancreas dataset.

IMAAE, MNN, scGen, iMAP, and SCALEX can all obtain corrected gene expression
data. The difference is that the data obtained by MNN, SCALEX, and scGen contain nega-
tive numbers and cannot be directly used for differential expression analysis. In contrast,
the output data of the IMAAE model conform to the real gene expression distribution, so it
is convenient for differential expression analysis.

We utilized the PBMC dataset to show the top four differentially expressed genes for
each cell type before and after correction for batch effects (Figure 9). By comparison, we can
find that the top four differentially expressed genes for each cell type changed before and
after correction. The observed changes in the number and identification of the differentially
expressed genes after correction are expected since the correction algorithm adjusts the
data. This means that IMAAE, similar to the MNN algorithm, can uncover new findings
for differential expression analysis.
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3.5. Running Time Comparison

At the same time, we also compare the time performance of each method on different-
size simulation datasets (Figure 10). IMAAE adopts a downsampling strategy when
constructing anchor batches, with a maximum of 1000 samples for each cell type, thus
keeping the time overhead well under control. Compared with other methods, IMAAE
achieves leading performance on large data sets.
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3.6. Additional Experiment 1

At the beginning of the IMAAE model design, we found that autoencoder and gen-
erative adversarial networks have limitations in complex dataset scenarios. We use the
Pancreas-subset for illustration. We first trained an autoencoder model, and the implemen-
tation results showed that it performs well on closed-set problems, while when dealing
with partial-set problems, a lot of noise appears on the UMAP visualization graph if batches
with fewer cell types are selected as anchors (Figure 11a), which means that the noise data
is lack of constraints. We then trained a generative adversarial network model. The experi-
mental results show that it works well on the two-batch problem, while when dealing with
three batches and more, it produces undercorrection (Figure 11b), which indicates that it is
difficult to fit the distribution of multiple high-dimensional data at the same time for the
generative adversarial network [28]. Based on these results, we decided to use generative
adversarial networks to constrain the hidden space of the self-encoder and created the
IMAAE model. Based on the experimental results, we expect that the IMAAE model can be
further applied in the field of multi-style data reduction and style migration.
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3.7. Additional Experiment 2

As depicted in Figure 12a, when applying steps 5 and 6, the corrected data of each
batch still exhibit some batch-specific characteristics and show limited performance in batch
mixing assessment. However, this data still retains the ability to further distinguish cell
subtypes. In contrast, Figure 12b shows that without applying steps 5 and 6, the corrected
data of each batch exhibit a more homogeneous distribution with no evident batch-specific
characteristics, resulting in better batch mixing performance. Nevertheless, the data lose
their ability to further subdivide cell subtypes. Researchers have the flexibility to decide
whether to use steps 5 and 6 based on their task requirements.
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3.8. Additional Experiment 3

On the Pancreas dataset, we adopted three different approaches to establishing anchor
batches. Among them, the anchor batch determined by the maximum standard deviation
pattern is the “celseq” batch, and the anchor batch selected by the custom pattern is the
“indrop” batch. Using IMAAE to correct batch effects, the UMAP visualization (Figure 13)
shows that all three patterns can correct batch effects well, and it is difficult to distinguish
which one is better. Quantitative evaluation (Table 2) shows that the balanced pattern
performs better than the other two patterns, which may be because the anchor batches
established by the balanced pattern are closer in spatial distance to each batch, while the
anchor batches determined by the other two patterns are farther away from other batches.
In practical applications, the pattern for establishing anchor batches should be selected
flexibly according to the task requirements.
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Table 2. Quantitative assessment of the correction results for three anchor batch models using ASW,
ARI, NMI, and corresponding F1 scores.

Data Method ASWbatch ASWcelltype F1ASW ARIbatch ARIcelltype F1ARI NMIbatch NMIcelltype F1NMI

Pancreas
IMAAE(Mean) −0.1798 0.6930 0.8731 0.0091 0.9064 0.9468 0.0295 0.9183 0.9437

IMAAE(Max. Std) −0.1573 0.4617 0.6601 −0.0023 0.7794 0.8769 0.0302 0.8619 0.9127
IMAAE(Custom) −0.1618 0.6087 0.7989 0.0100 0.8988 0.9422 0.0294 0.8811 0.9237

4. Conclusions

The batch effect poses a great challenge to scRNA-seq data analysis. In this study, we
deeply analyze common dataset scenarios and propose the concepts of closed set, partial
set, and open set, for which we design IMAAE, a deep learning-based supervised batch
correction method. IMAAE is constructed by adversarial autoencoders to eliminate batch
effects in scRNA-seq data by converting all batch cells to anchor batches.

One of the advantages of IMAAE over other methods is the flexibility to choose an
anchor batch. Most of the current anchor-based methods select a batch with many cell
types as the anchor and convert other batches to the anchor batch. At the same time, IMGG
creates an intermediate batch and converts other batches to the intermediate batch. Our
IMAAE combines the features of these two types of methods, allowing both the selection
of a particular batch as an anchor batch and the creation of intermediate batches as anchor
batches, providing more perspectives for downstream analysis.

Another advantage of IMAAE is that both corrected low-dimensional data and gene
expression data can be obtained simultaneously. Thus, we can use the corrected gene
expression data for differential expression analysis and the corrected low-dimensional data
for some other tasks.

We must note that the reason why IMAAE achieves excellent performance is that
it relies heavily on well-annotated datasets, so IMAAE is not a substitute for traditional
unsupervised methods but compensates for the fact that labels cannot be fully utilized when
cell types are known. In conclusion, we believe that IMAAE can be useful for single-cell
analysis.
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10. Polański, K.; Young, M.D.; Miao, Z.; Meyer, K.B.; Teichmann, S.A.; Park, J.-E. BBKNN: Fast batch alignment of single cell
transcriptomes. Bioinformatics 2020, 36, 964–965. [CrossRef]

11. Hie, B.; Bryson, B.; Berger, B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat. Biotechnol.
2019, 37, 685–691. [CrossRef]

12. Korsunsky, I.; Millard, N.; Fan, J.; Slowikowski, K.; Zhang, F.; Wei, K.; Baglaenko, Y.; Brenner, M.; Loh, P.-R.; Raychaudhuri, S.
Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 2019, 16, 1289–1296. [CrossRef]

13. Li, X.; Wang, K.; Lyu, Y.; Pan, H.; Zhang, J.; Stambolian, D.; Susztak, K.; Reilly, M.P.; Hu, G.; Li, M. Deep learning enables accurate
clustering with batch effect removal in single-cell RNA-seq analysis. Nat. Commun. 2020, 11, 2338. [CrossRef]

14. Wang, C.; Gao, Y.L.; Liu, J.X.; Kong, X.Z.; Zheng, C.H. Single-cell RNA sequencing data clustering by low-rank subspace ensemble
framework. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 19, 1154–1164. [CrossRef]

15. Zhang, W.; Li, Y.Y.; Zou, X.F. SCCLRR: A Robust Computational Method for Accurate Clustering Single Cell RNA-Seq Data. IEEE
J. Biomed. Health Inform. 2021, 25, 247–256. [CrossRef]

16. Riva, S.G.; Cazzaniga, P.; Tangherloni, A. Integration of Multiple scRNA-Seq Datasets on the Autoencoder Latent Space. In
Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX, USA, 9–12 December
2021; pp. 2155–2162.

17. Shao, X.; Liao, J.; Lu, X.; Xue, R.; Ai, N.; Fan, X. scCATCH: Automatic annotation on cell types of clusters from single-cell RNA
sequencing data. Iscience 2020, 23, 100882. [CrossRef]

18. Cao, Y.; Wang, X.; Peng, G. SCSA: A cell type annotation tool for single-cell RNA-seq data. Front. Genet. 2020, 11, 490. [CrossRef]
19. Shao, X.; Yang, H.; Zhuang, X.; Liao, J.; Yang, P.; Cheng, J.; Lu, X.; Chen, H.; Fan, X. scDeepSort: A pre-trained cell-type annotation

method for single-cell transcriptomics using deep learning with a weighted graph neural network. Nucleic Acids Res. 2021,
49, e122. [CrossRef]

20. Wang, D.; Hou, S.; Zhang, L.; Wang, X.; Liu, B.; Zhang, Z. iMAP: Integration of multiple single-cell datasets by adversarial paired
transfer networks. Genome Biol. 2021, 22, 63. [CrossRef]

21. Xiong, L.; Tian, K.; Li, Y.; Zhang, Q. Construction of continuously expandable single-cell atlases through integration of heteroge-
neous datasets in a generalized cell-embedding space. bioRxiv 2021. [CrossRef]

22. Lotfollahi, M.; Wolf, F.A.; Theis, F.J. scGen predicts single-cell perturbation responses. Nat. Methods 2019, 16, 715–721. [CrossRef]
[PubMed]

23. Zheng, G.X.; Terry, J.M.; Belgrader, P.; Ryvkin, P.; Bent, Z.W.; Wilson, R.; Ziraldo, S.B.; Wheeler, T.D.; McDermott, G.P.; Zhu, J.
Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 2017, 8, 14049. [CrossRef] [PubMed]

24. Wang, Y.J.; Schug, J.; Won, K.-J.; Liu, C.; Naji, A.; Avrahami, D.; Golson, M.L.; Kaestner, K.H. Single-cell transcriptomics of the
human endocrine pancreas. Diabetes 2016, 65, 3028–3038. [CrossRef] [PubMed]

25. Baron, M.; Veres, A.; Wolock, S.L.; Faust, A.L.; Gaujoux, R.; Vetere, A.; Ryu, J.H.; Wagner, B.K.; Shen-Orr, S.S.; Klein, A.M. A
single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure. Cell Syst. 2016,
3, 346–360.e4. [CrossRef]

26. Lawlor, N.; George, J.; Bolisetty, M.; Kursawe, R.; Sun, L.; Sivakamasundari, V.; Kycia, I.; Robson, P.; Stitzel, M.L. Single-cell
transcriptomes identify human islet cell signatures and reveal cell-type–specific expression changes in type 2 diabetes. Genome
Res. 2017, 27, 208–222. [CrossRef]

27. Muraro, M.J.; Dharmadhikari, G.; Grün, D.; Groen, N.; Dielen, T.; Jansen, E.; van Gurp, L.; Engelse, M.A.; Carlotti, F.; de Koning,
E.J. A single-cell transcriptome atlas of the human pancreas. Cell Syst. 2016, 3, 385–394.e3. [CrossRef]

28. Grün, D.; Muraro, M.J.; Boisset, J.-C.; Wiebrands, K.; Lyubimova, A.; Dharmadhikari, G.; van den Born, M.; van Es, J.; Jansen,
E.; Clevers, H. De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 2016, 19, 266–277.
[CrossRef]

29. Wang, X.; Zhang, C.; Zhang, Y.; Meng, X.; Zhang, Z.; Shi, X.; Song, T. IMGG: Integrating Multiple Single-Cell Datasets through
Connected Graphs and Generative Adversarial Networks. Int. J. Mol. Sci. 2022, 23, 2082. [CrossRef]

30. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
31. Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375.
32. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987,

20, 53–65. [CrossRef]
33. Hubert, L.; Arabie, P. Comparing partitions. J. Classif. 1985, 2, 193–218. [CrossRef]
34. McDaid, A.F.; Greene, D.; Hurley, N. Normalized mutual information to evaluate overlapping community finding algorithms.

arXiv 2011, arXiv:1110.2515.

http://doi.org/10.1093/bfgp/elx029
http://doi.org/10.1038/srep39921
http://doi.org/10.1186/s13059-019-1850-9
http://doi.org/10.1038/nbt.4091
http://doi.org/10.1093/bioinformatics/btz625
http://doi.org/10.1038/s41587-019-0113-3
http://doi.org/10.1038/s41592-019-0619-0
http://doi.org/10.1038/s41467-020-15851-3
http://doi.org/10.1109/TCBB.2020.3029187
http://doi.org/10.1109/JBHI.2020.2991172
http://doi.org/10.1016/j.isci.2020.100882
http://doi.org/10.3389/fgene.2020.00490
http://doi.org/10.1093/nar/gkab775
http://doi.org/10.1186/s13059-021-02280-8
http://doi.org/10.1101/2021.04.06.438536
http://doi.org/10.1038/s41592-019-0494-8
http://www.ncbi.nlm.nih.gov/pubmed/31363220
http://doi.org/10.1038/ncomms14049
http://www.ncbi.nlm.nih.gov/pubmed/28091601
http://doi.org/10.2337/db16-0405
http://www.ncbi.nlm.nih.gov/pubmed/27364731
http://doi.org/10.1016/j.cels.2016.08.011
http://doi.org/10.1101/gr.212720.116
http://doi.org/10.1016/j.cels.2016.09.002
http://doi.org/10.1016/j.stem.2016.05.010
http://doi.org/10.3390/ijms23042082
http://doi.org/10.1016/0377-0427(87)90125-7
http://doi.org/10.1007/BF01908075


Int. J. Mol. Sci. 2023, 24, 5502 16 of 16

35. McInnes, L.; Healy, J.; Melville, J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv 2018,
arXiv:1802.03426.

36. van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Materials and Methods 
	Data Preparation and Data Preprocessing 
	Determining the Anchor Batch 
	Correcting the Batch Effect Using an Adversarial Autoencoder 
	Adversarial Autoencoder Network 
	Loss Functions 
	Hyperparameters 

	Comparison Methods 
	Evaluation Metrics 

	Results 
	IMAAE Performance for the Closed Set Scenarios 
	IMAAE Performance for the Partial Set Scenarios 
	IMAAE Performance for the Open Set Scenarios 
	IMAAE Performance on Low-Dimensional Data and Gene Expression Data 
	Running Time Comparison 
	Additional Experiment 1 
	Additional Experiment 2 
	Additional Experiment 3 

	Conclusions 
	References

