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Abstract: Non-alcoholic fatty liver disease (NAFLD) can progress to non-alcoholic steatohepatitis
(NASH), characterized by inflammation and fibrosis. Fibrosis is mediated by hepatic stellate cells
(HSC) and their differentiation into activated myofibroblasts; the latter process is also promoted by
inflammation. Here we studied the role of the pro-inflammatory adhesion molecule vascular cell
adhesion molecule-1 (VCAM-1) in HSCs in NASH. VCAM-1 expression was upregulated in the liver
upon NASH induction, and VCAM-1 was found to be present on activated HSCs. We therefore
utilized HSC-specific VCAM-1-deficient and appropriate control mice to explore the role of VCAM-1
on HSCs in NASH. However, HSC-specific VCAM-1-deficient mice, as compared to control mice, did
not show a difference with regards to steatosis, inflammation and fibrosis in two different models of
NASH. Hence, VCAM-1 on HSCs is dispensable for NASH development and progression in mice.

Keywords: non-alcoholic fatty liver disease (NAFLD); non-alcoholic steatohepatitis (NASH); hepatic
stellate cells (HSCs); vascular cell adhesion molecule 1 (VCAM-1)

1. Introduction

With the continuously expanding obesity pandemic, the prevalence of nonalcoholic
fatty liver disease (NAFLD) is constantly increasing [1]. NAFLD is highly associated
with insulin resistance, metabolic syndrome and type 2 diabetes and comprises a spec-
trum of liver pathologies [2–4]. Specifically, apart from benign hepatic steatosis, which is
characterized by elevated lipid accumulation in hepatocytes, the disease can progress to
non-alcoholic steatohepatitis (NASH), characterized by hepatocyte damage, inflammation
and fibrosis. NASH affects approximately 1 in 5 NAFLD patients and poses a significantly
higher risk for development of cirrhosis and hepatocellular carcinoma (HCC) [5,6]. Since
FDA approved treatments for NASH are missing, novel therapeutic strategies are of urgent
need [7].

Inflammation is considered a major instigator for the progression of simple steatosis
to NASH, with infiltrating monocyte-derived macrophages and activated Kupffer cells
playing a cardinal role in this process, via the secretion of inflammatory cytokines and
chemokines, such as IL-1b, TNF and CCL-2, as well as major pro-fibrotic mediators, such
as TGF-β [8–10]. Importantly, these mediators lead to activation of hepatic stellate cells
(HSCs), which constitute the principal fibrogenic cell type of the liver. Indeed, upon hepatic
damage, HSCs become activated and transdifferentiate into an elongated population of
myofibroblasts that produce large amounts of extracellular matrix (ECM) [11]. Continuous
HSC activation in response to sustained hepatic damage results to excessive ECM accumu-
lation causing liver fibrosis and scarring, a feature of chronic hepatic disorders including
NASH [11].
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Despite the multiple soluble mediators, which have been described to activate HSCs
in a paracrine fashion provoking their differentiation into myofibroblasts, previous stud-
ies have shown that HSCs may also interact with other cells in a direct manner. For
instance, HSCs express major histocompatibility molecules (MHC) of both class I and class
II, as well as costimulatory molecules, such as CD86 [12,13]. Moreover, pro-inflammatory
adhesion molecules, such as VCAM-1, are upregulated in HSCs under inflammatory condi-
tions [14–16]. VCAM-1 represents a major counter-receptor for α4β1 integrin in different
leukocytes [17–19]. In the liver, VCAM-1 in sinusoidal endothelial cells plays a role for
leukocyte adhesion during NASH and contributes to fibrosis [20,21].

Interestingly, Lefere et al. reported that serum VCAM-1 levels predicted hepatic
fibrosis in patients with NAFLD, indicating a potential role of VCAM-1 in the fibrotic
pathogenesis of NASH [22]. Considering the special position of HSCs, which line the space
of Disse, and previous findings that VCAM-1 is upregulated in these cells by different
inflammatory triggers [14–16], we aimed here to investigate the role of VCAM-1 in HSCs for
NASH development and progression. To this end, we utilized mice deficient for VCAM-1 in
HSCs and appropriate control mice that were subjected to two different established models
of diet-induced NASH. Our findings demonstrate that VCAM-1 in HSCs is dispensable for
inflammation and fibrosis during NASH.

2. Results
2.1. VCAM-1 Is Upregulated in the Liver during NASH and Expressed by Activated HSC

Leukocyte integrins have been implicated in fibrotic liver diseases [23]. Previous stud-
ies investigating the integrin ligand VCAM-1 focused on the hepatic endothelium [20,21],
while only a few studies have mentioned the expression of VCAM-1 in HSCs, without
providing any mechanistic evidence on its possible role in HSC function and HSC-related
pathophysiology during NAFLD and NASH [14,15]. Therefore, we first fed wild-type mice
with a control diet (ND) or a methionine-low, choline-deficient high-fat diet (HCD) for
6 weeks, as described in the Materials and Methods, to induce NASH, and we assessed the
expression of α4 integrin, the receptor of VCAM-1, on different leukocyte subpopulations,
utilizing flow cytometry. Expression of α4-integrin was upregulated upon NASH induction
on monocytes, Kupffer cells and monocyte-derived macrophages (Figure 1A). Moreover,
the mRNA expression of VCAM-1 was upregulated in the livers of NASH mice (Figure 1B).
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Figure 1. Expression of hepatic VCAM-1 and α4 integrin on monocytes, Kupffer cells and
monocyte-derived macrophages during NASH. Wild-type mice were fed a HCD or ND for
6 weeks. (A) The expression of α4 integrin (CD49d) was analyzed by flow cytometry. Data are
expressed as median fluorescence intensity (MFI) units of α4 integrin on monocytes (Mo, defined as
CD11b+Ly6G−SigF−F4/80−Ly6C+), Kupffer cells (KC, defined as CD11b+Ly6G−SigF−F4/80+Ly6C−)
and monocyte-derived macrophages (MoMF, defined as CD11b+Ly6G−SigF−F4/80+Ly6C+).
(B) Vcam1 mRNA expression in the liver from mice fed a ND or HCD. The expression of 18S was
used for normalization and Vcam1 expression of ND-fed mice was set as 1. Data are presented as
mean ± SEM, n = 5 mice/group. * p < 0.05, ** p < 0.01, *** p < 0.001.
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As HSCs have been previously reported to express VCAM-1, and given its upreg-
ulation in the NASH liver, we next sought to investigate the expression and function of
VCAM-1 in HSCs during NASH. To study VCAM-1 expression in activated HSCs dur-
ing NASH, we first performed immunofluorescence stainings for VCAM-1 together with
desmin, a marker of activated HSC, in liver sections from wild-type mice subjected to
HCD-induced NASH (Figure 2A). Indeed, VCAM-1 showed substantial co-localization
with desmin, thus confirming the presence of VCAM-1 in activated HSCs (Figure 2A). In
order to further strengthen this finding, we applied the aforementioned staining strategy
in liver sections from HSC-specific VCAM-1-deficient mice and control mice with floxed
Vcam-1 (Cre+Vcam1f/f and Cre-Vcam1f/f, respectively) that received the HCD (Figure 2B).
Quantification of the immunofluorescence analysis in the stained liver sections revealed
that VCAM-1 expression in HSCs was significantly reduced in Cre+Vcam1f/f mice as com-
pared to the Cre-Vcam1f/f mice (Figure 2B). Thus, this staining corroborated that VCAM-1
is expressed by activated HSCs and confirmed the sufficient deletion of VCAM-1 in HSCs in
Cre+Vcam1f/f mice (Figure 2B). In addition, both mRNA and protein expression of VCAM-
1, as assessed by qPCR and Western Blot analysis, respectively, were significantly reduced
in livers of HCD-fed Cre+Vcam1f/f mice, as compared to Cre-Vcam1f/f mice (Figure 2C,D).
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Figure 2. VCAM-1 is expressed in activated HSCs during NASH. (A) Wild-type mice were fed a
HCD for 6 weeks and immunofluorescence images of liver sections stained for VCAM-1 (red) as well
as for the HSC marker desmin (green) are shown. Pseudocolored images are shown; scale bar is
50 µm. (B) HSC-specific VCAM-1-deficient mice and control mice (Cre+Vcam1f/f and Cre-Vcam1f/f,
respectively) were fed a HCD for 6 weeks. Immunofluorescence staining for VCAM-1 (red) and
desmin (green) was performed in liver sections and representative images are shown (left). Pseudo-
colored images are shown; scale bar is 50 µm. Moreover, quantification is presented (right); data are
expressed as the % of VCAM-1 staining-positive area overlapping with desmin staining-positive area
per field of vision (n = 3 per group). (C) Vcam1 mRNA expression in livers from Cre-Vcam1f/f and
Cre+Vcam1f/f mice fed a HCD for 4 weeks was analyzed by qPCR. 18S was used for normalization
and Vcam1 expression of Cre-Vcam1f/f mice was set as 1 (n = 5 per group). (D) Immunoblot analysis
for VCAM-1 and Vinculin in protein homogenates from livers of Cre-Vcam1f/f and Cre+Vcam1f/f

mice fed a HCD for 4 weeks (left) and quantification of VCAM-1 expression (right) are shown. The
results regarding VCAM-1 protein expression are normalized to those of Vinculin and presented as
relative to Cre-Vcam1f/f, set as 1 (n = 5 per group). Data are presented as mean ± SEM. ** p < 0.01,
*** p < 0.001.

2.2. VCAM-1 in HSCs Is Dispensable for NASH Development

Next, in order to study the potential role of VCAM-1 in HSCs for the development
and progression of NASH, a comprehensive analysis of the livers of Cre-Vcam1f/f and
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Cre+Vcam1f/f mice was performed. Despite the expression of VCAM-1 in activated HSCs
in NASH, HSC-specific VCAM-1 deficiency did not affect the grade of steatosis and fibrosis
upon HCD feeding (Figure 3A,B).
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Figure 3. VCAM-1 in HSCs is dispensable for HCD-induced NASH development. HSC-specific
VCAM-1-deficient mice and control mice (Cre+Vcam1f/f and Cre-Vcam1f/f, respectively) were fed a
HCD for 6 weeks. Representative images of H&E staining (A) and Picro Sirius staining (B) from liver
sections of Cre-Vcam1f/f and Cre+Vcam1f/f mice are shown. In B (right), quantification of images of
Picrosirius staining is shown. The data (percentage of Picrosirius positive area per field of vision) are
presented as relative to Cre- mice, set as 1 (n = 6–7). Data are presented as mean ± SEM. Scale bars
are 100 µm.

To assess NASH-related inflammation, we analyzed leukocyte populations by flow
cytometry. No differences between HCD-fed Cre-Vcam1f/f and Cre+Vcam1f/f mice were
observed with regards to the numbers of hepatic total leukocytes, neutrophils, Kupffer
cells, monocyte-derived macrophages and infiltrating monocytes, as evaluated by flow
cytometry analysis (Figure 4A). Moreover, quantitative PCR analysis of the expression
of genes related to inflammation (Tnf, Il6, Il1b) and fibrosis (Tgfb1, Acta2, Col1a1, Desmin,
Timp1) did not reveal any differences due to HSC-specific VCAM-1 deficiency (Figure 4B).

As, in the HCD-NASH model, liver pathology develops owing to choline deficiency
in the diet, we next engaged a second model of NASH, in which pathology develops
in a different fashion. In particular, we used a 12-week western diet with high sugar
supplementation in the water in conjunction with CCl4 administration to accelerate fi-
brosis development (Figure 5A); this model was recently shown to mimic histological
and transcriptomic characteristics of human NASH [24]. There was no difference in liver
weight between Cre-Vcam1f/f and Cre+Vcam1f/f at the end of the feeding period. Systemic
metabolism, as assessed by the levels of fasting glucose and triglycerides, was also not
different between the two strains (Figure 5B,C). Consistent with the findings from the
HCD-model, neither steatosis nor fibrosis was altered in HSC-specific VCAM-1 deficient
mice, as compared to the control mice (Figure 5D,E).
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Figure 5. No difference in severity of NASH, induced in a western diet/CCl4 model, between 
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Figure 4. No difference in immune cell populations, inflammation- and fibrosis-related gene
expression between HSC-specific VCAM-1-deficient and control mice upon HCD diet. Cre-
Vcam1f/f and Cre+Vcam1f/f mice were fed a HCD for 6 weeks. (A) Flow cytometry anal-
ysis of cells isolated from the liver of the mice is shown. The number of total leuko-
cytes (defined as CD45+ cells), neutrophils (Neu, defined as CD45+CD11b+Ly6G+), Kupffer
cells (KC, defined as CD45+CD11b+Ly6G−SigF−F4/80+Ly6C−), monocyte-derived macrophages
(MoMF, defined as CD45+CD11b+Ly6G−SigF−F4/80+Ly6C+) and monocytes (Mo, defined as
CD45+CD11b+Ly6G−SigF−F4/80−Ly6C+) per gram of liver were analyzed and are presented relative
to the numbers from Cre-Vcam1f/f mice, set as 1 (n = 6–7). (B) Inflammation- and fibrosis-related
gene expression in the liver of Cre-Vcam1f/f and Cre+Vcam1f/f mice was analyzed by qPCR. 18S was
used for normalization of mRNA expression and the expression of each gene is presented relative to
that of Cre-Vcam1f/f mice, set as 1 (n = 3–4). Data are presented as mean ± SEM.
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and Cre+Vcam1f/f were fed a western diet, accompanied by high fructose- and glucose-containing
drinking water and combined with a weekly low dose of carbon tetrachloride (CCl4) administered
intraperitoneally for 12 weeks, as described in Materials and Methods. (B) Liver weight at the end
of the feeding period is shown and expressed as percentage of body weight. (C) Levels of fasting
blood glucose and triglycerides (TG) after 11 weeks of feeding. (D,E) Representative images of H&E
staining (D) and Picrosirius staining (E) from liver sections of Cre-Vcam1f/f and Cre+Vcam1f/f mice
are shown. Scale bars are 100 µm. In (E) (right), quantification of Picrosirius staining is also shown.
The data (percentage of Picrosirius positive area per field of vision) are presented as relative to Cre-
mice, set as 1. Data are presented as mean ± SEM (n = 6 for Cre-Vcam1f/f and n = 5 for Cre+Vcam1f/f).

Moreover, analysis of the inflammatory milieu of the liver of Cre-Vcam1f/f and
Cre+Vcam1f/f mice by flow cytometry displayed no differences in the numbers of hepatic
total leukocytes, neutrophils, Kupffer cells, monocyte-derived macrophages and infiltrating
monocytes (Figure 6A). Furthermore, expression of genes related to inflammation (Tnf,
Il6, Il1b) and fibrosis (Tgfb1, Acta2, Col1a1, Desmin, Timp1) was also not affected by HSC-
specific VCAM-1 deficiency (Figure 6B). Together, VCAM-1 in HSCs does not contribute to
liver steatosis, inflammation or fibrosis development in the course of NAFLD/NASH, as
assessed in two different experimental models.
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Figure 6. HSC-specific VCAM-1-deficiency is not linked to altered hepatic inflammation during
western diet- and CCl4 –induced NASH. Cre-Vcam1f/f and Cre+Vcam1f/f were fed a western diet,
accompanied by high fructose- and glucose-containing drinking water and combined with a weekly
low dose of carbon tetrachloride (CCl4) administered intraperitoneally for 12 weeks, as described in
Materials and Methods and shown in Figure 5A. (A) Flow cytometry analysis of cells isolated from the
liver of the mice is shown. The number of total leukocytes (defined as CD45+ cells), neutrophils (Neu,
defined as CD45+CD11b+Ly6G+), Kupffer cells (KC, defined as CD45+CD11b+Ly6G−F4/80+Ly6C−),
monocyte-derived macrophages (MoMF, defined as CD45+CD11b+Ly6G−F4/80+Ly6C+) and mono-
cytes (Mo, defined as CD45+CD11b+Ly6G−F4/80−Ly6C+) per gram of liver were analyzed and are
presented relative to the numbers from Cre-Vcam1f/f mice, set as 1. (B) Inflammation- and fibrosis-
related gene expression in the liver of Cre-Vcam1f/f and Cre+Vcam1f/f mice was analyzed by qPCR.
18S was used for normalization of mRNA expression and the expression of each gene is presented as
relative to that of Cre-Vcam1f/f, set as 1. n = 6 for Cre-Vcam1f/f and n = 5 for Cre+Vcam1f/f. Data are
presented as mean ± SEM.
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3. Discussion

HSCs are the cellular mediators of fibrosis during NASH via their differentiation
from their quiescent state to activated HSCs and myofibroblasts [9,25]. Their activation
is mediated by soluble mediators such as IL-1 and TNF, secreted by hepatocytes and
several populations of immune cells, as well as major fibrosis-promoting factors such as
TGF-β, expressed mainly by activated macrophages, both Kupffer cells and infiltrating
monocyte-derived macrophages [9,26,27]. In contrast, less information exists about the
role adhesion receptors, such as VCAM-1, may play in the context of HSC activation
and transdifferentiation into myofibroblasts, although previous studies have reported
upregulation of VCAM-1 in activated HSCs [14–16].

This prompted us to study the role of VCAM-1 in HSCs during NASH. We hypoth-
esized that VCAM-1 in HSCs could regulate the accumulation of leukocyte populations
in the liver microenvironment during NASH, or regulate intracellular signaling processes
involved in HSC transdifferentiation into myofibroblasts. In line with this hypothesis, we
have previously shown that adhesion of macrophages onto adipocytes, which are also
cells of mesenchymal origin, in a manner that involved adipocyte VCAM-1 expression, can
modulate their functional properties [19]. Herein, we first observed an upregulation of
VCAM-1 expression in livers from NASH mice as compared to control mice, accompanied
by upregulation of α4 integrin, the receptor of VCAM-1, on monocytes, Kupffer cells and
monocyte-derived macrophages. By immunofluorescence analysis of liver sections we
confirmed the presence of VCAM-1 in HSCs, utilizing desmin as a pan-HSC marker. It
should be noted that other markers, such as a-SMA, which is specific for activated-HSCs,
were not used in the present study. However, as the model of HCD-induced NASH in
mice displays extensive liver fibrosis [21,28–30], the majority of HSCs have likely acquired
an activated state; hence, our co-staining of liver sections for VCAM-1 and the pan-HSC
marker desmin suggests the presence of VCAM-1 on activated HSCs. Previous studies
have reported an upregulation of VCAM-1 in the liver and specifically in HSCs under
inflammatory conditions, e.g., upon LPS administration or CCl4-induced fibrosis [14–16].
Importantly, TLR-4 activation of HSCs led to VCAM-1 upregulation [16]. However, the
function of VCAM-1 in HSCs was not studied under NASH conditions so far.

Despite the interesting finding that VCAM-1 expression in HSCs was enhanced during
NASH, HSC-specific VCAM-1 deficient mice did not display any differences in steatosis,
inflammation and fibrosis, compared to the control mice, as assessed by histology, flow
cytometry and gene expression studies in the HCD-induced model. The HCD model is
nowadays widely utilized for NASH studies [21,28–30]. We further confirmed our findings
by subjecting HSC-specific VCAM-1 deficient and control mice to a second model of NASH
induction, which is of longer duration as compared to the HCD, while mimicking several
aspects of human NASH [24]. The absence of difference in the phenotype of Cre+Vcam1f/f

mice as compared to the Cre-Vcam1f/f ones upon NASH induction in the latter model
confirmed that VCAM-1 in HSC is dispensable for the progression of the disease. It is
possible that other adhesion molecules expressed in HSCs may have compensated for
the absence of HSC VCAM-1 in the Cre+Vcam1f/f mice; thus a potential function of HSC
VCAM-1 in NASH cannot be entirely excluded. Additionally, we can conclude that HSC
VCAM-1 is dispensable for disease development and progression only in the two NASH
models used. We cannot exclude that HSC VCAM-1 could play a role in a NASH or liver
fibrosis model different from the two models used here. On the contrary, VCAM-1 on LSEC
has a role for the accumulation of leukocytes during NASH, thereby accelerating hepatic
inflammation and the progression of the disease [20,21].

Although serum VCAM-1 levels correlate with hepatic fibrosis in patients with
NAFLD [22], a finding that may be linked with the upregulation of VCAM-1 in acti-
vated HSCs, as identified here, our functional results suggest that VCAM-1 in HSCs does
not play a pathophysiological role in fibrosis progression. Hence, future studies should
interrogate the utilization of VCAM-1 as a biomarker for NASH progression. Moreover,
while no function of HSC VCAM-1 in liver fibrosis was found here, we cannot exclude that
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VCAM-1 in other cells could be a therapeutic target in NASH. These aspects should be
addressed in future studies.

4. Materials and Methods
4.1. Animal Studies

Wild-type mice (C57BL/6) were from Charles River (Sulzfeld, Germany). Hepatic stel-
late cell-specific deletion of Vcam1 was achieved by crossing mice carrying a floxed Vcam1
allele (Jackson Laboratories, Bar Harbor, ME, USA) with mice in which Cre recombinase
expression is driven by the mouse Lecithin:retinol acyltransferase (LRAT) promoter [31].
Wild-type mice were fed a normal chow diet (ND) as control or fed a methionine-low,
choline-deficient high-fat diet (HCD, 60% kcal from fat, 0.1% methionine, A06071302,
Research Diets) [28,29,32]. Lrat-Cre negative Vcam1 floxed/floxed and Lrat-Cre positive
Vcam1 floxed/floxed mice (designated Cre-Vcam1f/f and Cre+Vcam1f/f, respectively) were
fed the HCD.

In other experiments, Cre-Vcam1f/f and Cre+Vcam1f/f mice were fed a western diet,
specifically a high fat, high fructose, and high cholesterol diet (21.1% fat, 41% sucrose,
and 1.25% cholesterol, Teklad diets, TD. 120528) together with water including high sugar
concentrations [23.1 g/L D-Fructose (SERVA, Heidelberg, Germany, 21830) and 18.9 g/L
D-Glucose (Sigma-Aldrich, Taufkirchen, Germany, G8270)] for 12 weeks. In addition, the
mice received weekly an intraperitoneal low dose of carbon tetrachloride (CCl4, Sigma-
Aldrich, 289116, 0.32 µg/g of body weight) as an accelerator of liver fibrosis [24]. After
11 weeks of feeding and upon overnight fasting, blood glucose levels were measured in
tail vein blood samples with a glucose meter device (Accu-Chek, Roche, Vienna, Austria),
while the levels of triglycerides were measured with an Accutrend Plus system (Roche).

Mice were housed on a standard 12 h light/12 h dark cycle under specific pathogen-
free conditions. Eight to ten week old male mice were used in experiments. At the end
of the feeding period, mice were euthanized, undergoing also systemic perfusion with
phosphate-buffered saline (PBS), and tissues were collected for further analysis. Animal
experiments were approved by the Landesdirektion Sachsen, Germany and by the Region
of Attica, Greece.

4.2. Histological Analysis

Mouse livers were isolated from euthanized mice and fixed with 4% PFA for 24 h. For
Hematoxylin and Eosin (H&E) staining, liver samples were embedded in paraffin, and cut
liver sections were deparaffinized and rehydrated. The sections were stained with Mayers
Haematoxylin (SAV, Liquid Production GmbH, Flintsbach am Inn, Germany, 10231.02500)
and Eosin (Klinikapotheke Universitätsklinikum, Dresden, Germany) and mounted with
VectaMount (Vector Laboratories, Newark, CA, USA, H-5000-60) after a series of ethanol
washings (80%, 95%, 100%). For Picrosirius red staining, deparaffinized and rehydrated
liver sections were stained with Picrosirius red solution (Sigma-Aldrich, 365548) for 1 h and
then washed with 1% acetic acid. The liver sections were mounted with VectaMount after a
series of ethanol washing as before. Images were acquired utilizing a ZEISS Axio Observer
Z1-computerized microscope and Picrosirius red positive areas per field of vision were
quantified from at least 12 images per mouse using the Fiji software (ImageJ 2.1.0/1.53c).

For immunofluorescence staining, fixed liver samples were embedded in OCT upon
incubation with a series of sucrose solutions (10%, 20%, 30%) to achieve tissue cryoprotec-
tion. Liver sections were dried and permeabilized with 0.1% Triton X-100 and then blocked
using a serum-free protein block solution (Dako, Waldbronn, Germany, X090930-2). Liver
sections were then incubated with primary antibodies against VCAM-1 (1:10, eBioscience,
Darmstadt, Germany, # 14-1061-85) and desmin (1:100, Abcam, Berlin, Germany, ab32362)
overnight at 4 ◦C. After washing with PBS, sections were incubated with secondary anti-
bodies, namely Donkey anti-Rat (H + L) Alexa Fluor 555 (Abcam, ab150150) and Donkey
anti-rabbit (H + L) Alexa Fluor 647 (Invitrogen, Darmstadt, Germany, A-31573) for 90 min
at RT and counterstained with DAPI (Sigma-Aldrich, D9542). To reduce tissue autofluores-
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cence, sections were incubated with TrueBlack® Lipofuscin Autofluorescence Quencher
(Biotium, Fremont, CA, USA, #23007) for 30 s and mounted. Images were acquired with a
ZEISS Axio Observer Z1 computerized microscope equipped with the Zen 3.2 (Blue edition)
software. Images are shown in pseudocolor; the display color of the channels was set as to
optimize clarity of merged images.

4.3. Flow Cytometry Analysis

The left lobe of the liver was isolated, minced and digested in high glucose DMEM
containing 0.5% BSA, collagenase D (1.5 mg/mL, COLLD-RO, Roche), and DNaseI (5U/mL,
04716728001, Roche) for 1 h at 37 ◦C with shaking. The cell suspension was filtered through
a 100 µm cell strainer and centrifuged at 600× g for 7 min at 4 ◦C. Afterwards the red
blood cells were lysed using RBC Lysis Buffer (eBioscience, 00-4300-54) for 5 min at room
temperature. Additionally, cell debris were removed by utilizing a debris removal solution
(Miltenyi Biotec, Bergisch Gladbach, Germany, 130-109-398).

For analysis of α4 integrin expression in hepatic immune cells, upon debris removal
the cells were incubated with mouse CD45 Microbeads (Miltenyi Biotec, 130-052-301) for
15 min at 4 ◦C and CD45+ cells were collected by LS column (Miltenyi Biotec, 130-042-401).
Then, they were stained with antibodies against CD11b (M1/70, Biolegend, San Diego, CA,
USA, 101230), SiglecF (E50-2440, BD Biosciences, Heidelberg, Germany, 562680), Ly6G (1A8,
Biolegend, 127624), F4/80 (BM8, eBioscience, 25-4801-82), Ly6C (AL-21, BD Biosciences,
553104), α4 integrin/CD49d (9C10, Biolegend, 103706), and Hoechst 33258 (Invitrogen,
H1398). For the analysis of hepatic innate immune cells derived from livers of HCD-fed Cre-
Vcam1f/f and Cre+Vcam1f/f mice, CD45+ cells, isolated as described above, were stained
with antibodies against CD11b (M1/70, Invitrogen, 12-0112-82), SiglecF (E50-2440, BD
Biosciences, 562680), Ly6G (1A8, Biolegend, 127624), F4/80 (BM8, eBioscience, 25-4801-82),
Ly6C (AL-21, BD Biosciences, 553104), CD45 (30-F11, Biolegend, 103130), and Hoechst
33258 (Invitrogen, H1398). Stained cells were analyzed on a BD FACSCanto™ II cytometer
(BD Biosciences) and analyzed by FlowJo software (v10.1r7).

For analyzing the hepatic innate immune cells acquired from Cre-Vcam1f/f and
Cre+Vcam1f/f mice, which were fed a western diet combined with CCl4 treatment, upon
debris removal, the cells were stained with antibodies against CD45 (30-F11, Biolegend,
103133), CD11b (M1/70.15, Invitrogen, RM2804), Ly6G (1A8, BD Biosciences, 560599),
F4/80 (BM8, eBioscience, 25-4801-82), Ly6C (AL-21, BD Biosciences, 553104). Stained cells
were run on an ARIA III cytometer (BD Biosciences) and analyzed by FlowJo software.

4.4. Gene Expression Analysis

Liver tissues were snap frozen in liquid nitrogen or kept in RNAlater (Invitrogen,
AM7020). The liver samples were homogenized in TriReagent (MRC, Cincinnati, OH, USA,
TR 118) by using the Precellys 24 tissue homogenizer and after phase separation, the RNA
was precipitated using 75% ethanol. Finally, RNA was isolated by NucleoSpin® RNA kit
(Macherey-Nagel, Dueren, Germany, 740955.250) and reverse-transcribed with the iScript
cDNA Synthesis Kit (Bio-Rad, Feldkirchen, Germany, 1708890). The qPCR was performed
utilizing the SsoFast™ EvaGreen® Supermix (Bio-Rad, 1725204) and gene-specific primers
on a CFX384 Real-time PCR detection system (Bio-Rad). Relative mRNA expression levels
were calculated according to the ∆∆Ct method upon normalization to 18S [33]. The primers
used in this study are:

Vcam1 (F:CTTCCCAGAACCCTTCTCAG, R:GGGACCATTCCAGTCACTTC)
Tnf (F:AGCCCCCAGTCTGTATCCTTCT, R:AAGCCCATTTGAGTCCTTGATG),
Il1b (F:ATCCCAAGCAATACCCAAAG, R:GTGCTGATGTACCAGTTGGG),
Il6 (F:CCTTCCTACCCCAATTTCCAAT, R:AACGCACTAGGTTTGCCGAGTA),
Tgfb1 (F:CACAATCATGTTGGACAACTGCTCC, R:CTTCAGCTCCACAGAGAAGAACTGC),
Col1a1 (F:GAGCGGAGAGTACTGGATCG, R:GCTTCTTTTCCTTGGGGTTC),
Desmin (F:GTGGATGCAGCCACTCTAGC, R:TTAGCCGCGATGGTCTCATAC),
Acta2 (F:ACTGGGACGACATGGAAAAG, R:GTTCAGTGGTGCCTCTGTCA)
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Timp1 (F:TACACCCCAGTCATGGAAAGC, R:CGGCCCGTGATGAGAAACT)
18S (F:GTTCCGACCATAAACGATGCC, R:TGGTGGTGCCCTTCCGTCAAT)

4.5. Immunoblot Analysis

Liver tissues were snap frozen in liquid nitrogen and homogenized in RIPA lysis
buffer (Santa Cruz, Heidelberg, Germany, sc-24948A) containing a protease and phos-
phatase inhibitor cocktail (Roche, 04693159001, CO-RO) by using the Precellys evolution
homogenizer (Bertin Technologies, Frankfurt am Main, Germany) and then centrifuged
at 14,000× g for 20 min at 4 ◦C. The supernatant was collected and protein concentrations
were determined by using a BCA protein assay kit (Thermo Scientific, Darmstadt, Germany,
23227). The protein samples (30 µg) were separated on a NuPAGE™ 4–12% gel (Thermo
Scientific, NP0323BOX) and transferred to a PVDF membrane (Bio-Rad, 1620177). The
membrane was blocked with 5% skim milk for 1 h at RT and then incubated with primary
antibody against VCAM-1 (Abcam, ab134047) overnight at 4 ◦C, followed by incubation
with appropriate secondary antibody. After membrane stripping using a Restore Western
Blot Stripping-Buffer (Thermo Scientific, 21059), the membrane was blocked again with 5%
skim milk for 1 h at RT and then incubated with antibody against Vinculin (Cell signalling,
Leiden, The Netherlands, 4650) overnight at 4 ◦C, followed by incubation with appropriate
secondary antibody. Detection in each case was performed with The Super Signal West
Pico PLUS Chemiluminescent substrate (Thermo Scientific, 34579) in a VILBER imaging
system (FUSION FX, Eberhardzell, Germany). Densitometry was performed by using the
Fiji software.

4.6. Statistical Analysis

A two-tailed Student’s t-test or a Mann–Whitney U test was used. The Graph Pad
Prism 8 software was used and significance was set at p < 0.05.
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