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Abstract: CCR5∆32 and SDF1-3′A polymorphisms were investigated in a cohort of viremia con-
trollers, without the use of therapy, along with their influence on CD4+ T lymphocytes (TLs),
CD8+ TLs, and plasma viral load (VL). The samples were analyzed from 32 HIV-1-infected in-
dividuals classified as viremia controllers 1 and 2 and viremia non-controllers, from both sexes,
mostly heterosexuals, paired with 300 individuals from a control group. CCR5∆32 polymorphism
was identified by PCR amplification of a fragment of 189 bp for the wild-type allele and 157 bp
for the allele with the ∆32 deletion. SDF1-3′A polymorphism was identified by PCR, followed by
enzymatic digestion (restriction fragment length polymorphism) with the Msp I enzyme. The relative
quantification of gene expression was performed by real-time PCR. The distribution of allele and
genotype frequencies did not show significant differences between the groups. The gene expression
of CCR5 and SDF1 was not different between the profiles of AIDS progression. There was no signifi-
cant correlation between the progression markers (CD4+ TL/CD8+ TL and VL) and the CCR5∆32
polymorphism carrier status. The 3′A allele variant was associated with a marked loss of CD4+ TLs
and a higher plasma VL. Neither CCR5∆32 nor SDF1-3′A was associated with viremia control or the
controlling phenotype.
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1. Introduction

Human immunodeficiency virus 1 (HIV-1) infection is an important cause of diseases
around the world, and since the discovery of Acquired Infectious Disease Syndrome (AIDS)
and its etiological association with HIV-1, the burden inflicted onto the human population
is still of a large magnitude. In 2020, there were approximately 37.7 million persons infected
with HIV-1 around the world, in which 35.9 million were adults and 1.8 million were
children under 14 years of age [1]. In Brazil, 342,459 new cases were reported from 2007
to June 2020, and 30,943 were from the north region of the country [2]. The prevalence
of infection in the Amazon region varies according to the group examined; for instance,
0.3% among pregnant adolescents [3], 0.64% in the Marajo Archipelago [4], 2.3% in female
sex workers and 3.7% in drug users [5].

The natural history of HIV-1 infection and the progression to AIDS in the absence of
therapeutic intervention is variable and can be classified as (i) rapid progression, when
AIDS develops in 2–3 years; (ii) typical or intermediate progression, when AIDS devel-
ops between 3 and 10 years after infection; and (iii) long-term non-progression, when
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AIDS develops slowly, such as in elite controllers, rare HIV-1 infected individuals who
control viral replication and maintain undetectable viremia, without the intervention of
antiretroviral therapy [6–10].

The control mechanisms of the virus and host factors are not yet fully known. Al-
though there is evidence that the viral strains in controllers may be less virulent than the
strains of noncontrollers [11], HIV-1 strains isolated from controllers often have replication
kinetics similar to those of other in vitro isolates and suggest that viral fitness cannot fully
explain the phenomenon [12–14]. The virus can be transmitted from a progressor who
developed AIDS to a controller, which shows the importance of host factors in the control
of infection [15]. The immune response, genetic variations, and gut translocation, which
are directly associated with the inflammatory process, may also be involved [16–18].

Several host and virus determinants have given us a better understanding of HIV-1
transmission and progression to AIDS. The immune response elicited by CD8+ T lym-
phocytes (TLs) exerts a major evolutionary pressure on HIV-1, and mutations that allow
response escape lead to more rapid progression to AIDS [19–21]. Some variants of hu-
man leukocyte antigens (HLAs) are associated with a low viral load and slow progres-
sion to AIDS (HLA-B*57 and HLA-B*27), while the HLA-B*35 variant is associated with
rapid progression [22–27].

Genetic variants that explain part of this variation were identified within or near genes
encoding the virus entry receptors in cells (such as CCR5 and CXCR4) and molecules
involved in the adaptive and innate immune response [28,29]. The CCR5 chemokine
receptor is used by HIV-1 as a fundamental coreceptor for HIV-1 fusion and entry into the
host cell [30]. At least 16 gene variants in the CCR5 gene generate changes in the encoded
amino acid. Among them is the deletion of 32 bp called CCR5∆32, which has been the most
investigated in association with several pathologies [31–36]. The homozygous CCR5∆32
mutation reduces the risk of HIV-1 acquisition, while the effect of the heterozygous mutation
appears to be null [37,38] or promotes a slower progression to AIDS [39].

Chemokine CXCL12, also known as stroma-derived factor-1 (SDF1), is the ligand of
chemokine receptor CXCR4 [40]. The change from guanine (G) to adenine (A) at position
801 (3′ untranslated region, 3′ UTR) counting from the ATG start position is a gene variant
designated SDF1-3-prime UTR-801G-A (abbreviated SDF1-3′A) or rs1801157 [41]. The A
allele is associated with increased levels of SDF1 mRNA and enhanced mRNA stability,
which has a half-life twice as long as the 3′G variant [42]. The A allele results in an increased
SDF1 concentration and is associated with protection against HIV-1 infection, especially
against syncytium-inducing (SI) variants of HIV-1 at the CXCR4 receptor level [41,43].

The identification of markers that induce a more efficient response to HIV-1 infection
and control of the infection is a challenge, including for the development of a prophylactic
or therapeutic vaccine. The evaluation of the gene variants in HIV-1 receptor proteins
expressed on the cell surface and their natural ligands may improve our understanding
of spontaneous infection control. The objective of the present study was to evaluate the
inherent contribution of the host to the control of viral replication in terms of the CCR5∆32
and SDF1-3′A gene variants and the gene expression of CCR5 and SDF1 in the different
progression profiles of HIV-1 infection.

2. Results
2.1. Epidemiological Variables, Gene Variants and Gene Expression

The epidemiological characteristics of the VC1, VC2, and NC groups were not associ-
ated with sex ratio, age, education, sexual behavior, or other risk behavior (Table 1).

The frequency distribution of the genotypes was consistent with the Hardy–Weinberg
equilibrium in the VC1, VC2, NC and control groups for the genetic variations CCR5∆32
and SDF1-3′A.

The wild-type genotype of CCR5∆32 was the most frequent among the groups. The
∆32 allele variant was not found in either VC1 nor VC2, but was twice as frequent among
the NCs (7.14%) than among the control group (3.5%). Only one individual homozygous for
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the ∆32 allele (0.33%) was found in the control group. There was no significant difference
in the distribution of genotypes or alleles between the investigated groups (Table 2).

Table 1. Epidemiological and behavioral characteristics of HIV-1-infected individuals.

VC1
(n = 2)

VC2
(n = 8)

NC.
(n = 28) p

Sex
Male 1 (50%) 3 (37.5%) 16 (57%) 0.6571

Female 1 (50%) 5 (62.6%) 12 (43%)
Age (median; Q1 and Q3) 39.5 (38–41) 31 (28–36) 35 (28–39) 0.5695
Number of school years

Illiterate 0 (0) 1 (12.5%) 0 (0) 0.9098
Primary Education 1 (50%) 3 (37.5%) 15 (53%)

Secondary Education 1 (50%) 3 (37.5%) 10 (36%)
Higher Education 0 (0) 1 (12.5%) 3 (11%)
Sexual behavior

Heterosexual 2 (100%) 6 (75%) 18 (64%) 0.5251
Homosexual man 0 (0) 0 (0) 5 (18%)

Bisexual 0 (0) 2 (25%) 5 (18%)
Other risk behavior

IVDU 0 (0) 0 (0) 2 (7%) 0.7305
NIDU 1 (50%) 5 (62%) 18 (64%) 0.9340

Sexual intercourse
without a condom 1 (50%) 2 (25%) 13 (46%) 0.5759

Anal sex 0 (0) 4 (50%) 17 (60%) 0.2080
Sex with sex worker 1 (50%) 0 (0) 5 (18%) 0.2178

HIV+ partner 2 (100%) 3 (37%) 14 (50%) 0.2430

IVDU: intravenous drug user; NIDU: non-intravenous drug user; G test.

Table 2. Distributions of genotype and allele frequencies at the CCR5∆32 and SDF1-3′A genetic
variants (rs1801157).

Genotype and
Allele Profile

VC1
(n = 2)
n (%)

VC2
(n = 8)
n (%)

NC
(n = 28)
n (%)

Control Group
(n = 300)

n (%)
p

CCR5∆32
CCR5/CCR5 2 (100) 8 (100) 24 (85.7) 280 (93.33) 0.7223
CCR5/∆32 0 0 4 (14.3) 19 (6.34)
∆32/∆32 0 0 0 1 (0.33)
* CCR5 4 (100) 16 (100) 52 (92.86) 579 (96.5) 0.3836
* ∆32 0 0 4 (7.14) 21 (3.5)

SDF1-3′A
G/G 1 (50) 7 (87.5) 12 (42.86) 180 (60.0) 0.0779
G/A 0 1 (12.5) 15 (53.57) 107 (35.67)
A/A 1 (50) 0 1 (3.57) 13 (4.33)
* G 2 (50) 15 (93.75) 39 (69.64) 467 (77.83) 0.0910
* A 2 (50) 1 (6.25) 17 (30.36) 133 (22.17)

* G test.

For the SDF1-3′A gene variant, the frequency of variant genotypes (GA and AA) was
higher in the NC group, compared to the VC1, VC2 and control groups, with a p value
close to the level of statistical significance (p = 0.0779). A higher frequency of the variant
allele (A) was also observed in the NC group, but without statistical significance (Table 2).

Some samples were not of a good enough quality to be processed adequately (degraded
RNA or low concentration of RNA) and, consequently, they were not amplified for the
targets (CCR5 and SDF) or for the endogenous control (GAPDH). The quantification of
CCR5 mRNA was performed in 10 samples from HIV-1 infected individuals (five VC2
and five NC) and 14 individuals from the control group. CCR5 mRNA levels were higher
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among NC subjects (median = 0.194) than among VC2 subjects (median = 0.111), but not
statistically significant (Figure 1A). A comparison of the gene expression level in relation to
the genotypes for the CCR5∆32 gene variant of HIV-1 infected individuals was not possible
due to the small sample size.
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Figure 1. Levels of CCR5 mRNA (A) between viremia 2 controllers (VC2) and non-controllers
(NC); (B) levels of SDF1 mRNA between VC2 and NC; and (C) according to the genotype of
the SDF1-3′A variant (rs1801157) in HIV-1 infected individuals and in the control group (CG).
RQ: relative quantification.

Eight infected samples (four from the VC2 group and four from the NC group) and
thirteen control samples were submitted for SDF1 gene expression analysis. The high-
est expression was in the NC group (median: 2.522), and the lowest in the VC2 group
(median: 0.3165), but without statistical significance (Figure 1B). Individuals homozygous
for wild-type SDF1-3′A (GG) had lower SDF1 expression. A comparison of the expression
levels of the SDF1-3′A genotypes among those infected with HIV-1 (Figure 1C), showed
no significant difference. In the control group, the carriers of wild-type genotypes (GG;
median: 1.649) had significantly lower levels of expression compared to individuals with
heterozygous variants (AG; median: 4.252; p = 0.063) and with homozygous variant geno-
types (AA; median: 4.3095; p = 0.015).

2.2. Associations between CD4+ T and CD8+ T Lymphocytes and HIV-1 Plasma Viral Load with
Infection Progression and Genetic Variants

The mean annual variations in the percentages of CD4+ T and CD8+ TLs between VC1,
VC2 and NC for HIV-1 infection and their respective controls are shown in Figure 2. VC1
and VC2 had significantly higher CD4+ TL counts (medians = 757 and 672, respectively)
than NC (median: 357) (Figure 2A). In contrast, the CD4+ TL levels of the VC1 and VC2
groups were significantly lower than the matched controls (median for VC1 control = 1041,
for VC2 = 1106 and for NC = 1105; Figure 2A).

CD8+ TL was significantly more abundant in the VC1 group (median = 1025) than in
the VC2 (median = 846) and NC (median = 912) groups (Figure 2B). All three groups had
significantly higher values than the uninfected controls (median for VC1 control = 653, for
VC2 = 674 and for NC = 660; Figure 2B).

The individual evolution of the CD4+ T and CD8+ LT biomarkers and the HIV-1
plasma viral load is shown for each individual in the Supplementary Figure S1 (VC1),
Supplementary Figure S2 (VC2) and Supplementary Figure S3 (NC), starting from the first
available measurement.

The analysis of the mean annual variation of the CD4+ and CD8+ TL counts was based
on the CAGR, which describes the annual growth rate over a given time. VC1 and VC2
counts were merged into a single group of controllers in order to improve the analysis.
Between the first and last lymphocyte count, there was a slight increase (without statistical
significance) in the CD4+ TL level in the viremia controllers and a significant decrease in
the NC group (Figure 3A). The annual variation in the CD4+ TL count was also significantly
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different between these two groups, with greater cell loss in the NC group (Figure 3B).
There was no difference in the evolution of the CD8+ T cell count or in the annual growth
rate between the controllers and NCs (Figure 3C,D).
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the CD4+ TL count calculated by the compound annual growth rate (CAGR). (C) Quantification of
CD8+ TL, absolute values. (D) Mean annual variation in the CD8+ TL count calculated by CAGR.
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CAGR was also calculated for CD4+ and CD8+ TL according to the studied gene
variant to search for associations between disease progression and the genetic profile of
the infected individual. There was a marked decrease in the CD4+ TL count in all the
groups evaluated, but this decrease was only statistically significant in individuals with
the presence of the 3′A allele variant (Figure 4A–C). The evolution of the CD8+ TL count
according to the presence of gene variants was stable in all groups, with no significant
differences (Figure 4D–F).
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Figure 4. Longitudinal evolution of LT CD4+ and LT CD8+ counts in individuals with HIV-1 carrying
the wild-type genotype and variants for SDF1-3′A and CCR5∆32. CD4+ LT quantifications of carriers
(A) of the wild-type genotypes, (B) of the SDF1-3′A variant and (C) CCR5∆32. CD8+ LT quantifica-
tions of carriers (D) of the wild-type genotypes, (E) of the SDF’-3′A variant and (F) CCR5∆32.

The HIV-1 plasma VL was compared between the different genotypes of the studied
variants, and it was significantly higher among the heterozygotes for the SDF1-3′A variant
(Figure 5).

When the VL was segmented into quintiles (from undetectable to values greater than
100,000 copies/mL, log10-adjusted), the relative representations of the three genotypes
were statistically significant according to the different quintiles. The undetectable viral load
quintile (<50 copies/mL) was over-represented by individuals with the wild-type genotype.
Counts of 50–1000 copies/mL were significantly over-represented with individuals with
the ∆32 allele, while the counts of 10,000–100,000 copies/mL were significantly over-
represented by individuals with the 3′A allele (Table 3).

Table 3. Plasma viral load of HIV-1 according to the presence of variant alleles of CCR5 and SDF1 3′A.

Alleles Wild-Type
(n = 18)

∆32
(n = 4)

3′A
(n = 18) p

Total quantifications 153 - 35 - 142 -

Viral Load n % n % n % <0.0001 *
<50 18 11.8 2 5.7 6 4.2

50|—1000 33 21.6 11 31.4 16 11.3
1000|—10,000 59 38.5 15 42. 45 31.7

10,000|—100,000 36 23.5 4 11.4 68 47.9
≥100,000 7 4.6 3 8.6 7 4.9

* G test.
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3. Discussion

This study is the first to investigate the occurrence of CCR5∆32 and SDF1-3′A gene
variant genotypes in HIV-1 infection controllers in north Brazil. The importance of studying
this population group is because the state of Para is located in the north of Brazil and
presents peculiarities when compared to the other geographical areas of the country. The
genetic background of the peoples inhabiting the Amazon region of Brazil, resulting from
the interethnic mix of the indigenous populations already residing in the area, the white
European colonizers (mainly from Portugal), and the Black African slaves brought in
for more than 350 years, since the 17th century. This genetic mix occurred all over the
country, with a different component from North to South ranging from small contributions
to very large ones according to the region involved. For instance, in northern areas, the
original Indigenous contribution is higher than those observed in southern regions, where
Europeans are predominant.

The influence of CCR5∆32 and SDF1-3′A gene variants was investigated in a cohort
of VC and NC matched with a control group. Viral controllers are fewer than 1% of
HIV-1 infected persons and occur in the absence of antiretroviral therapy [6–8,44]. Cohorts
referred to as elite suppressors, HIV-1 controllers, elite controllers, and natural controllers
have been described [7,45,46], and apparently represent the natural adaptation of the
virus to the host. In contrast, there is little information on HIV-1 control in the northern
region of Brazil [47,48].

The classification of viral replication controllers is still pending consensus [7,45,49,50].
The criteria used in the present study were previously published [47,51] and included the
CD4+ TL count (minimum of 500 cells/mm3, in 90% of the measurements), undetectable
plasma viral load, and at least 6 years of observation (reaching up to 11 years).

There are several descriptions of viral controllers, and they are similar to what was
found in the present study regarding the frequency of VC1 (0.6%), infection for 15.5 years
(median), maintaining a heterosexual relationship, CD4+ TL count of 757 cells/µL (median),
and a median time of viral replication control greater than 8 years [52–54]. The demographic
information of the investigated group was not different from that of the general population
infected by HIV-1 in Brazil. There has been no reported predominance of sex or modes of
HIV-1 infection, nor demographic or ethnic differences, in controllers, with the exception of
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a cohort of people of African descent in the USA [52]. The epidemiological variables are
similar between the VC1, VC2, and NC progression profiles [47,55,56].

The participants of the present study are part of a group with genetic markers of
Amerindians, Europeans, and Africans [57–60], and the frequency found (7.14%) of the
∆32 allele variant in HIV-1 carriers and among noninfected individuals (3.5%) is compat-
ible with that found in the north region of Brazil [61–64] and among all HIV-1 infected
individuals [65–67]. The frequencies of the ∆32 and 3′A alleles are consistent with the
observation that they vary between ethnic groups [68–71], and the group examined was
highly mixed [57].

CCR5 is a coreceptor exploited predominantly by M-tropic strains of HIV-1, and
its expression is associated with the progression to AIDS [72–74]. The CCR5∆32 variant
prevents binding to HIV-1, but does not affect the level of mRNA expression [37,68],
although the presence of the ∆32 allele and other gene variants in the promoter region of
the CCR5 gene [75,76] is associated with higher levels of CCR5 gene expression among
HIV-1 replication controllers [77]. The ∆32 variant was not found among VC1 or VC2
members, and the allele and genotype frequencies did not differ significantly among
cohorts in Brazil and the USA [46,54,78]. The absence of an association between gene
variants and infection controllers might be masked by the occurrence of two rare events
(the low number of controllers and the low frequency of the ∆32 allele). There was no
difference in the levels of CCR5 gene expression, either between people with the presence
vs. the absence of the ∆32 allele or in comparison with the control group (which had the
only homozygous genotype).

The ∆32 allele was present in heterozygosity, but did not influenced the evolution of
the CD4+ TL or CD8+ TL counts or when compared to other genetic profiles (wild-type
for ∆32 and 3′A and presence of the 3′A allele). The absence of association of the variant
with the levels of CD4+ TL differs from the suggestion that the heterozygous ∆32 allele is
associated with a slower progression to AIDS [36,37,76,79–83]. Protection is gradually lost
when viral tropism ceases to be M-tropic, begins using the CXCR4 receptor, and becomes
preferentially T-tropic and is clearly associated with a rapid decline in CD4+ TL [84–86]. Of
the four individuals, two [Supplementary Figure S3, NC II and NC XVII] may have been
re-infected by a dual-tropic strain, or they may have had a change in viral tropism, losing
the protective effect of the CCR5∆32 variant; both had decreased CD4+ TL despite the low
rate of viral replication. NC II was diagnosed in 1988 and was followed up for 9 years,
showing a progressive loss of CD4+ TL and mild control of the viral load (<5000 copies/mL,
consistently). Patient XVII was followed for 9 years, with CD4+ TL levels consistently
below 500 cells/µL and surprising viral load control (<1000 copies/mL consistently). Due
to the nature of the study, it was not possible to define the viral phenotype to test the
suggested hypothesis.

The 3′A allele variant was found, in homozygosity and heterozygosity, among VC1,
VC2, NC, and control participants, with a homogeneous distribution of the allele and geno-
type forms, which does not indicate an association between the variant and susceptibility
to certain infection or progression phenotypes. Similar frequencies of alleles and variants
between typical controllers and progressors have been previously reported [77,82,87,88].
The 3′A allele variant has been correlated with an elevated SDF1 mRNA expression and
increased SDF1 chemokine concentration in healthy individuals [42], which was corrobo-
rated by the significantly higher expression in individuals with the GA and AA genotypes
in comparison with those with the GG genotype in the control group.

The levels of SDF1 are considered to be high among HIV-1 viral replication con-
trollers [49,77], which was not found among VC1 and VC2. The small sample size and the
additional segregation according to genotype may have reduced the chance of demonstrat-
ing an effect on the SDF1 level. The recommendation of immediate treatment [89] after
diagnosis of HIV-1 infection (“test and treat”), makes the evaluation of a rare event even
more difficult to study.
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The influence of the SDF1-3′A variant on HIV-1 infection is still controversial. The 3′A
allele has shown a positive influence in delaying the progression to AIDS [41,90,91], and
with higher rates of CD4+ TL decline and progression to AIDS [92–96]. In our cohort, the
mean annual variation in the CD4+ TL or CD8+ TL count was not different between the
groups considering or the allele variants, but there was a significant decline in CD4+ TL
among the carriers of the 3′A allele variant and not to those with the ∆32 allele variant or
the wild-type allele. The plasma VL was also significantly higher among carriers of the 3′A
variant, suggesting an accelerated progression to AIDS.

SDF1 is the only natural ligand of CXCR4, and the change in viral tropism may occur
by altering the expression of SDF1 induced by the 3′A allele. The follow-up of a cohort for
10 years suggested the involvement of the 3′A allele with a higher probability of presenting
X4/IS strains and faster progression to AIDS [94]. In contrast, this association was not seen
in an in vitro tropism evaluation between the SDF1-3′A genotypes and the prevalence of
primary IS/NIS isolates [92,93]. The levels of SDF1 expression are divergent and may delay
the progression to AIDS [41,97–99] or favor the progression to AIDS [93,94,100]. The 3′A
allele may be associated with higher [97,100] or lower SDF1 expression [87] or in association
between genotypes and expression levels [101]. Similarly, a positive or negative correlation
between SDF1 protein levels and CXCR4 expression in CD4+ TL has been observed, which
varied according to the stage of infection [100].

The different definitions of viremia controllers is the most probable cause for the great
divergence of the published results. The maintenance time for the minimum conditions of
infection control should be included and followed throughout the observation period. The
inclusion of persons who spend months or a few years with a sustained CD4+ TL count
and low or no viral load should not be acceptable. Other variables need to be characterized,
such as the natural ligands of CCR5 RANTES and the macrophage inflammatory protein
1α (MIP-1 α) [10,102]; immune response genes—the human leukocyte antigen (HLA)
and NK cell immunoglobulin-like receptor [50,103,104], β-defensin [105], and Toll-like
receptors [106]; and the profile of expressed cytokines [47,49,55], which play a suppressive
role in HIV-1 replication and affect the natural history of HIV-1 infection. The variations
in the CCR5 and SDF genes may not be sufficient to control the viral load and restore the
CD4+ TL repertoire.

No VL blips were observed among the VC1, but they were observed among the VC2,
although they were controlled without the use of ART, even when the VL reached up to
10,000 copies. The time interval for measuring the HIV-1 plasma viral load sometimes
reached six months apart. It is possible that viral blips could have been missed among the
viral controllers. However, if that was the case, recovery would occur efficiently without
the use of ART. Viral persistence in the lymph nodes was not sufficient to act as a virus
repository [55,107,108], as observed among controllers.

The ∆32 allele and the 3′A allele were found more frequently among individuals in
different quintiles of VL (1000 copies/mL and up to 100,000 copies/mL). Persistent activa-
tion of the immune system to HIV-1 infection leads to high levels of CD8+ TL activation,
and a progressive decline in CD4+ TL [109,110]. Even among viremia controllers, in the
absence of ART, viremic episodes induce chronic immune activation and inflammation and
decrease CD4+ TLs [7,46,78]. The heterozygosity (GA) for the SDF1-3′A variant showed a
possible influence on the plasma VL of HIV-1, and the distribution of VL values was lower
among individuals with the wild-type genotype, which indicates that they provide better
spontaneous control of the VL than those with an allele variant.

CD4+ TL decreased significantly among the NC, which is a common occurrence among
non-controllers [110]. However, the counts and the evolution of the counts, measured by
CAGR, were consistently high among the viremia controllers, even if they were below
the median found in the control group. The groups of viremia controllers are usually
heterogeneous, and there are conflicting results, with some controllers experiencing an
initial increase in CD4+ TL followed by temporary stability and others showing a gradual
decrease [111], with their CD4+ TL counts remaining stable and without evidence of
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immunological activation [112] or exhibiting levels of CD4+ TL and CD8+ TL activation
and significant loss of CD4+ TL [110,113].

The depletion of CD4+ TL is usually accompanied by the inversion of the relationship
with CD8+ TL [114]. In our cohort, the CD8+ TL counts and the evolution of the counts,
measured by CAGR, in the controllers and non-controllers were continuously stimulated
and were significantly higher than those in the noninfected controls. CD8+ TL play a role
in the pathogenesis of HIV-1, but it is thought that there is an increase in the strength of the
immune response [115,116] to change the outcome of the infection by suppressing viral mul-
tiplication and decreasing the viral load [117,118], by maintaining adequate levels of IFN-γ,
which acts on the innate response, and by means of cytotoxic CD8+ TL action [119,120].

The present study shows an association between the 3′A allele variant and the decline
in CD4+ TL, probably due to an increased expression of SDF1 mRNA during the more
advanced stages of HIV-1 infection, but the presence of the CCR5∆32 and SDF1-3′A gene
variants were not associated with a better response against viral multiplication or control
by the host.

It is a common observation that the occurrence of persons considered as replication
controllers is a very rare event and, consequently, this makes it difficult to conduct appro-
priate statistical tests. Conversely, the use of methods that mimic epidemiological studies
applied to rare events, as the small numbers of viremia controllers (VC1 and VC2), the
amplification of numbers by counting all variables as multiple persons (similarly to the def-
inition of “person/years” in rare epidemiological events) and the use of statistical methods
such as CAGR, which is commonly used in economics to evaluate trends, are innovative
approaches to improve the understanding of the influence of the polymorphism.

Although lymphocyte functionality was not measured, the relative and absolute counts
of CD4+ TL and CD8+ TL should continue to be relevant variables for the maintenance
and monitoring of HIV-1 carriers, be they controllers or non-controllers.

4. Materials and Methods
4.1. Type of Study and Selection Criteria

The present study is a retrospective cohort of HIV-1 infected persons attending the
AIDS State Reference Unit continuously and on a regular basis (at least 6 years) from
2007–2015, according to their medical records, which served as the basis for a prospective
clinical study of virological progression, host response and to define host genetic variants.
HIV-1 viremia controllers are extremely rare, and their detection is a difficult task during
a routine clinical observation by a physician, as it takes some time to define the chance
of viral replication control. Consequently, they could not be selected at random (or other
types of recruitment) or define the sample calculation. The official decision of the Brazilian
Ministry of Health for testing everyone as soon as the laboratory diagnostic is defined (“test
and treat”) made it an even rarer opportunity to understand the pathogenesis of HIV-1 a
bit further with this selective group of persons.

The criteria for defining the groups involved were previously published [47]. Viremia
controllers 1 and 2 (VC1 and VC2) and viremia non-controllers (NC) were defined according
to their number of years postdiagnosis (at least 6 years), CD4+ and CD8+ TL counts, and
plasma viral load (VL), with measurements at least twice a year, in the absence of specific
HIV-1 therapy.

Table 4 lists the main characteristics of the three groups (VC1 = 2; VC2 = 8; NC = 28).
They were all treatment naïve, and the initiation of antiretroviral therapy (ART) at any time
resulted in exclusion from the study. Individuals older than 18 years of age of both sexes
residing in the state of Pará, Brazil, seen at the Reference Unit for Special Infectious and
Parasitic Diseases (URE-DIPE), who are part of the monitoring of the National Network of
CD4+ TL count and plasma VL, were included in the study. The samples were part of the
collection of biological materials of the Laboratory of Virology (LabVir), Institute of Biologi-
cal Sciences, Federal University of Pará (ICB/UFPA). A control group of 300 non-infected
individuals was recruited at random in order to compare the host genetic variants between
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the control individuals and the infected patients. The control samples were obtained
from regular blood donors of the Fundação HEMOPA and were matched (seven to nine
uninfected to each infected person) by sex and age (range of five years up or down).

Table 4. Distribution of the groups examined, according to sex and age, and criteria for defining the
viremia controller and non-controller groups.

Groups According to
Disease Progression

Males
Age (Range)

Females
Age

(Range)

Length of
Infection

(Years)

CD4 + T
Lymphocytes HIV-1 Viral Load Remarks

VC1
VIREMIA

CONTROLLERS1

1
(52)

1
(45) >6 >500 cells/mm3 <50 copies/mL

No episodes of
viral load increase;

CD4+ T > 500 cells/mm3

in 90% of measurements;
stable for more
than 6 years; no

ART intervention

VC2
VIREMIA

CONTROLLERS 2

3
(34–47)

5
(35–53) >6 >500 cells/mm3 ≤log104 (≤10,000

copies/mL)

Episodes of increased
HIV-1 viral load; decrease

in CD4+ TL in ~40% of
counts; natural remission
to regular levels without

ART intervention

NC
NON-VIREMIA
CONTROLLERS

16
(28–68)

12
(24–68) >6 <500 cells/mm3 >log104 (>10,000

copies/mL)

The project was approved by the Ethics Committee of the Tropical Medicine Center of
the Universidade Federal do Para (#275.456), and informed consent was obtained from all
subjects involved in the study.

4.2. Data Collection

The behavioral and risk factors for HIV-1 infection were assessed based on data col-
lected from the LabVir-ICB/UFPA database obtained in interviews with the participants.
The data were collected from 2007 to 2015 for the quantification of CD4+ TL/CD8+ TLs
and VL from the database of the Laboratory Examination Control System of the National
Network of CD4+/CD8+ Lymphocyte Count and Viral Load (SISCEL), of the Brazilian
Ministry of Health. Information on the use of ART was obtained by consulting the med-
ical records of URE-DIPE and the Logistic Control System of Antiretroviral Medicines
(SICLOM), also from the Brazilian Ministry of Health, which records and manages the
dispensing of antiretroviral drugs to patients of Brazil’s national health system network.

4.3. Quantification of the Plasma Viral Load of HIV-1 and CD4+/CD8+ TLs

CD4+ TL and CD8+ TLs were quantified by flow cytometry (BD FACSCaliburTM,
Becton & Dickinson, Franklin Lakes, NJ, USA) with the FACSCountTM Reagents monitor-
ing kit, following the protocol recommended by the manufacturer (Becton & Dickinson,
Franklin Lakes, NJ, USA). The viral load was quantified by real-time PCR using the Sam-
ple Purific CV HIV-1 extraction kit (Abbott, Chicago, IL, USA) and the HIV-1 viral load
amplification kit (Abbott, Chicago, IL, USA). The units used were copies/mL and log10.
The determinations followed the standard established by the National Network for the
Determination of CD4+ and CD8+ T cells and Viral Load of the Department of HIV/AIDS
and Viral Hepatitis of the Brazilian Ministry of Health. A statistical evaluation of the
plasma levels of CD4+ and CD8+ TL was performed on the median values of each group.

4.4. Identification of CCR5∆32 and SDF1-3′A Polymorphisms

The DNA was extracted from peripheral-blood leukocytes by the phenol–chloroform
method [121]. The genotypes of CCR5∆32 and SDF1-3′A were previously defined [41,46].
The CCR5∆32 gene variants was identified by conventional PCR in the amplification of
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189 bp for the wild-type allele and 157 bp for the ∆32 allele of the CCR5 gene, as previously
described [80]. For the SDF1-3′A gene variant, conventional PCR followed by restriction
fragment length polymorphism analysis was used, in which the amplified products were
incubated with restriction endonucleases, visualized, and compared on fragment sizes, as
described previously [41]. The PCR-RFLP protocol included the Sanger sequencing for the
verification of the efficiency and reproducibility of the method in the detection of wild and
mutant alleles of both genes.

4.5. RNA Extraction

RNA was extracted from peripheral-blood leukocytes with the Total RNA Purification
Kit (Norgen, Biotek Corporation®, Thorold, ON, Canada) following the manufacturer’s
instructions. The RNA concentration (ng/µL) was obtained by analysis on the QubitTM
Quantitation Platform fluorimeter (Invitrogen®, Waltham, MA, USA). The concentration of
each total RNA sample was adjusted to 60 ng/µL for cDNA synthesis.

4.6. Reverse Transcription for Complementary DNA (cDNA) Synthesis

The extracted RNA was converted into cDNA using the High Capacity cDNA Re-
verse Transcription® with RNase Inhibitor kit (Applied Biosystems, Foster City, CA, USA).
For the reaction, a mix was prepared with a final volume of 20.0 µL containing 2 µL of
10× RT Buffer, 0.8 µL of 25× dNTP Mix (100 nM), 2 µL of random primer, 1 µL of Mul-
tiScribeTM Reverse Transcriptase, 1 µL of RNaseOUTTM, and 3.2 µL of ultrapure water,
provided by the kit, plus 10.0 µL of extracted RNA. The mixture was run in a Mastercycler
Personal thermocycler (Eppendorf, Hamburg, Germany) at 25 ◦C for 10 min, at 37 ◦C for
120 min, and at 85 ◦C for 5 min.

4.7. Gene Expression

The qPCRs were standardized with the cDNA and probes (endogenous genes and
target genes) to calculate the efficiency of the amplification reactions by testing different
cDNA concentrations (undiluted, 1:2, 1:4, 1:8, and 1:16) in triplicate plate wells (the same
cDNA in different dilutions and with different probes) for the construction of the efficiency
curve and validation of the 2-∆∆CT analytical method. We assumed that all assays had an
efficiency of 100% (±10) [122].

The reactions were performed in the StepOnePLUS™ Real-Time PCR System (Applied
Biosystems, Foster City, CA, USA) according to the manufacturer’s protocol. The TaqMan®

Gene Expression Assay (Applied Biosystems, Foster City, CA, USA) used primers and
probes specific to each target gene (CCR5: Hs00152917_m1; SDF1: Hs00171022_m1) and the
endogenous control GAPDH (HS02758991_g1). Each reaction had 15 µL of 2× TaqMan®

Universal PCR Master Mix, 1.5 µL of 20× TaqMan Gene Expression Assays, 3 µL of cDNA,
and 10.5 µL of RNase-free water. The thermocycling conditions were 2 min at 50 ◦C, 10 min
at 95 ◦C, and 40 cycles of 15 s at 95 ◦C and 1 min at 60 ◦C.

4.8. Statistical Analysis

The epidemiological and behavioral characteristics are described using descriptive
statistics; the categorical variables are presented as frequencies and percentages, and the
numerical variables are presented as median and quartile spread or mean and standard
deviation. The numerical variables were evaluated for the normality and homogeneity of
variances by the Kolmogorov–Smirnov and Levene tests, respectively.

The G test was used to compare the epidemiological and behavioral characteristics
and the distribution of genotype and allele frequencies between the groups. The evaluation
of the levels of gene expression in relation to the studied groups and the genotypes was
performed by the Mann–Whitney and ANOVA or Kruskal–Wallis tests, respectively.

In order to approach the problem of analyzing the information dealing with a restricted
number of persons or rare events (such as the viremia controllers), a similar definition
of “number of persons/years”, a common definition in epidemiological studies, was
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adopted. All the available measures of T CD4+, T CD8+ lymphocyte counts and plasma
viral load were used and considered to be from a single individual measure. The use of
the compound annual growth rate (CAGR) for the longitudinal analysis (a method which
is used in economics) is also a commonly accepted statistical approach for this particular
situation [55]. With this practice, the numbers are brought to a reasonable figure, and
sufficient to allow a proper statistical evaluation.

The Kruskal–Wallis and Mann–Whitney tests, respectively, were applied to compare
the levels of the CD4+ and CD8+ TLs between the groups and the levels of each group with
their respective controls. An analysis was performed on the mean annual variations of the
percentages of the CD4+ T and CD8+ TLs, which were calculated by their CAGR [55]. The
results of this variation were compared between the VC and NC groups and according to
the genetic profile by using the Mann–Whitney test. The paired Wilcoxon test was used to
evaluate between the first and the last CD4+ and CD8+ TL counts.

The Mann–Whitney test and the G test were performed to find any association between
the genetic profile and the plasma VL. The tests were run in BioEstat 5.3 software and
GraphPad Prism software. Associations with p < 0.05 were considered significant.

5. Conclusions

Knowledge about the characteristics of HIV-1 viremia controllers, including their
genetic background, is useful in order to learn about the pathogenesis of the virus. The
recent adoption of a new protocol for immediate treatment at diagnosis will further reduce
the chances of finding controllers and forming new cohorts that allow long periods of
observation without the use of therapy. The influence of genetic markers, particularly
the CCR5∆32 and SDF1-3′A polymorphisms, on the relationship between controllers and
non-controllers of HIV-1 viremia remains unclear.
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