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Abstract: There is considerable controversy regarding the genotoxicity of glyphosate (N-(phosphonomethyl)
glycine). It has been suggested that the genotoxicity of this herbicide is increased by the adjuvants
added to commercial formulations based on glyphosate. The effect of various concentrations of
glyphosate and three commercial glyphosate-based herbicides (GBH) on human lymphocytes was
evaluated. Human blood cells were exposed to glyphosates of 0.1, 1, 10 and 50 mM as well as to
equivalent concentrations of glyphosate on commercial formulations. Genetic damage (p < 0.05)
was observed in all concentrations with glyphosate and with FAENA and TACKLE formulations.
These two commercial formulations showed genotoxicity that was concentration-dependent but in a
higher proportion compared to pure glyphosate only. Higher glyphosate concentrations increased
the frequency and range of tail lengths of some migration groups, and the same was observed for
FAENA and TACKLE, while in CENTELLA the migration range decreased but the frequency of
migration groups increased. We show that pure glyphosate and commercial GBH (FAENA, TACKLE
and CENTELLA) gave signals of genotoxicity in human blood samples in the comet assay. The
genotoxicity increased in the formulations, indicating genotoxic activity also in the added adjuvants
present in these products. The use of the MG parameter allowed us to detect a certain type of genetic
damage associated with different formulations.

Keywords: glyphosate; herbicides; adjuvants; genetic damage; genotoxicity; migration groups

1. Introduction

Glyphosate (N-(phosphonomethyl) glycine, C3H8NO5P) (G) is the most popular her-
bicide in the world. It is distributed as commercial glyphosate-based herbicide (GBH)
formulations [1–3], which have compounds (adjuvants) that improve penetration through
the leaves; therefore, G is not used in its pure form [4,5]. Human exposure to CFG occurs
during occupational and environmental activities and a maximum urinary glyphosate con-
centration of 1.7 times above the recommended acceptable daily intake has been reported [6].
There is abundant evidence of G genotoxicity [7–10] and its effect on the expression of
some genes and in human health [11,12]. Additionally, G represents a risk for other living
organisms [13]. However, the absence of its genotoxic activity is also reported [14,15].
Several studies suggest that it is carcinogenic [11,16,17] and contributes to the development
of non-Hodgkin lymphoma in humans [18], however, there is controversy among the IARC,
regulatory authorities, and scientists regarding its carcinogenic potential [3,16,18,19].

Some research suggests that the adjuvants present in GBH are responsible for the
genotoxic activity and not G [1,20,21]; however, this is also highly controversial because
other studies report the opposite [14,15,21–25]. Due it is considered confidential business
information (CBI), there is no information available about the adjuvants and their concen-
tration in each GBH, and their genotoxic properties are unknown. Some known adjuvants
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are sodium dodecyl benzene sulfonate, sodium alkyl polyglucoside, lauryl glucoside, and
polyethoxylated adjuvants [5,20]. For this reason, a reassessment of the GBH safety stan-
dards is suggested [26]. There is evidence that the genotoxic effect of G and GBH can occur
in two ways: as a direct effect on DNA [27] or by the induction of oxidative stress [23];
obviously more information is required in this sense.

A wide variety of test systems exist to assess genotoxicity; however, the comet test is
a rapid bioassay and detects different types of DNA damage [28–30] and is particularly
used with human lymphocytes [8]. Using the comet test, Reynoso-Silva et al. [31] reported
a new method: migration groups (MG) for the detection of genetic damage related to
different sensitivities in cells in response to specific genotoxic agents. Blood cells offer
advantages for monitoring the effects of genotoxic agents [32] and additionally, most of the
published works were focused on the in vitro effects on human lymphocytes of high and
low glyphosate concentrations [33].

Although the genotoxicity of G is highly controversial, the growing evidence of its
genotoxic activity makes it necessary to also evaluate the role of the adjuvants present in
GBH as enhancers of G genotoxicity or as additional genotoxic agents. Commonly, these
adjuvants are not identified on the commercial labels, alluding to industrial property rights.
In this work, the genotoxic activity was evaluated in human lymphocytes of different G
concentrations and of three GBH. Three different evaluation parameters were also used,
including: tail length, tail moment, and migration groups, with the latter recently proposed.
For G and GBH previously reported concentrations were used.

2. Results
2.1. Genetic Damage Induced via G and GBH Using Tail Length and Tail Moment

The genotoxic activity of various concentrations of G and GBH (FAENA, TACLE and
CENTELLA) using the tail length parameter is shown in Figure 1. All concentrations of
pure G induced significant genetic damage (p < 0.05) compared to NC and even higher
than PC (p < 0.05) with the exception of the 0.1 mM concentration. Concentrations of
G 1, 10 and 50 mM showed practically the same level of genetic damage. All FAENA
concentrations (1–100 mM) induced significant genetic damage (p < 0.05) compared to
NC and dose-dependent concentrations, although 0.1- and 1-mM concentrations showed
the same level of damage. The magnitude of damage was similar to G. TACKLE induced
dose-proportional genetic damage and to a greater extent than that induced via G and
FAENA. CENTELLA showed significant genotoxic activity (p < 0.05) with respect to NC
only at the 100 mM concentration. The magnitude of genetic damage induced via the
highest concentrations of G (50 mM), with respect to FAENA (100 mM) and TACKLE
(100 mM), was significantly lower (p < 0.05). Similarly, differences were observed between
FAENA 100 mM and TACKLE 100 mM. On the other hand, CENTELLA 100 mM showed
significantly lower genetic damage than that induced via FAENA 100 mM and TACKLE
100 mM (Figure 1).

The evaluation of the genotoxic activity by means of the tail moment parameter of
the aforementioned compounds is presented in Figure 2. Only the CENTELLA 100 mM
concentration showed genotoxic activity; all the concentrations of FAENA, TACKLE, and
G (with the exception of 0.1 mM) did not. The 100 mM FAENA and 100 mM TACKLE
concentrations were significantly different from 50 mM G. A significant difference was also
observed between FAENA 100 mM and TACKLE 100 mM. 100 mM CENTELLA showed a
significant difference with 100 mM FAENA and 100 mM TACKLE. With the exception of
CENTELLA 100 mM, the behavior of genotoxicity through tail moment of the compounds
studied was practically the same as that described for the tail length parameter.
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Figure 1. Tail length parameter. Genetic damage in blood cells exposed to different concentrations 
of G and in three glyphosate-based herbicides GBH. Note: G in each GBH was calculated according 
to informative paper, so the evaluated concentrations of G were similar to G. NC, negative control 
(phosphate buffer), PC, positive control (10 mM EMS). * Statistical difference with respect to NC (p 
< 0.05). ^ Statistical difference of G 50 mM with respect to FAENA 100 mM and TACKLE 100 mM 
(p < 0.05). ** Statistical difference between FAENA 100 mM and TACKLE 100 mM (p < 0.05). ç Sta-
tistical difference of CENTELLA 100 mM with respect to FAENA 100 mM and TACKLE 100 mM (p 
< 0.05). 
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Figure 1. Tail length parameter. Genetic damage in blood cells exposed to different concentrations of
G and in three glyphosate-based herbicides GBH. Note: G in each GBH was calculated according
to informative paper, so the evaluated concentrations of G were similar to G. NC, negative control
(phosphate buffer), PC, positive control (10 mM EMS). * Statistical difference with respect to NC
(p < 0.05). ˆ Statistical difference of G 50 mM with respect to FAENA 100 mM and TACKLE 100 mM
(p < 0.05). ** Statistical difference between FAENA 100 mM and TACKLE 100 mM (p < 0.05). ç Sta-
tistical difference of CENTELLA 100 mM with respect to FAENA 100 mM and TACKLE 100 mM
(p < 0.05).
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As observed in Figure 3, all concentrations of PC, G, and GBH increased the percent-
age of the most frequent migration group. The increase in the concentration of G also 
broadened the migration range of the cauda of the most frequent MG: G 0.1 mM (2–6 µm) 
(57.7%), G 1 mM (4–8 µm) (53.3%), G 10 mM (5–10 µm) (72.6%), and G 50 mm (6–10µm) 
(72.2%). FAENA and TACKLE showed similar behavior with the exception of 0.1 mM; in 
this case, the migration ranges are higher than those produced by the 1- and 10-mm con-
centrations. As the NC, CENTELLA showed the same migration ranges for all concentra-
tions (2–6 µm); however, these groups presented frequency percentages close to 90%. 
CENTELLA 100 mM produced a slight increase in the migration range (3–6 µm), but the 
frequency of this group decreased to 51%. 

Figure 2. Tail moment parameter. Genetic damage in blood cells exposed to different concentrations of
G and in three commercial formulations. Note: G in each CFG was calculated according to informative
paper, so the evaluated concentrations of G were similar to G. NC, negative control (phosphate buffer),
PC, positive control (10 mM EMS). * Statistical difference with respect to NC (p < 0.05). ˆ Statistical
difference of G 50 mM with respect to FAENA 100 mM and TACKLE 100 mM (p < 0.05). ** Statistical
difference between FAENA 100 mM and TACKLE 100 mM (p < 0.05). ç Statistical difference of
CENTELLA 100 mM with respect to FAENA 100 mM and TACKLE 100 mM (p < 0.05).
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2.2. Genetic Damage Induced via G and GBH Using Migration Groups

The MG parameter allowed for the evaluation of the genetic damage induced via
glyphosate and GBH. Comets with the same amount of damage were identified and
grouped (tail migration range indicated in µm) and the most frequent migration group
was indicated (Figure 3). The NC showed MG with little migration and the most frequent
group reached 40% (2–4 µm).
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trations of G and in three commercial formulations; the most frequent migration group observed 
for each evaluated substance is shown. NC, negative control (phosphate buffer), PC, positive control 
(10 mM EMS). 
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Figure 3. Migration groups parameter. Genetic damage in blood cells exposed to different concentra-
tions of G and in three commercial formulations; the most frequent migration group observed for
each evaluated substance is shown. NC, negative control (phosphate buffer), PC, positive control
(10 mM EMS).

As observed in Figure 3, all concentrations of PC, G, and GBH increased the percentage
of the most frequent migration group. The increase in the concentration of G also broadened
the migration range of the cauda of the most frequent MG: G 0.1 mM (2–6 µm) (57.7%),
G 1 mM (4–8 µm) (53.3%), G 10 mM (5–10 µm) (72.6%), and G 50 mm (6–10 µm) (72.2%).
FAENA and TACKLE showed similar behavior with the exception of 0.1 mM; in this case,
the migration ranges are higher than those produced by the 1- and 10-mm concentrations.
As the NC, CENTELLA showed the same migration ranges for all concentrations (2–6 µm);
however, these groups presented frequency percentages close to 90%. CENTELLA 100 mM
produced a slight increase in the migration range (3–6 µm), but the frequency of this group
decreased to 51%.

3. Discussion

Although there is evidence of the genotoxic activity of G [7,8], this is controversial [16,18],
and it is necessary to increase the degree of certainty of its genotoxicity. Alvarez-Moya et al. [34]
reported the genotoxicity of G in the blood of humans in a mean concentration of
0.0007–0.7 mM. To ensure the analysis of genotoxic activity, high concentrations (50 and
10 mM) and lower ones such as those reported by Khan et al. [7] were used, observing the
dose-dependent genotoxic activity of G, from 0.1 mM–50 mM, using the tail length, tail
moment, and MG parameters.

Some reports suggest that the genotoxic activity of GBH is due to the adjuvants
used and not to G [1,20]. Our data clearly showed the genotoxicity of G and GBH. After
calculating the concentration of G and subsequent evaluation of FAENA and TACKLE, it
was observed that these induced genetic damage at the same concentrations with which
the genotoxicity of G was evaluated, effectively indicating the presence of G as a genotoxic
agent; however, the FAENA 100 mM concentration and all concentrations of TACKLE
showed genotoxic activity greater than that of G and dose-dependent concentrations, which
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can be attributed to the additional genotoxic effect of adjuvant substances as reported by
Nagy et al. [1] or to possible glyphosate-adjuvant synergism, as has been observed in other
types of glyphosate interactions [35,36].

Only the 100 mM CENTELLA concentration induced genetic damage and an antago-
nistic response, possibly due to the use of adjuvants different from those found in FAENA
and TACKLE, which prevented the genotoxic activity of G at the lowest concentrations. In
this way, the differences in the genotoxic activity of the GBH studied indicate the use of
different adjuvants. Because the adjuvants used are not identified on the label (industrial
law), it is difficult to specifically identify genotoxic agents.

This factor and others such as the use of different test systems [37] fuel the controversy
surrounding the genotoxicity of G [16,18]. Another possibility is the lack of veracity
about the actual G content: the GBH use sheet indicates the glyphosate content—FAENA
(363 g/L), TACKLE (360 g/L), and CENTELLA (360 g/L) (see additional material)—and
allowed us to prepare dilutions of up to 100 mM or higher. We consider that these data may
be inconsistent, since the maximum concentration of G obtained in our laboratory (using
water as diluent and at room temperature, as indicated on the labels) was 50 mM.

The comet test is a very useful, fast, and efficient tool to assess DNA damage [38–41].
Various parameters are used to assess genetic damage, such as the tail length and tail
moment [28,42,43]. Recently, Reynoso et al. [31], suggested the use of an MG parameter that
detects not only the amount of damage, but also the most frequent type of genetic damage
(most frequent migration group). In the case of G, the MG with the highest frequency
and with the greatest migration corresponds to the highest concentrations. A similar
situation was observed for FAENA and TACKLE, while in CENTELLA, the migration
range decreased but the frequency of the migration groups increases. This parameter
suggests that high concentrations of FAENA and TACKLE cause specific genetic damage
(the most frequent migration group) [31] associated with different substances; in this case,
the presence of different adjuvants is indicated. The high frequency (92%) of MG with little
migration observed in CENTELLA also suggests the presence of other adjuvants.

4. Materials and Methods
4.1. Reagents Used

G (N-(phosphonomethyl) glycine)) (CAS 1071-83-6) and ethyl-methanesulfonate (EMS)
(CAS 66-27-3) were purchased from Sigma Chemical Co. (Guadalajara, Jalisco, Mexico).
Both dimethyl sulfoxide (DMSO) (CAS 67-68-5) and disodium salt EDTA (CAS 60-00-4)
were obtained from J.T. Baker (Ciudad de México, Mexico). FCG: FAENA, TAKLE, and
CENTELLA were purchased from a commercial establishment in Guadalajara. According
to the fact sheet, the glyphosate content in the GBH was: FAENA (360 g/L), TACKLE
(360 g/L), and CENTELLA (360 g/L), which corresponds to 74.7% monoammonium salt of
N-(phosphonomethyl) glycine and 25.3% adjuvants and inert substances (see additional
material).

4.2. Obtaining Blood Samples

Human whole blood samples, frequently used in the comet test, were obtained accord-
ing to what was reported [31]. Prior informed and signed consent (see additional material)
and 200 µL of whole blood were obtained via ring puncture in forty individuals (eight for
each experimental group) of a legal age who were non-smokers or exposed to environ-
mental chemical contamination or other factors that affect DNA integrity (application of
a questionnaire). An amount of 100 µL was used to assess the cell viability of peripheral
blood lymphocytes using the Trypan Bluey test. The mean percentage for each group was
>85%. Individuals exposed to factors that represent a possible genotoxic risk were excluded.
An amount of 100 µL of each sample was centrifuged at 3000 rpm for 3 min in 5 mL of
phosphate buffer (PB) (160 mM NaCl, 8 mM Na2HPO4, 4 mM NaH2PO4 and 50 mM EDTA,
pH 7 and 4 ◦C) and re-suspended again in 1 mL of PB at 4 ◦C until its further use. A similar
process was used for the evaluation of the controls, with four minutes for the PC (EMS



Int. J. Mol. Sci. 2023, 24, 4560 6 of 9

10 mM) and four minutes for NC (only suspended in PB), and both positive and negative
control groups were used for monitoring, as has been recommended [44].

4.3. Preparation of G and GBH Concentrations

The cells were exposed to G at final concentrations of 0.1, 1, 10, and 50 mM, and to
three GBH at the same glyphosate-equivalent final concentrations according to information
on the use sheet of each one. The maximum possible concentration of G (50 mM) was
prepared and lowered to the concentrations used by Khan et al. [7]. The solutions of G and
each GBH were previously prepared at twice the indicated concentrations. PB (160 mM
NaCl, 8 mM Na2HPO4, 4 mM NaH2PO4, and 50 mM EDTA, pH 7) was also prepared at
twice its usual concentration. The mentioned final concentrations were obtained by mixing
2 mL of the G or GBH solution to be tested with 2 mL of PB and by adding 100 µL of the
previously obtained blood sample. The same procedure was used for the EMS of 10 mM.
After homogenization, the tubes with the experimental solutions were kept at 4 ◦C for
two hours and in the absence of light. Afterwards, it was centrifuged at 3 rpm for 3 min
to remove the supernatant, and the process was repeated twice with 5 mL of PB. Finally,
the pellet was suspended in 1 mL of PB. These blood cells were subsequently placed on
agarose gels. In the case of the negative control, the sample previously obtained in the PB
was used. This procedure was performed twice for each sample of the eight individuals. A
general description of the research process is presented in Figure 4. An amount of 200 µL
of whole blood per individual was collected; 100 µL were used for cell viability testing and
100 µL were suspended in 900 µL of phosphate solution. In total, 100 µL of this mixture
were added to each previously prepared concentration of G or GBF. A similar process was
carried out with PC and NC. Eight individuals participated in each experimental group.
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4.4. Comet Assay

The alkaline comet assay was carried out using the method of Speit and Hartmann [45],
as was mentioned by Alvarez-Moya et al. [34]. It is as follows: slides were covered with
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Normal Melting Point (NMP) agarose at 1%, then the agarose was allowed to solidify, and
then it was removed from the slides, giving a completely clean surface as a result. Next, a
0.6% Low Melting Point (LMP) agarose layer was placed on each slide. Once it solidified,
another agarose layer was added (10 µL of the suspension containing the whole blood and
90 µL of the 0.5% LMP agarose). Finally, a third layer of 0.5% LMP agarose was added
to cover the second layer. After that, the slides were immersed in lysis solution (2.5 mM
NaCl, 10 mM Na2EDTA, 10 mM Tris-HCl, 1% Sodium lauroyl sarcosinate, 1% Triton X-100,
and 10% DMSO, pH 10) for 2 h at 11 ◦C. After this, the slides were placed in a horizontal
electrophoresis system with the electrophoresis buffer (300 mM NaOH, 1 mM Na2EDTA,
pH 13) for 45 min. Electrophoresis was then carried out for 30 min at 1.0 V/cm with an
amperage of ~300 mA and between 10–15 ◦C. Thereafter, the slides were washed with
distilled water and stained with 90 µL of ethidium bromide (100 µL at 20 µg/mL) for 3 min.
Immediately after, the slides were immersed in distilled water for three minutes. Finally,
the slides were rewashed with distilled water for 15 min.

4.5. Observation and Quantification of Comets

A fluorescence microscope with an excitation filter of 515–560 nm was used for
the quantification of the comets. The tail length was measured with the Comet Assay
electrophoresis System II software (4250-050-ES) (ZEEIZ SINOPTIC MIKRO S.A DE C.V,
Guadalajara, Mexico, 2012). Approximately 200 cometized cells per studied subject were
analyzed [31].

4.6. Statistical Analysis

The statistical software StatPlus 2 was used to perform an analysis of variance (ANOVA),
a Fisher test, and an F-Test for the variances of two samples. A confidence level of 0.05
was used.

5. Conclusions

We show that pure glyphosate and commercial GBH (Faena, Tackle and Centella
formulations) give signals of genotoxicity in human blood samples in the comet assay. The
genotoxicity increased in the formulations, indicating genotoxic activity also in the added
adjuvants present in these products. The use of the MG parameter allowed us to detect a
certain type of genetic damage associated with different formulations.
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12. Woźniak, E.; Reszka, E.; Jabłońska, E.; Balcerczyk, A.; Broncel, M.; Bukowska, B. Glyphosate affects methylation in the promoter
regions of selected tumor suppressors as well as expression of major cell cycle and apoptosis drivers in PBMCs (in vitro study).
Toxicol. In Vitro 2020, 63, 104736. [CrossRef]

13. Santos, S.W.; Gonzalez, P.; Cormier, B.; Mazzella, N.; Bonnaud, B.; Morin, S.; Cachot, J. A glyphosate-based herbicide induces
sub-lethal effects in early life stages and liver cell line of rainbow trout, Oncorhynchus mykiss. Aquat. Toxicol. 2019, 216, 105291.
[CrossRef] [PubMed]

14. Argüello-Rangel, J.; Triana-García, P.A.; Eslava-Mocha, P.R. Eosinophlic granular cells/Mast cells and their relation with the
effects of herbicides: Case of glyphosate and accompanying surfactants on fish. Orinoquia 2015, 19, 59. [CrossRef]

15. Kier, L.D.; Kirkland, D.J. Review of genotoxicity studies of glyphosate and glyphosate-based formulations. Crit. Rev. Toxicol. 2013,
43, 283. [CrossRef]

16. Portier, C.J. A comprehensive analysis of the animal carcinogenicity data for glyphosate from chronic exposure rodent carcino-
genicity studies. Environ. Health 2020, 19, 18. [CrossRef] [PubMed]

17. Wang, L.; Deng, Q.; Hu, H.; Liu, M.; Gong, Z.; Zhang, S.; Li, Y. Glyphosate induces benign monoclonal gammopathy and
promotes multiple myeloma progression in mice. J. Hematol. Oncol. 2019, 12, 70. [CrossRef]

18. Weisenburger, D.D. A review and update with perspective of evidence that the herbicide glyphosate (Roundup) is a Cause of
non-Hodgkin lymphoma. Clin. Lymph. Myelom. Leuk. 2021, 21, 621. [CrossRef]

19. Paumgartten, F.J.R. To be or not to be a carcinogen; delving into the glyphosate classification controversy. Braz. J. Pharm. Sci. 2019,
55. [CrossRef]

20. Székács, A.; Darvas, B. Re-registration challenges of glyphosate in the European Union. Front. Environ. Sci. 2018, 6, 78. [CrossRef]
21. Chaufan, G.; Coalova, I.; Molina, M.D.C.R.D. Glyphosate commercial formulation causes cytotoxicity, oxidative effects, and

apoptosis on human cells: Differences with its active ingredient. Int. J. Toxicol. 2014, 33, 29. [CrossRef] [PubMed]
22. Peillex, C.; Pelletier, M. The impact and toxicity of glyphosate and glyphosate-based herbicides on health and immunity. J.

Immunotoxicol. 2020, 17, 163. [CrossRef] [PubMed]
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