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Abstract: In marine environments, biofilm can cause negative impacts, including the biofouling
process. In the search for new non-toxic formulations that inhibit biofilm, biosurfactants (BS) produced
by the genus Bacillus have demonstrated considerable potential. To elucidate the changes that BS
from B. niabensis promote in growth inhibition and biofilm formation, this research performed a
nuclear magnetic resonance (NMR) metabolomic profile analysis to compare the metabolic differences
between planktonic cells and biofilms of Pseudomonas stutzeri, a pioneer fouling bacteria. The
multivariate analysis showed a clear separation between groups with a higher concentration of
metabolites in the biofilm than in planktonic cells of P. stutzeri. When planktonic and biofilm stages
were treated with BS, some differences were found among them. In planktonic cells, the addition
of BS had a minor effect on growth inhibition, but at a metabolic level, NADP+, trehalose, acetone,
glucose, and betaine were up-regulated in response to osmotic stress. When the biofilm was treated
with the BS, a clear inhibition was observed and metabolites such as glucose, acetic acid, histidine,
lactic acid, phenylalanine, uracil, and NADP+ were also up-regulated, while trehalose and histamine
were down-regulated in response to the antibacterial effect of the BS.

Keywords: Bacillus; biosurfactants; 1H NMR; metabolomics; Pseudomonas stutzeri

1. Introduction

Marine biofilms are composed by the aggregation of many species of bacteria, uni-
cellular algae, and protozoa, which are the initial biological colonizers of new surfaces in
the sea [1]. These microorganisms are enfolded in an extracellular polymeric substance
(EPS) composed of polysaccharides, proteins, nucleic acids, and lipids [2]. The biofilm
pattern of growth in the life cycle of microbes provides specific properties, advantages,
and a higher level of organization during colonization than in the free-living (planktonic)
bacterial cells [3]. Biofilms confer protection from desiccation, biocides, antibiotics, heavy
metals, and ultraviolet radiation [2,4].

In marine environments, biofilms can induce, inhibit, or have no effect on the settle-
ment of larvae and spores of algae [5]. They can also play a key role in the settlement
of macroorganisms because most of them need a particular substratum for survival and
reproduction [6]. Although it is a natural process, biofilm development can cause negative
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impacts, including the promotion of the biofouling process [7] and corrosion of marine man-
made structures [8], causing significant economic loses [9]. The biofilms of Pseudomonas
species are frequently found and contribute to an accelerated corrosion of metallic and steel
surfaces [10,11]. Their capacity to form biofilm is due to different ranges of adhesion that
occur during the initial attachment to a substratum, and flagella and pilli are important to
the colonization and microcolony formation of many marine organisms [12].

Therefore, it is important to find new antifouling strategies for inhibiting colonization
bacteria, such as P. stutzeri, which are capable of adhering to antifouling paints with
biocides such as copper [13] or with high resistance to antifouling agents such as tributylin
(TBT) [14]. The transition between the planktonic free-living state to biofilm implies many
physiological and biochemical changes [15]. Moreover, the responses of planktonic cells
and biofilm to stress (antibacterial or antifouling agents) are markedly different. Studies
on biofilm models of P. aeruginosa showed that a complex regulatory pathway for the
coordination and control of the biofilm response is required [16–18].

To prevent the biofouling process, antifouling coatings have been developed and are
being used [19]. Some studies indicate that the presence of heavy metals such as copper,
which has become the most used biocide in antifouling paint, can alter biofilm formation,
larval settlement, and retard the biofouling process [20]. Even if the knowledge of antifoul-
ing coatings has been developed for many years, the commercial use of a substance that is
not toxic to the marine environment is still nonexistent [9]. In this sense, there are some
efforts in the search for a substance that can be used for antifouling, obtained from natural
marine products with a non-toxic effect [21–24]. Biosurfactants (BS) are characterized by
their ability to reduce the surface and interfacial tensions between individual molecules
at the surface and interface, respectively, in both aqueous solutions and hydrocarbon
mixtures [4]. Biosurfactants interfere with biofilm formation by changes in cell adhesion,
varying the cell surface hydrophobicity, promoting membrane disruption, or inhibiting
the electron transport chain [25]. Within microorganisms, the genus Bacillus stands out
for its ability to produce BS with antibacterial activity [24,26]; various publications have
demonstrated the capacity of BS to reduce biofilm formation [27,28].

Biosurfactants have an important role in the different stages of biofilm development.
They can inhibit biofilm formation, control planktonic cell growth, and reduce secondary
colonization [29]. In our previous works, cell-free supernatants of Bacillus niabensis showed
promising results against marine biofilm bacteria [24]. To increase the knowledge of
bacteria metabolic changes in response to the effect of a marine BS, metabolomic studies
can provide data regarding the chemical changes, adaptation features, and responses of
bacteria under different stimuli or conditions [15,30]. NMR-based metabolomic studies give
comprehensive information that allows researchers to identify and quantify metabolites to
determine with better precision the effect of antibacterial agents on planktonic and biofilm
metabolism [18,31].

Therefore, the aim of this study was to evaluate the metabolic response of the growth
of planktonic cells and biofilm inhibition of P. stutzeri by the effect of non-toxic BS ob-
tained from B. niabensis using nuclear magnetic resonance spectroscopy (NMR) to identify
molecules associated with planktonic cells and biofilm formation and identify the possible
action mode of BS as an antifouling agent.

2. Results
2.1. Isolation and Identification of Marine Forming Biofilm Bacteria

The isolate F37 from sandblast acrylic tile from a marina in Bahía de La Paz, Baja
California Sur, Mexico, was identified as Pseudomonas stutzeri by 16S ribosomal sequencing
and phylogenetic analysis “barcoding”, with a similarity of 98% in BLAST closest matches.
The phylogenetic tree alignment by neighbor joining with 1000 bootstrap replicates is
shown in the Supplementary Materials (Figure S1).
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2.2. Biosurfactant Production from Bacillus niabensis

Bacillus niabensis was isolated in 2019 and its capacity to produce BS by cell-free
culture supernatants was described previously [24]. The crude biosurfactant was obtained
from a culture of B. niabensis. The qualitative (oil spreading test and drop collapse test)
and quantitative emulsion properties (% E.I.) and the yield of the extract with crude
biosurfactant are shown in Table 1. As a positive control, sodium dodecyl sulfate (SDS)
at 10% was used, and Marine Broth (MB) was used as a negative control. The different
tests are based on the droplet destabilization due to the interfacial tension between the
hydrophobic surface and the liquid. The results showed adequate biosurfactant activity,
which was similar to the positive control.

Table 1. Yield and biosurfactant potential of Bacillus niabensis in oil spreading and drop collapse tests,
emulsification properties, and yield.

Bacteria Gram Reaction Oil Spreading
Test (mm)

Drop Collapse
Test (mm)

Emulsification Index
(% EI24) (Toluene) Yield (mg/L)

Bacillus niabensis Bacillus Gram+ Positive 5.00 cm Positive 9.34 mm 69.33 ± 1.44 147.00
Controls

MB - 0 3.60 10.70 ± 1.20 -
SDS (10%) - 5.00 cm 11.76 59.00 ± 0.90 -

MB = Marine Broth (negative control), SDS = Sodium Dodecyl Sulfate (positive control).

2.3. Effects of Biosurfactant in Growth and Biofilm Inhibition

In the test of antibacterial activity by agar diffusion, the BS was active against P. stutzeri
at 30 and 50 µg/mL, but not at a higher concentration (100 µg/mL) (Table 2A). Pseudomonas
stutzeri showed a high capacity for forming biofilm by crystal violet assay and is evident
that BS have the capacity to reduce biofilm formation (Table 2B) and the total protein
content of the biofilm (Table 2C). The highest total protein content (0.84 mg/mL) was
detected in the biofilm matrix of bacteria without BS. The lowest total protein content and
growth rate of P. stutzeri were observed when BS was added at concentrations of 50 and
100 µg/mL (Table 2D).

Table 2. Effect of crude biosurfactant from Bacillus niabensis at different concentrations in the growth
inhibition (A), biofilm formation (B), total protein content (C), and growth rate (D) of Pseudomonas
stutzeri (n = 3 ± SD).

(A) (B) (C) (D)

Biosurfactant
Concentration

(µg/mL)

Antibacterial
Activity Zone

Diameter (mm)
Biofilm Formation

Biofilm Total
Protein

(mg/mL)

Growth
Rates (µ)

0
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Table 2. Cont.

(A) (B) (C) (D)

Biosurfactant
Concentration

(µg/mL)

Antibacterial
Activity Zone

Diameter (mm)
Biofilm Formation

Biofilm Total
Protein

(mg/mL)

Growth
Rates (µ)
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The crude BS from B. niabensis at 30 and 50 µg/mL inhibited significantly 30% of the
growth of P. stutzeri (Figure 1a). In the biofilm inhibition, no significant difference was
observed with the concentrations of BS tested, and all concentrations were able to inhibit
almost 50% of the biofilm formation (Figure 1b). In both cases, the BS was more efficient
than CuSO4 at a concentration of 6 µg/mL.

In antibacterial activity, the negative control, i.e., a disk with dissolvent, was not active.
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Figure 1. Effects of crude biosurfactant from Bacillus niabensis at different concentrations in the
growth (a) and biofilm (b) inhibition of Pseudomonas stutzeri, expressed in percentages. Quantification
of growth was realized with optical density (OD λ585 nm) in 96-well microplate (n = 6 ± SD) and the
biofilm by crystal violet assays. Control = bacteria cultured without BS; positive control = CuSO4

(6 µg/mL). The same letters indicate no significant differences (one-way ANOVA followed by Tukey’s
post hoc test, α ≤ 0.05, p = 0.001).

2.4. Metabolomic Changes in Planktonic Cells and Biofilm by Effect of Biosurfactant

The planktonic cells (P) and biofilm (B) of P. stutzeri were cultured in the absence and
presence of crude biosurfactant (P + BS, B + BS) of B. niabensis (30 µg/mL) to compare
the metabolomic profile after seven days of exposure. In general, the chemical shift of 1H
NMR spectrum of P. stutzeri obtained at 750 MHz between 0.80 and 9.20 ppm presented
signals corresponding to 27 metabolites, including 11 amino acids (alanine, aspartic acid,
glutamic acid, histidine, isoleucine, leucine, phenylalanine, threonine, tryptophan, tyrosine
and valine), 3 sugars (glucose, mannitol and trehalose), 5 organic acids (acetic acid, formic
acid, fumaric acid, lactic acid and succinic acid), 3 nucleosides (adenosine, guanosine and
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uridine), 1 nucleotide (uracil), and 4 other biomolecules (acetone, betaine, histamine and
NADP+) (Figure S2). The comparison of 1H NMR spectrum in the four treatments (B, P,
B + BS, P + BS) showed a similar metabolite profile with differences in the intensity and
relative abundance of metabolites (Figure S3).

Metabolic differences between groups were calculated by multivariate analysis. Prin-
cipal component analysis (PCA) allowed detecting outliers (Figure 2A), while the partial
least orthogonal squares discriminant analysis (OPLS-DA) model with projections in two
dimensions (PC1 = 76.9% and PC2 = 6.2%) showed an evident separation of the groups
(Figure 2B). The validation of the OPLS-DA model is shown in the cross-validation plot
(Figure S3). The R2 and Q2 values in the left were significantly lower than the original
points to the right, and Q2 regression lines have a negative intersection (R2 = 0.0, 0.25;
Q2= 0.0, −0.70).
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The heat map analysis indicated that the concentration of metabolites varies signifi-
cantly between the different phases (Figure 3). In planktonic cells, the metabolites are less
expressed than in the biofilm. In general, metabolites of planktonic cells are low (below
0.001 Mm) except for tryptophan (0.013 mM) (Figure S4). The difference was more evident
in trehalose, histamine, fumaric acid, alanine, and betaine, which had lower concentrations
in planktonic cells than in the biofilm. When the planktonic cells were treated with the
biosurfactant, the NADP+, trehalose, acetone, glucose, and betaine were up-regulated, and
tryptophan was down-regulated (Figure 3).

To identify the effect of the BS on the biofilm formation, multivariate analysis was
performed only with the data of the two groups. Principal component analysis (PCA) in this
case did not show outliers, and the partial least orthogonal squares discriminant analysis
(OPLS-DA) model with projections in two dimensions (PC1 = 61.2% and PC2 = 12.4%)
showed an evident separation of the groups by component 1 (Figure S5). The variable
influence on projection statistics (VIP≥ 1) of OPLS-DA modeling led to the identification of
11 differential metabolites when the bacteria were treated with BS, including carbohydrates,
amino acids, organic acids, nucleosides, and other metabolites such as NADP+ (Figure 4).
This agrees with the results of the cluster heat map analysis, which indicated that when
the biofilm is treated with BS, glucose, acetic acid, histidine, lactic acid, phenylalanine,
uracil, and NADP+ were up-regulated, and trehalose and histamine were down-regulated
(Figure 3).
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3. Discussion

As part of biofouling prevention strategies, the use of compounds that inhibit marine
pioneer fouling bacteria is being considered—in particular, macrofouling-inducing bacteria
such as Pseudomonas, which can promote the settlement of organisms such as the marine
sponge Cliona intestinalis [32]. Pseudomonas species have a range of adhesin, which are used
in the initial attachment to a substratum, leading to biofilm formation [12,33].

In this work, the pioneer strain isolated from Marina La Paz was identified as Pseu-
domonas stutzeri and showed a high capacity to form biofilm. Pseudomonas stutzeri is
considered a cosmopolitan species with diverse physiological and biochemical proper-
ties [34]. Strains of the genus Pseudomonas are characterized by rapid biofilm growth due to
the secretion of EPS composed of proteins and polysaccharides, leading to the formation of
a mature biofilm in 5–7 days under in vitro conditions [33].

When P. stutzeri was exposed to the antifouling compound CuSO4 at a usually toxic
concentration (6 µg/mL) [24], no significant decrease in growth or biofilm formation was
observed compared to the control (bacteria non-treated with CuSO4). This may be due
to the metabolic properties of P. stutzeri, such as denitrification, the ability to fix nitrogen,
degradation of pollutants, and interaction with toxic metals [12]. In the search for new
non-toxic antifouling compounds, we consider our strain of P. stutzeri as a model species to
evaluate the antibiofilm and antibiotic properties of crude BS of B. niabensis.

The antibacterial activity of B. niabensis BS at the minimum concentration tested
(30 µg/mL) showed an inhibition diameter of 12.53 mm. Similar results were observed
with the BS from B. circulans that showed an antimicrobial diameter between 12 and 24 mm
against Gram-negative bacteria when tested at 1000 µg/mL [35]. The BS produced by
B. licheniformis has antimicrobial activity with an inhibition zone of 11–25 mm against
Gram-positive bacteria and 10–19 mm against Gram-negative bacteria at 48 µg/mL [36].

When P. stutzeri was treated with crude BS of B. niabensis, it was possible to reduce
growth by 30% and biofilm formation by almost 50%. However, no significant differences
were observed at BS concentrations of 30, 50, and 100 µg/mL. There are only a few studies
on the antibacterial and antibiofilm activity of B. niabensis. The use of B. niabensis cell-free
supernatants included in experimental marine paint showed acceptable antifouling activity
in field assays with low toxicity [24]. Moreover, the development of gold nanoparticles us-
ing B. niabensis showed strong antibiofilm activity against P. aeruginosa with 72% inhibition
of biofilm formation, without affecting cell growth [37]. Others BS produced by Bacillus
genus have antibiofilm activity. For example, BS of Bacillus sp. A7 showed 37% inhibition
of biofilm at a low concentration (31.25 µg/mL), 46% inhibition when used at 125 µg/mL,
and complete inhibition at 500 µg/mL [38].

Bacillus species, commonly found in marine environments, produce a large range of
low-molecular-weight BS (lipopeptide-type) with broad uses in different biotechnology
fields [39,40], including antimicrobial and fungicidal compounds [41]. The crude BS of B.
niabensis investigated in this research showed an interesting emulsion index with better
results than the control SDS. Similar capacities have been highlighted with lipopeptides
from Bacillus licheniformis [42,43]. The antibiofilm activity of lipopeptides was observed
in previous studies; for example, some Bacillus strains (B. subtilis, B. amyloliquefaciens, B.
siamensis) [44–46] produce fengycin, iturin A, and surfactin, which are lipopeptides with
antibiofilm activity. This group of compounds had the ability to completely inhibit S. aureus
biofilm formation at the concentration of 15 mg/mL. Furthermore, they reduced biofilm
formation by 50% at concentrations of 1.5 and 0.15 mg/mL [47].

The sufficient yield of bioactive compounds during extraction is an important factor
to avoid high costs of production and obtain enough quantity of BS for commercial use.
However, our study did not focus on the yield of crude BS production. Despite a low yield
in our work (0.15 g/L), using supplemented culture medium is a possibility to optimize
the process. In B. licheniformis, the yield can increase to 0.86 g/L depending on the carbon
sources [48]. In B. subtilis, a yield of 4.8 g/L was recorded when using media supplemented
with metals (iron, manganese, and magnesium) [49].
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BS are a promising antibiofilm and antifouling molecules due to their low toxicity [40],
their mode of action (e.g., modulation of the expression of biofilm genes) [47,50] and
their amphiphilic nature (that allows them disrupt membrane integrity, leading to cell
lysis, linked with the ability to affect adhesion and dislodgement of bacteria from the
surface) [51,52]. They can also promote changes in membrane structure, altering the
essential membrane structure such as the transport and production of energy [53]. In our
work, when the biofilm was treated with B. niabensis BS, a reduction in biofilm was recorded
as well as a diminution of the total protein, which can be due to the inhibition of protein
synthesis [54]. All these interesting properties, as well as the fact that it can be used at a
low concentration, make it a promising antifouling alternative [54,55].

The metabolic effect of B. niabensis BS towards P. stutzeri was studied using a low
concentration with activity (30 µg/mL). The signals of the 1H NMR spectrum led to
the determination of the presence of 27 metabolites from six principal groups in different
percentages: amino acids (40.7%), organic acids (18.5%), sugars (11.1%), nucleosides (11.1%),
nucleotides (3.7%), and others (14.8%). Although the presence of all these metabolites was
equal in both phases, the quantification was different. The results of the multivariate
analysis OPLS-DA showed a clear separation between groups of planktonic cells and
biofilm state. The validation plots (Figure S5) show that the R2 and Q2 values on the left
are significantly lower than the original points on the right, and Q2 regression lines have a
negative intersection (R2=0.0, 0.5; Q2=0.0, −0.7). These values indicate that the OPLS-DA
model is robust and not random and without over-fitting [56].

It has been stated that planktonic and biofilm phases have different metabolic activity
profiles resulting from the cell attachment onto surfaces [57]. It is important to consider
this difference when developing new antibacterial agents [58]. The metabolites have
higher concentrations in the biofilm of P. stutzeri than in planktonic cells, indicating higher
metabolic activity. Trehalose, alanine, histamine, and fumaric acid are more expressed in
the biofilm. These metabolites and other carbohydrates may play a role in composing the
biofilm matrix as components of the extracellular matrix. The presence of high sugar levels
in the biofilm may also be related to the constitution of the EPS matrix. Trehalose was
found in significantly higher concentrations in biofilms compared to suspended cultures.
In P. aeruginosa, high levels of these carbohydrate-related metabolites have the potential to
uncover the presence of biofilm under multiple growth conditions [17]. Alanine metabolism
has been reported to be crucial for adhesion and biofilm formation, because of its role in
the formation of cell wall peptidoglycan [59]. Organic acids are bound to the metabolites of
biofilms, especially mature biofilms [60].

When the BS was utilized to inhibit both planktonic cells and biofilm, different effects
were recorded. The addition of BS to planktonic cells resulted in the up-regulation of
NADP+, trehalose, acetone, glucose, and betaine, and the down-regulation of tryptophan.
Trehalose is a biocompatible compound that has the function of osmolytes and helps
an organism to survive under osmotic stress. In studies with P. aeruginosa, trehalose
has the function of promoting the acquisition of nutrients that allow the replication of
the bacteria [61]; like trehalose, betaine is used as an energy resource under osmotic
stress [62]. Similar results were observed in Mycobacterium tuberculosis—when persister
bacilli were treated with an antibiotic, the trehalose metabolism and glycolysis were altered
in a metabolic effort to acquire drug tolerance [63].

When the biofilm was treated with the BS, metabolites such as glucose, acetic acid,
histidine, lactic acid, phenylalanine, uracil, and NADP+ were up-regulated while trehalose
and histamine were down-regulated. The bacteria metabolic changes depend on the
antibacterial compound characteristics. When biofilms of P. aeruginosa were treated with
combinations of ciprofloxacin with baicalein and esculin hydrate, the uracil concentration
was increased, and this was related to pyrimidine synthesis [64], which has an important
role in many functions of P. aeruginosa [65] in response to antibacterial compounds. With
respect to compounds that were down-regulated, contrary to the behavior observed in the
planktonic phase, in the biofilm, the BS caused a decrease in the concentration of trehalose.
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This could be because during the formation of biofilm of some bacteria, trehalose is down-
regulated due to its relationship with the central carbon metabolism [66]. Moreover, the
decrease in trehalose may be related to its part in the formation of NADP, which plays an
important role as a reducing agent before the effect of an antibacterial compound [63].

The results of this research showed that B. niabensis biosurfactants reduce growth
and biofilm formation of P. stutzeri with a concomitant metabolic change in response to
antibacterial activity. This provides new information regarding the inhibitory mechanism
of the BS against pioneer marine fouling bacteria.

4. Materials and Methods
4.1. Chemical and Strain Identification

The chemicals used for the identification of marine bacteria were of molecular biology
grade. For culture and assays, they were of analytical grade, obtained commercially. For
1H NMR, deuterated dissolvents were used.

Bacillus niabensis was isolated from the marine sponge Mycale ramulosa and was selected
due to its high biosurfactant activity in the cell-free supernatant. The identification was
performed by partial sequencing of the 16S rRNA region (GenBank accession number
MT887632) [24].

The bacteria involved in the marine biofilm, P. stutzeri, was collected and isolated from
the Marina La Paz, Bahía de La Paz, Mexico (24◦08′32” N–110◦18′39” W). A sandblasted
acrylic tile (6 × 12 cm) was immersed at 1 m depth (November 2020). After 48 h, the tile
was placed in a plastic bag and transported to the laboratory, where it was washed with
seawater in sterile conditions. The tile was rubbed with a swab and placed in 10 mL of
saline solution (SSS) (NaCl 2.5%). With the bacterial suspension, a serial dilution was
prepared (10−1 to 10−5). Additionally, 100 µL of the bacterial suspension was spread on
plates of marine agar in triplicate. Bacterial colonies were isolated and characterized based
on morphology and Gram staining.

The biofilm formation of the F37 strain was evaluated by a crystal violet assay [67]
with some modifications. To a 96-well flat bottom polystyrene microtiter plate, 10 µL of cell
suspension (OD585 1) was added, previously inoculated with 190 µL of Marine Broth in
each well per triplicate. In peripheral wells, 200 µL of SSS was added. Cells were incubated
48 h at 35 ◦C, planktonic cells were removed, and the biofilm was fixed with 99% methanol.
The plates were washed twice with SSS and air dried. The crystal violet (0.2%) was added,
200 µL per well; after 5 min, the dye was removed, and the plate was washed twice and air
dried. The crystal violet was dissolved in acetic acid (33%), and finally, the biofilm growth
was monitored with a microplate reader (OD585).

The strain F37 was identified by partial sequencing of 16S rRNA. From 24 h massive
culture, genomic DNA was extracted and then purified. PCR was performed using specific
oligonucleotides for the 16s rDNA gene [68]. The PCR reaction was run with positive
and negative controls (genomic DNA mixture bacterial and oligonucleotides + sterile
water without DNA, sterile water + DNA without oligonucleotides). In an agarose gel
(2%), the amplification products were separated by electrophoresis and visualized on a
UV transilluminator. The bands with the specific amplification were cut and ADN was
purified with Zymo Clean Gel Recovery kit (Catalogue No. D4021/D4022, CA, USA). The
ADN sequencing was carried out in the IBT Sanger service (UNAM). The sequences were
analyzed in BLASTN, and to obtain the phylogenetic analysis, the alignment of the obtained
sequences with the reference sequences were determined by BLASTN with MUSCLE. The
alignments were analyzed by two methods: neighbor joining and Tamura–Nei parameters.
The statistical support was 1000 bootstrap replicates.

4.2. Culture and Biosurfactant Properties of Bacillus niabensis
4.2.1. Inoculum and Culture Conditions

After selecting the biosurfactant producer bacteria, B. niabensis was cultivated for 24 h
(37.5 ◦C) in TSA medium (2.5% NaCl). A cell suspension in SSS (DO585 = 1) was used to
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inoculate (2:100 v/v) 250 mL Erlenmeyer flasks containing 50 mL TSB (2.5% NaCl) medium
per triplicate. After seven days of culture in TSB medium (35 ◦C, 160 rpm), the medium
was centrifuged (3000 rpm, 30 min, 4 ◦C) to obtain the cell-free culture supernatant [69].
Thus, the biosurfactant activity was determined by three methods: (1) oil displacement test,
(2) drop collapse test, (3) emulsification assay.

4.2.2. Drop Collapse Test

In a 96-well microtiter plate lid, 2 µL of mineral oil was spread out to the well region
delimited as Youseef et al. [70] describes. After one hour at room temperature, 5 µL of
supernatant was applied over the oil-coated regions per triplicate. The drop size was
observed after 1 min, and the results were considered positive when the drop diameter was
at least 1 mm larger that the negative control (distilled water). As a positive control, SDS at
10% was used.

4.2.3. Oil Displacement Test

In a plastic Petri dish with 20 mL of distilled water, 20 µL of mineral oil was added,
followed by 10 µL of the supernatant added to the oil surface. Immediately, the diameter
of the oil-free clearance zone was measured. The results were positive when the oil was
displaced. Distilled water was used as a negative control and SDS at 10% was used as a
positive control [71].

4.2.4. Emulsification Assay

The potential of the biosurfactant to emulsify toluene was carried out via an emulsi-
fication test [72]. In a tube, 2 mL cell-free supernatant and 2 mL toluene were mixed by
vortex for 2 min and left to stand for 24 h. After 24 h, the calculation of the emulsification
index (E.I.) was determined by the following equation:

%IE =
Height of formed emulsion
Total height of the solution

× 100

Distilled water was used as a negative control and SDS at 10% was used as a positive
control. The emulsion stability was determined by the volume of the emulsion layer at 0,
24, and 48 h. This test was carried out in triplicate.

4.3. Assay of Effect of BS in the Growth and Biofilm Formation
4.3.1. Production and Extraction of Crude Biosurfactant

The crude biosurfactant was isolated according to Ghibri and Ellouze-Chaabouni [73]
with some modifications. A flask with 100 mL TSB medium was inoculated (2:100) with
an overnight culture of B. niabensis (DO = 1). After 48 h of culture at 35 ◦C, 160 rpm, the
supernatant was precipitated overnight at 4◦ C with HCl 5 M to pH 2. After 24 h, the pellet
was collected by centrifugation (3500 rpm at 4 ◦C for 30 min). The pellet was washed twice
with acid water (pH 2), centrifuged (3500 rpm at 4 ◦C for 30 min), and re-suspended in
25 mL deionized water. The pH was adjusted to 7 with NaOH (5 M). The crude BS was
stored at −80 ◦C, lyophilized, and the yield was registered.

4.3.2. Antibacterial and Antibiofilm Activity
Antibacterial Assay by Agar Well Diffusion Method

The biosurfactants dissolved in a mixture of CHCl3:MeOH (1:1), to obtain different
concentrations (30, 50, and 100 µg/mL), were applied to 6 mm diameter paper disks. An
overnight culture of P. stutzeri was inoculated on marine agar plates. After, the disks with
BS were placed in the plates. Disks impregnated only with dissolvent were utilized as a
negative control. The zone of inhibition was measured after incubating at 35 ◦C for 24 h.
All tests were performed in triplicate and the diameter of the inhibition zone represented
the mean value (mm) ± SD.
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Biofilm Formation

The overnight culture of P. stutzeri was inoculated in 20 mL marine medium and
transferred to the Petri dish with a sterile slide. After 48 h of incubation at 35◦ C, the
slide was gently washed with sterile distilled water and dyed with crystal violet (0.2%) for
10 min. The slides were washed with distilled water and observed under a microscope.

Quantitation of Biofilm Protein

The overnight culture of P. stutzeri was inoculated in 20 mL of marine medium and
transferred to the Petri dish per triplicate. The treatments included BS at different con-
centrations (30, 50, and 100 µg/mL). After incubation at 35 ◦C for 48 h, planktonic cells
were removed, and the Petri dish was gently washed with a sterile saline solution (2.5%).
The biofilm cells were collected and centrifuged. The supernatant was discarded, and
biofilm pellets were resuspended in sterile water, lysed by sonication, and subsequently
centrifuged. Total proteins were quantified by Bradford assay [74], and bovine serum
albumin was used as a standard.

Effect of BS in Growth Rates of P. stutzeri

The growth rate assay was performed in a microplate. Pseudomonas stutzeri were
grown in marine medium, and the treatments contained BS at different concentrations
(30, 50, and 100 µg/mL). The microplate was incubated (35 ◦C) in static conditions, and
the optical density at 620 nm was measured every hour. The data were recorded, and the
growth rate was calculated as described by Widdel [75].

Growth and Biofilm Inhibition

Crude BS of B. niabensis was used to evaluate the growth and biofilm inhibition of the
biofilm-forming bacteria P. stutzeri. The strain was cultivated on marine agar at 35 ◦C for
24 h and further adjusted to DO = 1 in SSS (2.5%) to yield a bacterial suspension.

The BS was diluted in Marine Broth and aliquoted to have three concentrations (30,
50, and 100 µg/mL). In a 96-well flat bottom microplate (Costar 3596, Corning, Corning,
NY, USA) with six replicates, the BS (20 µL) at different concentrations was added in each
well and finally inoculated with 180 µL of bacterial suspension. As a positive control, the
bacteria were cultured only in the Marine Broth, and as a negative control, 6 µg/mL copper
sulfate (CuSO4) was used. The plates were incubated for 48 h at 35 ◦C. After recording the
optical density at 620 nm in a microplate reader, the growth of the bacteria in the presence
of BS was evaluated. To evaluate the biofilm formation, the crystal violet protocol described
by Shukla and Rao [67] was performed. The results were expressed as percentages.

4.4. 1H NMR Metabolic Analysis
4.4.1. Biofilm and Planktonic Cells Source and Sample Preparation

The biofilm and planktonic cells were obtained in accordance with Mikkelsen et al. [76],
with some modifications. Pseudomonas stutzeri was cultured on marine agar plates for 24 h.
Then, the cells were adjusted to DO = 1 (saline solution = 2.5%, 585 nm) and inoculated
in a Petri dish with Marine Broth (1:9). In seven replicates, 30 µg/mL of BS was added.
Seven replicates were incubated without BS (control) for seven days at 35 ◦C. After the
incubation period, the planktonic cells were removed with a micropipette and recovered by
centrifugation (12,000 rpm, 4 ◦C, 20 min). Biofilm cells were removed from the Petri dish
with a cotton swab and PBS solution, and recovered by centrifugation (12,000 rpm, 4 ◦C,
20 min). Samples were stored at −80 ◦C and lyophilized. All samples were extracted with
a mixture of KH2PO4 buffer in deuterium oxide (D2O). The mixture was mixed in a vortex,
and the extraction was realized in an ultrasonic bath for 30 min and then centrifuged for
20 min at 4200 rpm. The supernatants were transferred into NMR tubes (5 mm).
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4.4.2. Nuclear Magnetic Resonance (NMR) Experiments and Data Analysis

The NMR experiments were performed in a Bruker 750 MHz spectrometer (Bruker
Biospin, Rheinstetten, Germany) equipped with a 5 mm TXI cryoprobe. The aqueous
extracts from the biofilm and planktonic cells were measured at 298.1 ± 0.1 K without
rotation, and with four dummy scans prior to 64 scans. Acquisition parameter were set
as follows: FID size = 64 K, spectral width = 19.9967 ppm, receiver gain = 1, acquisition
time = 2.18 s, relaxation delay = 10 s, mixing time = 100 ms, FID resolution = 0.45 Hz. Data
acquisition was achieved by using a NOESY pre-saturation pulse sequence (Bruker 1D
noesypr1d) with water suppression via selective irradiation of the water frequency during
recycling and mixing time delays [77].

The NMR data were processed in accord with Liu et al. [78]. Fourier transform and
baseline correction were realized on all data. The TSP shift signal was adjusted to 0.00 ppm
using TOPSPIN 2.1 software (Bruker Biospin GmbH, Rheinstetten, Germany). The residual
signal of water (δ 4.75–4.90 ppm) was suppressed by using MestReNova software (version
6.1.0, Mestrelabs Research SL, Santiago de Compostela, Spain). Finally, these data were
converted into SIMCA-P version 14.0 (Umetrics, Umea, Sweden).

4.4.3. Identification and Quantification of Metabolites

For the identification of metabolites, the software Chenomx was utilized and the chem-
ical shift and coupling constant of the signals contrasted with the NMR spectra available
in the Biological Magnetic Resonance Data Bank (BMRB; www.bmrb.wisc.edu) and the
Human Metabolome Data Base (HMDB; http://www.hmdb.ca/). The quantification of
compounds was realized by integration of the 1H NMR signals, using TSP as the internal
standard [79]. The intensity of a signal in the 1H NMR spectrum is proportional to the
molar concentration of metabolites [78,80,81].

4.4.4. Statistical Analysis

For concentrations of metabolites, the mean and standard deviation were calculated.
A one-way ANOVA was carried out using Statistica software to determine significant dif-
ferences in metabolite levels. Multiple-comparison tests were performed to reveal pair-wise
differences between means (p < 0.05). p value < 0.05 was considered statistically significant.

The multivariate analysis was realized in SIMCA-P version 14.0 (Umetrics, Umea,
Sweden). Principal component analysis (PCA) was applied to analyze intrinsic variation in
the dataset. All the variables were Paretto-scaled for multivariate analysis. The variables
were subjected to orthogonal partial least squares discriminant analysis (OPLS-DA) to
identify differential components among samples. A hoteling T2 region showing an ellipse
in score plots of the model, was used to define the 95% confidence interval [82]. Validation
of the model was realized using permutation tests (200 times). The quality of the model
was determined by R2 and Q2 values [83]. A cluster heat map was created to visualize the
abundance of metabolites in planktonic cells and biofilm of P. stutzeri with and without BS.

5. Conclusions

The BS from B. niabesis has the capacity to reduce biofilm formation and cellular growth
in the planktonic stage of P. stutzeri. This interaction promotes metabolomic changes in
response to osmotic stress and protects the cells against the antibacterial activity of BS. We
conclude that the crude BS of B. niabensis can act as a disruptor to the exopolysaccharide
matrix in biofilm (the OD in the microplates with BS was lower than in the plates with
bacteria without BS) and cause metabolic stress to cells in the biofilm and planktonic
stages. As biofilm formation and metabolomic composition are key in the aggregation of
macrofoulers, this BS could be a suitable candidate for inhibiting the biofilm formation of
pioneer marine bacteria.
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