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Abstract: Metabolic reprogramming in cancer is considered to be one of the most important hallmarks
to drive proliferation, angiogenesis, and invasion. AMP-activated protein kinase activation is one
of the established mechanisms for metformin’s anti-cancer actions. However, it has been suggested
that metformin may exert antitumoral effects by the modulation of other master regulators of
cellular energy. Here, based on structural and physicochemical criteria, we tested the hypothesis
that metformin may act as an antagonist of L-arginine metabolism and other related metabolic
pathways. First, we created a database containing different L-arginine-related metabolites and
biguanides. After that, comparisons of structural and physicochemical properties were performed
employing different cheminformatic tools. Finally, we performed molecular docking simulations
using AutoDock 4.2 to compare the affinities and binding modes of biguanides and L-arginine-related
metabolites against their corresponding targets. Our results showed that biguanides, especially
metformin and buformin, exhibited a moderate-to-high similarity to the metabolites belonging to the
urea cycle, polyamine metabolism, and creatine biosynthesis. The predicted affinities and binding
modes for biguanides displayed good concordance with those obtained for some L-arginine-related
metabolites, including L-arginine and creatine. In conclusion, metabolic reprogramming in cancer
cells by metformin and biguanides may be also driven by metabolic disruption of L-arginine and
structurally related compounds.

Keywords: metformin; L-arginine; cancer; creatine; biguanides; metabolism

1. Introduction

Metabolic reprogramming is an adaptation mechanism implemented by cancer cells
in response to their microenvironment, which alters their metabolism to sustain the en-
ergy request for growth and proliferation [1]. Usually, the tumor microenvironment is
hypoxic, acidic, and low in nutrients; despite these conditions, the cells present an abnormal
metabolism to maintain themselves and to keep growing, including alterations in the tricar-
boxylic acids (TCA) cycle, glycolysis, the urea cycle (UC), nitric oxide (NO) metabolism,
polyamines biosynthesis, and protein, lipid, and nucleic acid biosynthesis [2]. Today, one
of the most important emergent therapies with remarkable potential is to modulate the
metabolic reprogramming of cancer cells [2].
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L-Arginine plays a central axis due to its ability to be incorporated into the anabolic
and catabolic pathways mentioned before. In non-cancer cells, L-arginine is usually de-
rived from exogenous uptake from the diet and endogenous biosynthesis through UC
intermediates [3]. Once it has been absorbed, L-arginine can be incorporated into protein
synthesis, acting as a building block. Moreover, L-arginine is reported to positively regulate
anabolism itself by upregulating mTORC1 activity through the modulation of CASTOR1
and SLC38A9, the arginine sensors of the cells [4]. In addition, L-arginine is the precursor
of a plethora of substances needed for proliferation, immune system regulation, DNA
repair, or regulation of gene expression, such as polyamines, NO, and creatine. L-Arginine
is key in two polyamine-producing pathways: the first pathway is the decarboxylation
of L-arginine to agmatine by arginine decarboxylase (ADC) and subsequent hydrolysis
via agmatinase, culminating with putrescine production; the second pathway involves
L-ornithine, which is derived from L-arginine hydrolysis via arginase (ARG) in the UC.
In addition, L-arginine is also involved as a precursor in the nitric oxide synthase (NOS)-
catalyzed NO production and in the protein arginine methyltransferase (PRMT)-dependent
production of the dimethylated derivatives of L-arginine: asymmetric dimethylarginine
(ADMA) and symmetric dimethylarginine (SDMA). There are three NOS isoforms: in-
ducible (iNOS), endothelial (eNOS), and neural (nNOS); eNOS is involved in vascular
tone regulation, but iNOS is normally overexpressed during inflammation. On the other
hand, ADMA is considered to be a potent competitive inhibitor of NOS that leads to less
NO production. In addition to this, in the kidneys, L-arginine serves as the precursor of
guanidinoacetate (GAA) via arginine:glycine amidinotransferase (AGAT), which is trans-
ported to the liver and converted into creatine by guanidinoacetate N-methyltransferase
(GAMT) [3]. Interconversion between creatine and phosphocreatine in the cells in the
so-called phosphagen system can maintain the different ATP pools by phosphorylating
ADP to ATP via different isoforms of creatine kinases (CK), such as the muscle-type and
brain-type CK [5].

Cancer cells reprogram L-arginine metabolism to support the proliferation and progres-
sion of malignancy, suppressing the immune response, and regulating gene expression [2].
The absorption of L-arginine in cancer cells is achieved by the overexpression of cationic
amino acid transporters [6]. Indeed, hyperactivation of mTORC1 by L-arginine sensors has
been reported in several types of cancer and is associated with increased anabolic pathways,
such as the biosynthesis of nucleotides, protein, and fatty acids, and with the suppression
of autophagy [7]. In tumors, UC was reported to be disrupted at different points. For
instance, ORNT1, OTC, ASS1, and ASL were commonly downregulated. Additionally, it
was observed at a higher carbamoyl phosphate concentration and its consequent input
in the pyrimidine biosynthesis by carbamoyl phosphate synthetase 2 (CPS2) [8]. These
metabolic changes led to increases in cellular growth and survival. Additionally, increased
polyamines concentrations are usually observed in cancer cells. Polyamines have been
implicated in nucleic acids and protein synthesis, chromatin stabilization, the regulation of
paracrine communication, and prevention against oxidative DNA damage [9]. It has been
reported that cancer cells exhibit increased ARG expression and activity, leading to a high
production of L-ornithine [10]. Some studies also reported the overexpression of ODC1
due to MYC activity with a subsequent elevation in the putrescine concentration [11,12].
These alterations contribute to cancer progression. Furthermore, cancer cells can restore
energy by using the phosphagen system to allow increased proliferation and survival.
Additionally, creatine plays a key role in immunity by modulating T cells and acting as an
efficient energy buffering mechanism when the cells demand high levels of ATP due to the
high phosphate transfer potential of phosphocreatine [13,14]. Although some studies have
showed contradictory results about expression of CK isoforms, CK has been correlated
with the cancer prognosis [14–16]. Regarding NO metabolism, it was reported that NO
had a paradoxical dual activity, i.e., it promoted several hallmarks of cancer, such as apop-
tosis inhibition, epithelial-to-mesenchymal transition induction, and increased vascular
infiltration and permeability, but at the same time, it was reported that NO counteracts
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the mechanisms mentioned before [17]. Further, decreased ADMA levels were reported
in prostate cancer due to the upregulation of ADMA breakdown via dimethylarginine
dimethylaminohydrolase (DDAH), leading to high NOS activity and angiogenesis [18].

Taking advantage of L-arginine dependency in some tumors, in arginine deprivation
therapy (ADT), L-arginine levels are decreased by administering arginine-depleting agents,
such as pegylated arginine deiminase or pegylated arginase 1 [19]. ADT has shown promis-
ing results due to the pivotal role of L-arginine and their related metabolites involved in
cancer metabolism, e.g., NO, ADMA, polyamines, and creatine, although cancer sensitiv-
ity seems to be dependent on the urea cycle enzymes [19,20]. Hence, the modulation of
metabolic reprogramming by deprivation therapies or other approaches seems a rational
alternative to some specific cancer types, and more research is needed to improve its efficacy
and application.

In pharmacology, the disruption of specific metabolic pathways has been performed
using structurally related molecules that resemble endogenous ligands. For instance,
statins imitate the structure of β-hydroxy-β-methylglutaryl-CoA (HMG-CoA), leading to
the inhibition of HMG-CoA reductase and blocking cholesterol biosynthesis [21]. In line
with this, there are several reports about metformin altering different metabolites related
to L-arginine, suggesting the potential to interfere with UC, creatine biosynthesis, NO
production, and polyamines metabolism [22].

Metformin, buformin, and phenformin are biguanides with anti-diabetic properties but
nowadays, metformin is the only biguanide on the market and the first-line treatment for
management of type 2 diabetes mellitus. Beyond their anti-diabetic properties, anticancer
effects have been described in both in vitro and in vivo assays [23]. Despite it being such
a versatile drug, the mechanism (or mechanisms) of action behind these effects remain
elusive. Currently, the most established anti-cancer mechanism of action is the activation of
AMP-activated protein kinase (AMPK) due to the energy deficit induced by the metformin-
dependent inhibition of mitochondrial complex 1. In turn, AMPK activation negatively
regulates those energy-consuming metabolic pathways, e.g., gluconeogenesis, glycogen
synthesis, and fatty acid synthesis, but upregulates energy-generating metabolic pathways,
e.g., glycolysis, glycogen breakdown, fatty acid oxidation, and autophagy [24].

However, there are some inconsistencies about this previous description related to
the simplicity of metformin’s chemical structure. With a small structure and the lack of
directing groups compared to other complex drugs, it is virtually impossible that metformin
could bind to only one target in the cell. Even the more complex drugs usually act through
binding to different targets [25]. Molecular promiscuity appears to be a more logical
approach to understand metformin’s anti-cancer mechanism of action. Given that the
basic metformin’s pharmacophore is the guanidine group, it is reasonable to think that it
may resemble guanidine-containing endogenous ligands inside the cell, e.g., L-arginine,
creatine, ADMA, or some other related metabolites (Figure 1). Our hypothesis states that
metformin (and biguanides in general) may be acting in the cancer cell as an antagonist of
L-arginine and its related metabolites, leading to modulation of their corresponding targets,
and, therefore, altering the metabolic reprogramming of cancer cells.
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Figure 1. Chemical structures of biguanides and L-arginine-related metabolites. The chemical
structures of the main biguanides, metformin (1), buformin (2), and phenformin (3), and three
representative arginine-related metabolites such as L-arginine (4), ADMA (5), and creatine (6) are
shown. The guanidine pharmacophore is highlighted in blue.

Computational tools can be employed to generate, transform, interpret, predict, and vi-
sualize data of a chemical and biological nature. These tools are commonly applied in drug
discovery and exploration of the biological effects of molecules, allowing the prediction of
physicochemical properties and drug-likeness, or even the prediction of possible targets
according to the ligand structure [26]. In bioinformatics, molecular dynamics and molecular
docking are commonly used to model the binding of ligands to specific targets, and to pre-
dict the affinities of ligands to targets of interest. However, molecular docking is normally
used as a quick and inexpensive exploratory tool to generate preliminary insights to design
further experiments [27]. On the other hand, given the computational power needed to
run molecular dynamics simulations and the long waiting times needed to perform the
thermodynamic calculations, it has been used as a more reliable computational technique to
further validate the interactions observed in molecular docking simulations or experimental
evidence [26]. In addition, it is common to use machine learning algorithms to extract
relevant and significant information from the data [28]. In general, computational tools
have demonstrated a high potential to generate, develop, and sustain hypotheses, as well as,
to gain insights about the molecular actions of substances, as a first step before experiment
design and performance [26]. For instance, exploration of the possible mechanism of action
behind the arrest of the cell cycle in the sub-G1 phase in cancer cells led to the identification
of possible interactions of geranyl farnesol, sahandinone, and 4-dehydrosalvilimbinol,
a group of terpenoids present in Salvia lachnocalyx, with DNA topoisomerase I through
a computational methodology centered on molecular docking and molecular dynamics
simulations, suggesting that these terpenoids could be good candidates for the design of
new drugs [29]. On the other hand, it has been reported that six possible targets genes
(e.g., AR, HSP90AA1, MMP9, PGR, PTGS2, and TNF) are responsible for the action of the
pseudo phosphorous stem of Cremastra appendiculata by employing a reverse network phar-
macology approach that can allow for the in vitro or in vivo targeted study of molecular
actions in the future [30]. The computational methodology they followed included tools
for predicting the physicochemical properties and biological targets, such as SwissADME
and SwissTargetPrediction, respectively, as well as tools to predict the binding and affinity
of ligands in different targets of interest, such as molecular docking [30].

To test this hypothesis, in the present work, we employed different cheminformatic
tools to seek for structural and physicochemical similarities between biguanides and
different L-arginine-related metabolites by employing tools, such as the PubChem Score
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Matrix Service, SwissADME, and SwissTargetPrediction. Finally, we employed molecular
docking, a bioinformatic technique, to test if the chemical similarity observed for biguanides
may be translated into similar binding modes and affinities to those of L-arginine-related
metabolites in their corresponding targets. Given that the complete metformin’s mechanism
of action is still unknown, the relevance behind our hypothesis and this study is the
establishment and support of a new possible theoretical framework to progress in the
understanding of metformin’s biological actions in cancer cells, although this knowledge
may be extrapolated to improve the comprehension of its therapeutic effects in other
diseases where L-arginine, or its related metabolites, play a pivotal role.

2. Results
2.1. Database Creation

Before performing the different comparisons, we created a database containing the can-
didate metabolites, whose simplified molecular-input line-entry system (SMILES) and their
compound ID (CID) were collected from PubChem. There were 20 candidate molecules in
the final version of the constructed database, including 3 biguanides (metformin, buformin,
and phenformin), 7 members of the UC (L-ornithine, L-citrulline, carbamoyl phosphate,
L-aspartic acid, L-argininosuccinic acid, fumaric acid, and urea), L-arginine and their en-
dogenous methylated derivatives (ADMA and SDMA), 5 members from the polyamine
metabolism (agmatine, putrescine, spermine, spermidine, and cadaverine), and 2 members
from creatine biosynthesis (guanidinoacetic acid and creatine).

2.2. Structural Comparison between Biguanides and L-arginine-Related Metabolites

After generating the database, we proceeded to assess the structural similarity between
biguanides and the candidate metabolites by employing the PubChem Score Matrix Service
to compare their chemical structures at two levels: the 2D level and 3D level. Selected
results about the comparison of biguanides against candidate metabolites are shown in
Table 1 for the 2D and 3D analyses, while the complete results can be observed in the
Supplementary Material.

Tanimoto coefficients (TC) were generated from 2D structural comparisons. They
ranged from 0 to 100 depending on the grade of the 2D structural similarity. The higher the
TC value is, the more structurally similar the compared molecules are. Given metformin,
buformin, and phenformin share the same pharmacophore, we expected to see high TC
values (TC ≥ 65) between them. However, as shown in Table 1, a moderate similarity
was observed only between metformin and buformin with a TC of 63, while phenformin
showed low similarities with metformin (TC of 23) and buformin (TC of 33). Compared to
those of the candidate metabolites, there were moderate similarities observed for buformin
against different polyamines, e.g., cadaverine, spermidine, spermine, and putrescine, with
TC values ranging from 51 to 62. It is noteworthy that buformin showed a high similarity
with agmatine (TC of 88), but a moderate similarity against guanidinoacetic acid (TC of 50),
an intermediate of creatine biosynthesis. On the other hand, metformin showed moderate
similarity only with agmatine (TC of 56), and phenformin did not even reach or surpass a
TC of 50 with any candidate metabolite.

Related to TC, Shape Tanimoto (ST) and Color Tanimoto (CT) were generated from 3D
structural comparisons. They ranged from 0 to 100 depending on the grade of similarity
in terms of shape or features (H-bonding donors or acceptors, rings, etc.), respectively.
When ST and CT were summed up, combo T was generated, and it describes both the
shape and features in only one parameter going from 0 to 200. Similar to the 2D structural
comparisons, at the 3D level, the results suggested a moderate similarity between met-
formin and buformin with a combo T of 122, but phenformin still showed a low level of
similarity with metformin (combo T of 89). Additionally, when phenformin was compared
with buformin at the 3D level, its similarity was moderate (combo T of 111). Compared
to the candidate metabolites, metformin showed moderate similarities against L-arginine,
cadaverine, creatine, agmatine, and L-ornithine with combo T values going from 101 to
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129. It is noteworthy that metformin showed higher similarities compared to those of
guanidinoacetic acid and L-aspartic acid (combo T > 130). In the same way, buformin
showed moderate similarities against L-arginine, agmatine, guanidinoacetic acid, creatine,
and spermidine, with combo T values ranging from 102 to 120. Only phenformin showed
lower similarities (combo T < 100) compared to those of all the candidate metabolites.

Table 1. Structural comparisons of biguanides and candidate metabolites at 2D and 3D levels.

Metformin Buformin Phenformin

TC ST CT Comb TC ST CT Comb TC ST CT Comb

L-Aspartic acid 16 89 41 130 26 80 11 91 14 59 7 66

Fumaric acid 7 90 0 90 14 79 0 79 14 65 0 65

L-Argininosuccinic acid 29 49 10 59 34 60 9 69 24 71 10 81

Agmatine 56 82 40 122 88 86 34 120 32 62 27 89

L-Arginine 31 82 21 103 46 81 21 121 27 77 17 91

Buformin 63 75 45 120 100 100 100 200 33 69 40 111

Cadaverine 32 88 13 101 58 79 15 94 26 63 11 74

Carbamoyl phosphate 12 84 10 94 12 69 9 78 5 56 5 61

L-Citrulline 23 74 13 87 31 84 8 92 20 84 7 91

Creatine 46 93 36 129 42 77 25 102 20 69 14 83

ADMA 38 75 16 91 43 81 15 96 26 87 7 94

SDMA 33 73 18 91 39 73 15 88 25 82 9 91

Spermidine 35 80 13 93 54 85 25 110 22 66 25 91

Spermine 36 58 11 69 55 70 9 79 25 75 11 86

Phenformin 23 68 21 89 33 69 40 109 100 100 100 200

Guanidinoacetic acid 36 95 35 130 50 75 29 104 22 61 21 82

L-Ornithine 19 92 17 109 32 81 11 92 19 66 10 76

Metformin 100 100 100 200 63 75 47 122 23 68 20 89

Putrescine 34 82 17 99 62 62 31 93 23 53 13 66

Urea 25 61 14 75 24 46 12 58 9 31 11 42

High scores of TC, ST, or CT are highlighted in bold.

Remarkably, the moderate-to-high similarity observed for metformin or buformin
compared to those of some candidate metabolites was due principally to their high level
of shape resemblance with ST values > 80. On the other hand, the CT values tended to
be less than 50 because of the high diversity of functional features of tested metabolites.
However, the presence of the common guanidine moiety in L-arginine, agmatine, creatine,
and guanidinoacetic acid led to the highest CT values observed for biguanides.

Finally, we performed another structural similarity assay employing the SwissSimilar-
ity tool, aiming to reproduce the previous observations by seeking if there were a common
scaffold between the biguanides and some candidate metabolites. As we anticipated in
our hypothesis, the results showed that L-arginine, agmatine, creatine, spermidine, and
cadaverine shared a common scaffold with metformin and buformin, but not phenformin
(data not shown).

Considering only structural criteria, these results suggested moderate-to-high struc-
tural similarities between the biguanides, especially metformin and buformin, and some
candidate metabolites, such as agmatine, intermediates from UC and, especially, crea-
tine biosynthesis.
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2.3. Physicochemical Comparison between Biguanides and L-arginine-Related Metabolites

The physicochemical comparisons between biguanides and the candidate metabolites
began with the prediction of their physicochemical properties, employing the collected
SMILES through the SwissADME tool [31]. The predictions were performed in ionized (pH
7.4) and non-ionized modalities. For each molecule, we collected seven physicochemical
parameters, including molecular weight, consensus log P, topological polar surface area
(TPSA), rotatable bonds, the number of hydrogen bond donors and acceptors, and the
fraction of sp3 carbons. After the results were collected for each modality, the analysis of
those parameters aiming to obtain the similarity under physicochemical criteria was per-
formed. To identify physicochemical relationships between biguanides and the candidate
metabolites, an unsupervised machine learning approach with the collected results was
employed. First, we performed a principal component analysis (PCA), employing our vari-
ables as an exploratory analysis of the data. The PCA of ionized modality showed a close
relationship of metformin and buformin with creatine, guanidinoacetate, and L-aspartate.
In terms of the physicochemical properties, phenformin was isolated in the PCA. When it
was performed in the non-ionized modality, the PCA showed that all the biguanides were
similar to creatine, agmatine and L-ornithine in terms of physicochemical properties.

After that, we proceeded to perform hierarchical clustering (HC) using the different
physicochemical profiles. First, preliminary hierarchical clustering including only candidate
metabolites was performed. After that, each biguanide was compared, one at a time, against
the different candidate metabolites in HC.

Without including any of the biguanides, the preliminary hierarchical clustering
at both the ionized and non-ionized modalities generated a cluster for L-arginine, L-
citrulline, ADMA, and SDMA, metabolites that belong to the urea cycle and NO metabolism.
Polyamines were grouped in two clusters: one for low-molecular-weight polyamines (pu-
trescine and cadaverine) and high-molecular-weight polyamines (spermidine and sper-
mine). In the case of ionized modality, L-ornithine was grouped together with spermi-
dine and spermine. With some differences, creatine, agmatine, guanidinoacetic acid, and
L-aspartic acid were grouped together at both of the modalities, accounting for metabo-
lites from the urea cycle, polyamines metabolism, and, mainly, creatine metabolism. L-
Argininosuccinic acid alone and fumaric acid with urea (and carbamoyl phosphate in the
ionized modality) are represented in the last two clusters.

When metformin was included in the HC, this was grouped together with creatine,
guanidinoacetic acid, and L-aspartic acid in both modalities, although in the non-ionized
modality, L-ornithine and agmatine were also included (Figure 2). In the case of buformin,
this was grouped together with agmatine, creatine, guanidinoacetic acid, and L-aspartic
acid, although in the non-ionized modality, L-ornithine and carbamoyl phosphate were
also included. Finally, phenformin was grouped with fumaric acid and urea, but carbamoyl
phosphate was included in the ionized modality.

As can be observed, the physicochemical comparison agreed with the previous struc-
tural relationships obtained for metformin and buformin against creatine, guanidinoacetate,
agmatine, and L-aspartate. Although phenformin showed a physicochemical relationship
with agmatine, creatine, and L-ornithine during the PCA in the non-ionized modality,
physiologically, non-ionized relationships are of little relevance because all the candidate
metabolites and biguanides are ionized inside the cell. This is observed when the PCA was
performed in the ionized modality, where phenformin was alone. PCA analyses and all the
hierarchical clustering are shown in the Supplementary Material.

By limiting our analysis to both structural and physicochemical criteria, these results
suggested a relationship between metformin and buformin, but not phenformin, with
agmatine, L-aspartate, and especially, intermediates from creatine metabolism.
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Figure 2. Hierarchical clustering of the physicochemical comparison between metformin and candi-
date metabolites in the ionized modality (pH 7.4). As highlighted in yellow, metformin and creatine
were clustered together. After that, this cluster was grouped together with another cluster composed
of L-aspartate and guanidinoacetate. The Euclidean distances from these clusters suggested a closer
physicochemical relationship of metformin with creatine, L-aspartate, and guanidinoacetate, in that
order, indicating a possible involvement of metformin in creatine biosynthesis and the urea cycle. The
cluster of metformin was grouped with another cluster composed of urea, fumarate, and carbamoyl
phosphate into a new cluster, although the Euclidean distance of this association was relatively large,
suggesting a poor physicochemical relationship. Finally, this new cluster was grouped together with
putrescine and cadaverine, the low-molecular-weight polyamines, but the Euclidean distance of this
association was even larger. As expected, L-arginine was grouped with its precursor, L-citrulline,
and their dimethylated derivatives, ADMA, and SDMA in the same cluster. The cluster of L-arginine
were grouped together with another cluster composed of spermidine, agmatine, L-ornithine, and
spermine, the precursors and final products of polyamine metabolism, into a new cluster. Finally, this
cluster was grouped with L-argininosuccinate.

2.4. Structure-Based Target Prediction of Biguanides and L-arginine-Related Metabolites

Once we observed structural and physicochemical similarities of biguanides with
some arginine-related metabolites, we were interested in testing if this similarity could be
translated into an affinity for targets whose main substrates or ligands belong to the candi-
date metabolites included in the database that we tested before. To prove this assumption,
we performed a structure-based target prediction employing the SwissTargetPrediction
tool [32]. For each predicted target, its probability score, and its known actives 3D/2D were
collected. We observed that biguanides, especially phenformin, were predicted to target
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the three different isoforms of nitric oxide synthase, whose main substrate is L-arginine,
and its main inhibitor is ADMA. However, only the neural isoform of NOS was predicted
with a high probability score, although the known actives 3D/2D parameter suggested all
biguanides could target the inducible, endothelial, and neural isoforms. Furthermore, the
known actives 3D/2D suggested that biguanides could also bind to several isoforms of
carbonic anhydrases, whose known ligands are polyamines.

Indeed, these observations agree with our previous results of structural and physico-
chemical similarities that showed moderate-to-high similarities of biguanides to intermedi-
ates from polyamines metabolism, NO production, and UC. The complete predicted targets
for biguanides can be found in the Supplementary Material.

2.5. Affinity Comparison between Biguanides and L-arginine-Related Metabolites

Following the target prediction in the SwissTargetPrediction tool, we proceeded to
perform a molecular docking simulation to test if the affinities were comparable to those
of candidate metabolites in their corresponding targets. The protein files required for the
simulation were obtained from Protein Data Bank [33]. All the sites employed in the simu-
lation were based on information from UniProt and predictions from the DoGSiteScorer
tool [34,35].

The results from the molecular docking simulations are shown in Figure 3. In gen-
eral, there was a trend for metformin, buformin and phenformin, in that order, of being
the biguanides with the highest affinities to each target. Additionally, according to bind-
ing energies and predicted inhibition constants, phenformin showed even more affinity
than the endogenous ligands did during their binding to some targets. For instance,
the binding energies for metformin (−8.09 kcal/mol), buformin (−9.39 kcal/mol), and
phenformin (−9.72 kcal/mol) in ARG1 were comparable to that obtained for L-arginine
(−9.56 kcal/mol). Another example was CASTOR1, one of the L-arginine sensors in
the cell, in which the binding energy for L-arginine was −9.3 kcal/mol, but in the case
of metformin, buformin, and phenformin, they were −7.21 kcal/mol, −7.92 kcal/mol,
and −10.34 kcal/mol, respectively. In the case of GAMT, biguanides showed compara-
ble or even higher affinities (−6.9 kcal/mol to −9.48 kcal/mol) than guanidinoacetate
did (−5.59 kcal/mol), the precursor of creatine. Furthermore, the binding energies of
biguanides (from −7.76 kcal/mol to −9.9 kcal/mol) were similar to that of putrescine
(−8.44 kcal/mol) in spermidine synthase. Finally, for the three isoforms of NOS, the es-
timated binding energies of biguanides ranged from −4.37 kcal/mol to −6.56 kcal/mol,
while for L-arginine and ADMA, they ranged from −5.01 kcal/mol to −5.51 kcal/mol and
from −5.07 kcal/mol to −5.42 kcal/mol, respectively. Remarkably, these results agreed with
phenformin and metformin being the most and least potent biguanides, respectively [36].
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Figure 3. Binding energies (kcal/mol) of biguanides and selected candidate metabolites in their
corresponding targets. The best affinity values of biguanides compared to those of the endogenous
ligands were obtained in ARG1/2, CASTOR1, SPMS, SPDS, and GAMT, where biguanides showed
the lowest binding energies, suggesting comparable or even higher affinity values than those of
the corresponding ligands. These results may indicate an involvement of metformin in the urea
cycle, NO metabolism, mTORC1 pathway, polyamine metabolism, and creatine biosynthesis. ADC:
Arginine decarboxylase; AGAT: Arginine:glycine amidinotransferase; ARG: Arginase; ASL: Argini-
nosuccinate lyase; ASS: Argininosuccinate synthetase; CPS: Carbamoyl phosphate synthetase; CKB:
Brain-type creatine kinase; CKM: Muscle-type creatine kinase; CKU: Ubiquitous creatine kinase;
DAO: Diamine oxidase; ETC: Electron transport chain; eNOS: Endothelial nitric oxide synthase;
iNOS: Inducible nitric oxide synthase; nNOS: Neural nitric oxide synthase; GAMT: Guanidinoac-
etate N-methyltransferase; Lysine decarboxylase; ODC: Ornithine decarboxylase; SPDS: Spermidine
synthase; SPMS: Spermine synthase; PRMT: Protein arginine methyltransferase; OTC: Ornithine
transcarbamylase; TCA: Tricarboxylic acids.

2.6. Binding Comparison between Biguanides and L-arginine-Related Metabolites

Despite the similarity between the predicted binding energies of biguanides and the
candidate metabolites, we proceeded to assess the binding modes inside the tested targets
to sustain our hypothesis about a structure-dependent cross mechanism of action. The
different binding mode analyses were carried out in Chimera X 1.2.5. It is noteworthy
that some biguanides’ binding modes were similar to those of candidate metabolites in
their corresponding targets as shown in Figure 4 for ARG1, CASTOR1, and brain-type
CK. Other interactions can be found in the Supplementary Material. We observed the
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establishment of hydrogen bonds between L-arginine and Asp 128, Asn 130, Ser 137, Thr
246, and Asp 232 in ARG1. Our simulation for the L-arginine binding mode in ARG1
agreed with the binding site reported in UniProt, which includes His 126, Thr 127, Asp 128,
Ile 129, Asn 130, Ser 137, Gly 138, Asn 139, Asp 183, Thr 246, and Glu 277, indicating the
good reproducibility of our methodology [34]. Although with some differences, biguanides
established hydrogen bonds with amino acid residues present in the L-arginine binding
site, including Asp 128, Thr 246, and Glu 277, among others. As well as for ARG1, in
CASTOR1, our simulation for L-arginine showed good reproducibility compared to that
of the reported interacting amino acid residues from UniProt [34]. In our methodology,
L-arginine established hydrogen bonds with Val 112, Gly 274, Val 281, Thr 300, Phe 301,
and Asp 304. With some differences, the biguanides shared interactions with different
L-arginine-interacting amino acid residues, including Gly 274, Thr 300, Phe 301, and Asp
304. Finally, for the brain-type CK, the reported interacting amino acid residues in UniProt
include Val 72, Glu 232, and Se 285 [34]. Our simulation for creatine predicted the binding
of the guanidine moiety to Glu 231 and Glu 232 and the carboxylate moiety to Arg 132
and Arg 292. Such as creatine, the guanidine moiety of biguanides showed a tendency to
establish hydrogen bonds with Glu 231 and Glu 232, except for buformin, which established
two hydrogen bonds with Arg 236 instead of Glu 232. Remarkably, the orientations of
the guanidine groups inside ARG1, CASTOR1, and brain-type CK for L-arginine and
biguanides were strongly similar.
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Figure 4. Binding modes of biguanides against the endogenous substrate of ARG1, CASTOR1 and
brain-type creatine kinase (CKB). For ARG1 and CASTOR1, L-arginine, buformin, phenformin, and
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metformin are shown in descending order. For CKB, creatine, buformin, phenformin, and metformin
are shown in descending order. As our hypothesis suggested, the guanidine pharmacophore of
biguanides bound with the same orientation of the guanidine side chain of L-arginine in ARG1
and CASTOR1. Additionally, both moieties obtained hydrogen bonded to common amino acid
residues. In the same way, biguanides interacted with CKB through the guanidine pharmacophore
with a similar orientation to that of the guanidine group of creatine and establishing hydrogen
bonds with some common amino acid residues. However, the binding of L-arginine and creatine
were not completely identical to biguanides because of differences in size and the presence of the
carboxylate moiety.

As can be observed, these results are in line with our previous observations, where it
should be expected to observe a good concordance of binding if the molecules are supposed
to be similar.

3. Discussion

Beyond its anti-diabetic properties, metformin has showed to exert anti-cancer effects
in different types of cancer models and epidemiological studies [23]. Despite its clinical
success and the progress made to elucidate its anticancer molecular actions, a complete
picture of metformin’s anticancer biological effects is lacking. However, based only on
structural and physicochemical characteristics, here, we proposed and sustained, with a
computational methodology, our hypothesis that described another possible mechanism
by which biguanides may resemble different endogenous L-arginine-related metabolites,
leading to an antagonist effect in their corresponding targets.

In pharmacology, the binding of ligands to a specific target is dependent on several fac-
tors such as shape, charges, hydrogen-bonding capacity, flexibility, planarity, polarity, and
size, among others [37]. According to our hypothesis, if biguanides are supposed to bind
targets from arginine-related metabolites, they must be comparable at both the structural
and physicochemical levels. For this reason, the methodology followed here began with the
creation of a database that contains different metabolites related to L-arginine metabolism
and other related metabolic pathways including the urea cycle, nitric oxide, polyamines,
and creatine metabolism. Subsequently, comparisons of the structural and physicochemical
elements by employing cheminformatic tools were performed. In the final step to test our
hypothesis, bioinformatic tools were carried out to prove if the comparable structural and
physicochemical elements between biguanides and arginine-related metabolites could be
translated into a comparable binding in their corresponding targets. If this was true, it is
reasonable to think that biguanides may exert an anticancer effect by affecting the metabolic
pathways where these metabolites are involved. In the following paragraphs, evidence
that sustains or refutes our hypothesis is provided. However, the evidence is focused on
metformin mainly because it is the most widely studied biguanide.

Anabolism supports proliferation, survival, and invasion processes in cancer cells.
mTORC1 is one of the most important master regulators of anabolic metabolism in normal
and cancer cells [38]. The upregulation of mTORC1 has been reported to be dependent on
two interrelated stimuli: proliferative signaling pathways by growth factors and nutrient
sensing pathways by L-arginine, L-glutamine, and branched-chain amino acids [4]. In
cancer cells, anabolism dependency on L-arginine via mTORC1 has been associated with
the activation of the RAGULATOR-RAG complex in the lysosomal membrane by both
SLC38A9 and CASTOR1, the two intracellular sensors of L-arginine. SLC38A9 is a trans-
membrane transporter of L-leucine and L-arginine located on the lysosome that activates
the RAGULATOR-RAG complex in response to changes in amino acids concentrations [39].
The sensing of an amino acid via SLC38A9 has been reported to be needed in pancreatic
cancer cells to form tumors [40]. On the other hand, the binding of L-arginine to CASTOR1
disrupts its suppressing interaction with GATOR2, leading to the GATOR2-dependent
inhibition of GATOR1 and the activation of the RAGULATOR-RAG complex [41]. The
CASTOR1-dependent inhibition of mTORC1 has shown a tumor suppressor role in lung



Int. J. Mol. Sci. 2023, 24, 5316 13 of 20

adenocarcinoma leading to lower proliferation, migration, and invasion, and when it is
downregulated, it is associated with a poor prognosis [42]. It has been reported that the
inhibition of mTORC1 through competitive binding in CASTOR1 by analogs of L-arginine,
including L-citrulline and L-ornithine, among others, avoids the disruption of CASTOR1–
GATOR2 interaction [43]. Our hypothesis predicted that it may be possible the suppression
of mTORC1 by the competitive binding of biguanides against L-arginine in CASTOR1
and SLC38A9, leading to decreased activity of the RAGULATOR-RAG complex and the
consequent modulation of mTORC1. According to our results, metformin and buformin
showed moderate structural similarities with L-arginine and L-ornithine, two reported
ligands of CASTOR1. In addition, metformin and buformin are similar to L-ornithine in
terms of the physicochemical properties. Additionally, the affinities and binding modes
of all the biguanides were comparable or even higher than those obtained for L-arginine
in CASTOR1 and SLC38A9. In agreement with our hypothesis and results, the inhibition
of mTORC1 by a metformin treatment has been reported, independently of AMPK and
TSC1/2, and in a RAG GTPase-dependent manner [44]. Recently, it has been reported that
L-arginine exerts an epigenetic regulation over TEA-like domain 4 (TEAD4) in prostate
cancer cells [45]. TEAD4 is a transcription factor that controls the expression of genes
involved in oxidative phosphorylation. This suggests that global metabolism and epige-
netics can be controlled by L-arginine in cancer cells via different sensing systems, such
as CASTOR1, SLC38A9, and possibly TEAD4. As our hypothesis predicted, there was
reported the metformin targeting of the YAP1–TEAD4 axis in bladder cancer cells [46].

The urea cycle is related to several metabolic pathways that allow anabolism. For
instance, the urea cycle was reported to be linked to the TCA via fumarate and oxalacetate-
derived L-aspartate [47]. Given this connection, the urea cycle disruptions were reported to
modify TCA metabolites, leading to the metabolic and epigenetic changes needed for cancer
cells. It is noteworthy that some essential building blocks and epimetabolites are directly
derived from TCA, such as α-ketoglutarate [48]. For instance, it has been reported that
the fumarate accumulation in cancer cells allowed epithelial-to-mesenchymal transition
due to the inhibition of the α-ketoglutarate-dependent dioxygenases, proteins with histone
demethylase activity [49]. Our results may indicate a possible reduction of urea cycle
metabolites after the metformin treatment due to a cross structure-dependent inhibition
of key enzymes. According to our analyses, metformin and buformin showed moderate-
to-high similarities when they were compared at both the structural and physicochemical
levels with some urea cycle metabolites, including L-aspartic acid, L-arginine, and L-
ornithine. As expected, the structural and physicochemical similarities were translated in
comparable affinities and binding modes of biguanides with urea cycle enzymes, at least in
ARG1 and ARG2. Similar to this study, Detroja and Samson (2022) reported the possible
inhibition of ARG1 by metformin based on molecular docking simulations and molecular
dynamics. They found that the binding of metformin to the active sites of both ARG1 and
ARG2 was stable for up to 50 ns in molecular dynamics simulations [50]. There is evidence
of biguanides affecting the urea cycle. According to Zhang et al. (2021), metformin has
been shown to negatively regulate the urea cycle intermediates including L-arginine and
L-aspartate in an in vivo xenograft model of HCT116, a colorectal cancer cell line [51].
However, the authors reported that this reduction was due to the decreased expression
in urea cycle enzymes such as CPS1, ARG1, and OTC. Additionally, it has been reported
that the metformin treatment decreased the ARG1 activity of granulocytic myeloid-derived
suppressor cells in a tumor-bearing mouse model of colon carcinoma [52]. Furthermore,
the decreased arginase activity was maintained despite the use of compound C, an AMPK
inhibitor, suggesting that the reduction of arginase activity was independent on AMPK.
In the same way, Koroglu-Aydin et al. (2021) reported a decreased activity of arginase in
kidney homogenates from rats with diabetes and prostate cancer treated with metformin
compared to that of non-treated rats [53].

When they are altered, polyamines in cancer have been associated with increased
proliferation, survival, and resistance to therapy, i.e., a poor cancer prognostic. In the
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case of polyamine metabolism, our results strongly supported the resemblance between
biguanides and some specific intermediates. There was a remarkable structural similarity
between buformin and metformin with agmatine and L-ornithine. These relationships were
maintained during the physicochemical comparisons, although not in both modalities. As
well as for the UC, metformin was capable of decreasing the concentrations of putrescine
via decreased expression of ODC in an in vivo xenograft model of HCT116 [51].

Cell division is a high-energy-demanding process that needs to be supported by
plenty of energy. In cancer cells, a reported strategy to maintain the cell cycle forward
was the overexpression of creatine kinases isoforms, especially in those sites where a lot
of energy is needed [54]. For these reasons, the phosphagen system represents one of the
most important ways of storing, buffering, and transferring energy in tumors. Regarding
creatine metabolism, our data indicated a competitive binding of biguanides against targets
related to creatine biosynthesis or usage and the consequent disruption of cell bioenerget-
ics. Our results showed moderate-to-high similarity at both the 2D and, especially, 3D
levels. Additionally, the hierarchical clustering of biguanides with guanidinoacetic acid
and creatine suggested a close relationship in terms of the physicochemical properties. On
the other hand, the affinities and, for some isoforms of creatine kinases, the binding modes
of biguanides were comparable to those obtained for creatine. It is noteworthy that metabo-
lites belonging to creatine metabolism were the ones most related to biguanides, especially
metformin and buformin, according to our results during structural, physicochemical, and
binding comparisons. Recently, has authors have reported the competitive inhibition of
AGAT by a metformin treatment (3 × 1500 mg daily for 6 weeks) in individuals with Becker
muscular dystrophy, leading to reduced concentrations of guanidinoacetic acid in both
serum and urine [55]. Remarkably, decreased renal and pancreatic AGAT activity, but not
decreased mRNA expression, have been reported after creatine supplementation in rats,
suggesting that creatine can be involved in a negative feedback regulation mechanism [56].
If biguanides were comparable to creatine, it may be possible that biguanides could become
involved in that regulation, resembling creatine. Regarding the evidence supporting the
action of biguanides on phosphocreatine biosynthesis, Garbati et al. (2017) reported the
decrement of 40% in brain-type creatine kinase activity by metformin treatment (10 mM)
during enzymatic assays, and its lowering effect on the ATP/AMP ratio of the KM-H2,
SHSY-5Y, and MDA-MB-468 cancer cell lines [57]. It is noteworthy that metformin was sug-
gested to bind to a site different from that for creatine binding, acting in a non-competitive
manner. It is possible that metformin may bind to the other isoforms of creatine kinases
given the strong homology of this family of proteins [58].

It is noteworthy that our main limitation was that our results were generated through
a computational methodology. Hence, the experimental demonstration is needed to sustain
or refute the results presented here and to test our hypothesis. Another limitation of our
computational methodology was the absence of molecular dynamics simulations to test
the binding of biguanides and L-arginine-related metabolites to the targets of interest
in a more reliable manner, since both the protein and the ligand are flexible [59]. How-
ever, the use of molecular dynamics simulations was beyond the scope of our original
methodology, as our principal aim was to establish our hypothesis and to provide prelimi-
nary computational evidence about the possible structural, physicochemical, and binding
similarities that biguanides share with some L-arginine-related metabolites, as a first ap-
proach. In the future, molecular dynamics simulations are intended to be included with
an experimental methodology to provide stronger evidence for or against our hypothesis.
Additionally, as mentioned above, authors have already reported the molecular dynamics
simulations of metformin’s binding to ARG1/2, partially strengthening our molecular
docking simulations results for metformin in the same targets [50]. Another opportunity
for improvement in the future is that in the present study, we limited our computational
analysis to certain L-arginine-related metabolites, but there are many metabolites that may
also be related structurally and functionally to biguanides, such as N(G)-monomethyl-
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L-arginine, L-proline, L-glutamate, or L-homoarginine, as well as different biguanides,
including galegine or even microbiome-derived metabolites of biguanides.

4. Materials and Methods
4.1. Database Creation

The database was created including different candidate metabolites related to L-
arginine metabolism in the cell, including compounds from the urea cycle, creatine biosyn-
thesis, nitric oxide metabolism, and polyamines metabolism, among others. Given that
buformin and phenformin are more potent drugs than metformin is, but belong to the same
pharmacological class, we decided to include both drugs to enrich the analyses. For every
molecule, its CID number and SMILES from PubChem were collected.

4.2. Structural Comparison between Biguanides and L-arginine-Related Metabolites

Assessment of the 2D and 3D similarities between biguanides and candidate metabo-
lites were carried out employing the PubChem Score Matrix Service [60]. In the case of the
3D similarity assay, both shape optimized and feature optimized analyses were carried out
for 10 conformers per CID. Two-dimensional similarity assays generated a TC value that
ranged from 0 to 100 depending on the grade of similarity, with 0 being a null similarity
and 100 being an identical molecule. Three-dimensional similarity assays generated two
scores: ST assessed the shape and CT assessed the features (e.g., hydrogen bond donors
and acceptors, rings, etc.) of the compared molecules. Both scores ranged from 0 to 100
following the same logic as that used for TC. When these two scores were summed up,
combo T was generated [61]. This score ranged from 0 to 200 and was used to assess shape
and features together in only one parameter. Given that the TC cut offs ranged from 50 to
80 in the literature, for 2D similarity, the scores were “high” when TC ≥ 65. In the case of
3D similarity, it was “high” when ST ≥ 80 and CT ≥ 50, according to Bolton et al. (2011), or
when combo T ≥ 130 [61]. For every pair of compared molecules, their TCs were collected
from the 2D analysis, as well as their ST and CT from the 3D analysis. Additionally, the iden-
tification of a common scaffold between biguanides and the structurally related metabolites
was performed in the SwissSimilarity tool (http://www.swisssimilarity.ch/ (accessed on 10
January 2023)). This tool is capable of performing high-throughput screening of molecules
similar to an input molecule based on 2D and 3D molecular descriptors. The search can
be performed in different classes of compounds, e.g., drugs and commercial or bioactive
substances. For this methodology, we introduced the different SMILES in the menu and
selected “Bioactive” as the class of compounds. Finally, we chose the Chemical Entities of
Biological Interest (ChEBI) as the library and “Scaffold” as the screening method [62].

4.3. Physicochemical Comparison between Biguanides and L-arginine-Related Metabolites

The physicochemical properties of biguanides and candidate metabolites presented
in the database were predicted by using the collected SMILES of every molecule with the
SwissADME tool (http://www.swissadme.ch/ (accessed on 21 December 2022)) [31]. The
physicochemical comparisons were performed in both ionized and non-ionized modalities.
For the ionized modality, all the molecules in our database were ionized to physiological pH
of 7.4 according to scientific reports and their corresponding new SMILES were collected.
For every molecule, several physicochemical parameters were collected, including molec-
ular weight, accounting for size, hydrogen bond donors and hydrogen bond acceptors,
accounting for hydrogen-bonding capacity, consensus log P and TPSA, accounting for
polarity, rotatable bonds, accounting for flexibility, and sp3-carbon fraction, accounting for
planarity. After this, a PCA of the collected variables was performed as an exploratory
analysis of data from physicochemical profiles. Finally, an HC was carried out aiming to test
if an unsupervised machine learning algorithm was capable of identifying a relationship be-
tween biguanides and candidate metabolites. Each biguanide was compared, one at a time,
against the candidate metabolites. PCA and HC were performed in the R software (version
4.2.2) by employing RStudio as our graphical user interface and some R-packages including

http://www.swisssimilarity.ch/
http://www.swissadme.ch/
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tidyverse, factoextra, cluster, ggplot2, ggcorrplot, and readr [63–69]. Data analysis began
with the loading of our database in RStudio. This database contained biguanides and our
candidate metabolites and all their collected physicochemical parameters. However, these
data are presented at different scales. For this reason, these magnitudes were scaled into the
standard scale of the Z-score. PCA was performed by using the prcomp function based on
singular value decomposition. Indeed, according to R documentation, a better numerical
accuracy was reported for this method compared with that of the eigen decomposition. Ad-
ditionally, it is not necessary to generate the covariance matrix in this method. On the other
hand, the clusters of the HC were generated by calculating the Euclidean distances and
employing the Ward’s linkage with the hclust function. All dendrograms were generated
in RStudio using the packages mentioned above.

4.4. Structure-Based Target Prediction of Biguanides and L-arginine-Related Metabolites

The biguanides were subjected to a structure-based target prediction by using the
collected SMILES employing the SwissTargetPrediction Tool (www.swisstargetprediction.
ch/ (accessed on 29 December 2022)) from the Swiss Institute of Bioinformatics [32]. In a
similar manner to our hypothesis, the SwissTargetPrediction tool is based on the chemical
similarity, i.e., the algorithm was trained with a big collection of molecules (almost 400,000),
whose targets were identified experimentally. In simple terms, when a new ligand is
presented to the algorithm, it searches for similar molecules at the 2D and the 3D levels,
returning their associated macromolecules as possible targets for the new ligand. The
output of a SwissTargetPrediction assay are two parameters: the probability score and the
known actives (3D/2D). The probability score represents a combined score of the 2D and
3D similarity values between the input ligand and those molecules from the algorithm. The
known actives (3D/2D) represent the list of molecules similar at the 2D and the 3D levels to
those of the input ligand, whose interaction has been demonstrated experimentally. In this
methodology, for every molecule, its predicted biological targets associated with candidate
metabolites and their corresponding probability scores and known actives (3D/2D) were
collected. After this, we confirmed if the interactions between the predicted targets and the
tested ligands have been reported in scientific literature.

4.5. Affinity Comparison between Biguanides and L-arginine-Related Metabolites

Once we predicted the targets for biguanides and candidate metabolites, a molecular
docking simulation was carried out employing AutoDock 4.2 [70]. Other non-predicted
targets whose ligand or substrate was reported to be one of the candidate metabolites
included in our database were subjected to simulation. All the protein structures for the
simulation were obtained from Protein Data Bank [33]. Our search was limited to PDB files
with a resolution lower than 3Å and derived from Homo sapiens. In the case of SLC38A9,
we used a PDB file from Danio rerio because the human files showed lower resolution. The
water molecules and other ligands co-crystallized with the protein were removed from the
PDB files. The tested candidate metabolites were constructed in Avogadro based on the
different collected SMILES [71]. Additionally, hydrogen atoms were added to the ligands,
simulating a pH of 7.4. Finally, the structures of ligands were optimized in Avogadro using
both the force field MMFF94 and the algorithm steepest descent, and they were saved as
.mol2 files.

AutoDock Tools (ADT) was employed as the graphical user interface to perform the
docking simulations. In ADT, polar-only hydrogens and Kollman charges were added to
proteins, while ligands were subjected to additions of polar-only hydrogens and Gasteiger
charges. The docking sites were chosen based on information from the UniProt database
and based on the predictions obtained from the DoGSiteScorer tool [34,35]. The complete
3D coordinates used for docking simulations are shown in the Supplementary Material.
During the simulations, the ligand was flexible, but the protein was maintained in a
rigid modality. The affinity maps of simulations were computed using a grid spacing of
0.375Å. Additionally, we used a Lamarckian genetic algorithm for simulations employing a

www.swisstargetprediction.ch/
www.swisstargetprediction.ch/
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population of 150, with a rate of mutation of 0.2 and a maximum number of generations
of 27,000.

For every simulation, its predicted binding energy and inhibition constant were
collected. Our molecular docking methodology was validated through redocking. The
validation methodology used here is shown in the Supplementary Material.

4.6. Binding Comparison between Biguanides and L-arginine-Related Metabolites

In order to analyze the different binding modes obtained from molecular docking
simulations, Chimera X 1.2.5 was used to study the interactions, orientation, and con-
formations of biguanides and candidate metabolites in the tested targets [72]. For this
analysis, we included the conformations that showed the most negative binding energies
from the previous step. Additionally, we calculated the distances and found the established
hydrogen bonds between the different ligands and the tested targets using the H-bonds
tool from the Structure Analysis menu. According to the documentation of Chimera X 1.2.5,
the H-bonds tool identifies the possible hydrogen bonds based on the atom types present
in the macromolecule and the ligand and geometric criteria. The settings were established
as follows: the radius at 0.075 Å, the tolerance distance at 0.4 Å, and the angle tolerance at
20◦. Established interactions and conformations were compared with data from UniProt
and scientific reports. All the figures shown here were generated using Chimera X 1.2.5.

5. Conclusions

Nowadays, therapies targeting metabolic reprogramming are gaining relevance due
to the growing field of metabolomics applied to cancer research and the new findings
about metabolic vulnerabilities in some specific cancer types. Metformin has been re-
ported to alter L-arginine metabolism and other related metabolic pathways in different
biological models, including humans, such as ADT, suggesting a potential use for cancer
treatment in combination with chemotherapy. However, the molecular actions by which
metformin performed such biological effects are incomplete. Here, we demonstrated a
possible relationship between biguanides, especially metformin and buformin, with some
L-arginine-related metabolites, particularly those from creatine metabolism, using a com-
putational methodology based on cheminformatic and bioinformatic tools. The results
obtained here, and the evidence discussed may suggest a new possible mechanism of action
in which biguanides may resemble L-arginine and its related metabolites, leading to the
modulation of their corresponding targets. In the future, this structure-dependent cross
mechanism of action must be confirmed with experimental evidence. Additionally, the
elucidation of the complete metformin’s mechanism of action can contribute to establishing
better therapy interventions through the rational design of chemotherapy combinations
and the repurposing of metformin for other diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24065316/s1.
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