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Abstract: 1H spin-lattice relaxation experiments have been performed for water–Bovine Serum
Albumin (BSA) mixtures, including 20%wt and 40%wt of BSA. The experiments have been carried
out in a frequency range encompassing three orders of magnitude, from 10 kHz to 10 MHz, versus
temperature. The relaxation data have been thoroughly analyzed in terms of several relaxation
models with the purpose of revealing the mechanisms of water motion. For this purpose, four
relaxation models have been used: the data have been decomposed into relaxation contributions
expressed in terms of Lorentzian spectral densities, then three-dimensional translation diffusion
has been assumed, next two-dimensional surface diffusion has been considered, and eventually, a
model of surface diffusion mediated by acts of adsorption to the surface has been employed. In this
way, it has been demonstrated that the last concept is the most plausible. Parameters describing the
dynamics in a quantitative manner have been determined and discussed.
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1. Introduction

The dynamical properties of molecular systems are one of the most fundamental
questions of molecular science. The question encompasses not only the time scale of the
motion but also its mechanism—in other words: one is not satisfied with determining the
time scale of a specific dynamical process (by providing, for instance, diffusion coefficients),
one wishes to get insight into the geometry of the motion (for instance the dimensionality
of the translation displacements).

The experimental means allowing to enquire into the characteristic features of molec-
ular motion are very limited. Nuclear Magnetic Resonance (NMR) methods are broadly
appreciated as a source of information about molecular structure and dynamics. As far as
dynamics are concerned, NMR relaxation studies are of primary importance. However,
“classical” NMR relaxation experiments are commonly performed at a single, high mag-
netic field (resonance frequency). According to spin relaxation theories [1–3], the relaxation
process is most efficient when the time scale of the fluctuations of the spin interactions
causing the relaxation is of the order of the reciprocal resonance frequency. This implies that
at high frequencies, one mostly probes fast dynamics. Consequently, to probe dynamical
processes occurring over a broad time scale, one has to vary the magnetic field (resonance
frequency). This kind of study is referred to as NMR relaxometry. In the present studies,
the resonance frequency is varied from about 10 kHz to 10 MHz (1H resonance frequency),
which gives three orders of magnitude. Consequently, one can probe molecular motion on
the time scale from about 10−4 s to about 10−8 s in a single experiment. This potential of
NMR relaxometry has been widely exploited for molecular and ionic systems of varying
complexity—from liquids [4–6] via polymers and proteins [7–20] to tissues [21,22] and
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liquid and solid electrolytes [23–30]. The great advantage of NMR relaxometry is the ability
to give insight into the mechanism of motion. Relaxation rates (reciprocal relaxation times)
are given as linear combinations of so-called spectral density functions. A spectral density
function is defined as a Fourier transform of a corresponding time correlation function
characterizing the stochastic fluctuations (caused by the molecular motion) of the spin
interactions. The mathematical form of the correlation function (and, hence, the spectral
density) depends on the mechanism of the motion (for instance, such as isotropic and
anisotropic rotational motion, free (three-dimensional) translation diffusion, or restricted
(two-dimensional or one-dimensional) translation motion). Via the form of the spectral den-
sity function, the shape of the frequency dependence of the relaxation rates is a fingerprint
of the mechanism of motion. At this stage, one should point out that single-frequency re-
laxation studies hardly contain information about the characteristic features (mechanisms)
of the dynamical process leading to the relaxation at that frequency.

The advantages of NMR relaxometry (the ability to probe molecular motion over a
broad time scale and the ability to reveal the mechanism of motion) interfere with each
other. The reason for that is several relaxation contributions present over such a broad
frequency range and constitute the overall relaxation rate. The relaxation contributions
stem from different relaxation pathways. For instance, magnetic dipole-dipole interactions
(being the dominating origin of 1H relaxation) can be of intra-molecular or inter-molecular
origin. The first ones fluctuate in time as a result of rotational and internal dynamics, while
the second ones are mostly modulated by translation diffusion. For simple systems, the
two contributions can be unambiguously identified and disentangled [5,6], profiting from
the time scale separation of translational and rotational dynamics. In such a case, one
can fully profit from the unique advantages of NMR relaxometry (investigating rotational
and translational dynamics in a single experiment and identifying the mechanism of the
observed dynamical processes) in a relatively straightforward way. The task becomes much
more cumbersome for multi-component systems due to several relaxation contributions
and not clear time scale separation of the dynamical processes associated with the relaxation
contribution. Examples of such systems are highly concentrated protein—water mixtures.
The systems include a macromolecular fraction (proteins) forming a matrix entrapping
water molecules. Consequently, one can expect pools of water molecules to perform
different kinds of complex motions.

The purpose of this work is twofold. The first one is to enquire into the mechanism
of water motion in the presence of a substantial fraction of proteins (in contrast to highly
diluted protein solutions [18]), profiting from the unique potential of NMR relaxometry.
For this purpose, Bovine Serum Albumin (BSA) has been chosen as an example. In this
context, one should mention NMR relaxometry studies for sedimented proteins showing
much different dynamics than proteins in solution [19] and studies addressing the subject
of water diffusion on protein surfaces in the presence of ions [20]. The second goal has
methodological aspects. We present a thorough analysis of 1H spin-lattice relaxation data
for BSA–water mixtures using different forms of spectral density functions. In this way, we
demonstrate the challenges of revealing the mechanisms of molecular motion for complex
systems. At the same time, the work presents an overview of theoretical models that can
potentially be exploited to reproduce NMR relaxometry data for systems including water
and a macromolecular fraction and illustrates by examples their verification.

Theory
1H NMR spin-lattice relaxation processes are predominantly caused by magnetic

dipole-dipole interactions. According to the spin relaxation theory [1–3], the spin-lattice
relaxation rate, R1, originating from 1H-1H dipole-dipole interactions, is given as the
following combination of spectral density functions:

R1(ω) = CDD[J(ω) + 4J(2ω)], (1)
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where ω denotes the resonance frequency in angular frequency units, while CDD is referred
to as a dipolar relaxation constant reflecting the amplitude of the magnetic dipole-dipole
interactions causing the relaxation process. The form of the spectral density function,
J(ω) (Fourier transform of the corresponding time correlation function), depends on the
mechanism of the motion responsible for stochastic time fluctuations of the dipole-dipole
interactions. For exponential correlation functions, the Fourier transform (and, hence,
the spectral density) takes a Lorentzian form. Consequently, the relaxation rate is given
as [1–3]:

R1(ω) = CDD

[
τc

1 + (ωτc)
2 +

4τc

1 + (2ωτc)
2

]
, (2)

where τc denotes a time constant characterizing the time scale of the motion, referred to as
a correlation time. As already pointed out in the Introduction, the broad frequency range
covered in NMR relaxometry experiments implies that several dynamical processes can be
probed in a single experiment. The simplest way to get some insight into the molecular mo-
tion is to attempt to decompose the overall relaxation process into contributions associated
with dynamics occurring on different timescales. In such a case, the relaxation rate can be
expressed as [12,16,17]:

R1(ω) = CDD
s

[
τs

1+(ωτs)
2 +

4τs
1+(2ωτs)

2

]
+ CDD

i

[
τi

1+(ωτi)
2 +

4τi
1+(2ωτi)

2

]
+

CDD
f

[
τf

1+(ωτf )
2 +

4τf

1+(2ωτf )
2

]
+ A,

(3)

where τs, τi, and τf denote correlation times characterizing slow, intermediate, and fast
dynamics (in a relative scale), respectively, while CDD

s , CDD
i , and CDD

f are the corresponding
dipolar relaxation constants. The frequency-independent factor, A, accounts for a relaxation
contribution associated with a very fast motion for which the condition: ωτc � 1 is fulfilled
in the whole frequency range. An example of such dynamics can be the movement of water
molecules in bulk. The decomposition assumes that the contributing dynamical processes
can be characterized by exponential correlation functions.

One can go beyond the simple description (parametrization) and attempt to get insight
into the mechanism of the molecular motion. In water—protein mixtures, it is expected
that water molecules perform translation diffusion that is considerably affected by the
presence of the macromolecules. Discussing translation diffusion, one should consider the
dimensionality of this process—the translation motion can be isotropic (three-dimensional)
or anisotropic (two-dimensional in this case). The two-dimensional translation diffusion
one envisages a motion occurring near the surface of the macromolecules (surface dif-
fusion). The spectral density function for three-dimensional diffusion, J3D(ω), takes the
form [31–33]:

J3D(ω) =
72
5

∫ ∞

0

u4

81 + 9u2 − 2u4 + u6
τtrans

1 + (ωτtrans)
2 du, (4)

Consequently, the corresponding expression for the spin-lattice relaxation rate, R1(ω),
can be expressed as a sum of a relaxation contribution associated with three-dimensional
translation diffusion and Lorentzian terms. Limiting ourselves to a single Lorentzian term,
one obtains:

R1(ω) = 3
2
( µ0

4π γ2
H}
)2 1

d3 NH
∫ ∞

0
u4

81+9u2−2u4+u6

[
τtrans

u4+(ωτtrans)
2 +

4τtrans
u4+(2ωτtrans)

2

]
du+

CDD

[
τc

1+(ωτc)
2 +

4τc
1+(2ωτc)

2

]
+ A,

(5)

where γH is 1H gyromagnetic factor, µ0 is the vacuum permeability, } is reduced Planck
constant, NH denotes the number of hydrogen atoms per unit volume (referring to the
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fraction of water molecules undergoing the translation diffusion), while d denotes a distance
of the closest approach [31,32]. The model is called force free hard sphere model—it assumes
that molecules have a form of hard spheres with 1H nuclei placed in their centers. In this
approximation, the distance of the closest approach is given as a sum of the radii of the
interacting molecules—in case of identical molecules, this gives the molecular diameter.
The correlation time τtrans is given as τtrans =

d2

2Dtrans
, where Dtrans denotes the translation

diffusion coefficient. In the low-frequency range, when ωτtrans < 1, the spectral density
for three-dimensional translation diffusion (Equation (4)) shows a linear dependence on√

ω [31–33]. Consequently, when the dominating relaxation contribution at low frequencies
stems from intermolecular dipole-dipole interactions modulated by three-dimensional
translation diffusion, the relaxation rates, R1(ω), show a linear dependence on

√
ω in this

range.
In case the diffusion process is restricted to two dimensions—in other words, it

occurs in the vicinity of a surface, the corresponding spectral density, J2D(ω), takes the
form [4,15,19,34,35]:

J2D(ω) = τtransln

 1 + (ωτtrans)
2(

τtrans
τres

)2
+ (ωτtrans)

2

, (6)

where τres denotes a residence lifetime of water molecules on the surface of the macro-
molecules. For a long residence lifetime, when τtrans

τres
� ωτtrans, Equation (6) converges to:

J2D(ω) = τtransln
[
1 + (ωτtrans)

−2
]
, (7)

This implies that at low frequencies, when ωτtrans < 1, the spectral density shows
a linear dependence on lnω [35]. Therefore, in analogy to the case of three-dimensional
diffusion, when the relaxation contribution associated with translation dynamics dominates
in the low-frequency range, the relaxation rate shows a linear dependence on lnω. For
two-dimensional translation diffusion, the counterpart of Equation (5) takes the form:

R1(ω) = Ctransτtrans

[
ln
[

1+(ωτtrans)
2

( τtrans
τres )

2
+(ωτtrans)

2

]
+ 4ln

[
1+(2ωτtrans)

2

( τtrans
τres )

2
+(2ωτtrans)

2

]]
+

CDD

[
τc

1+(ωτc)
2 +

4τc
1+(2ωτc)

2

]
+ A,

(8)

where Ctrans denotes a dipolar relaxation constant. When neglecting the effect of the
residence lifetime, Equation (8) converges to:

R1(ω) = Ctransτtrans

[
ln
(

1 + (ωτtrans)
−2
)
+ 4 ln

(
1 + (2ωτtrans)

−2
)]

+

CDD

[
τc

1+(ωτc)
2 +

4τc
1+(2ωτc)

2

]
+ A,

(9)

In biomolecular systems one can also expect a relaxation contribution originating from
1H-14N dipole-dipole interactions. 14N nuclei possess quadrupole moments. This implies
that in case of slow molecular dynamics, the energy level structure of 14N nuclei stems
from a superposition of their Zeeman and quadrupole interactions. As the quadrupole
coupling is independent of the magnetic field, there are magnetic fields at which the 1H
resonance frequency matches the transition frequencies of the 14N nucleus between its
energy levels. When the 1H and 14N transition frequencies match, the 1H magnetization
can be transferred to (taken over by) the 14N nucleus [16,17,36–43]. This manifests itself
as a faster decay of the 1H magnetization (a higher relaxation rate) at specific frequencies.
The faster decay leads to a frequency-specific enhancement of the spin-lattice relaxation
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rate, referred to as Quadrupole Relaxation Enhancement (QRE). The 1H-14N relaxation
contribution, RH−N

1 (ω) can be expressed as [43]:

RH−N
1 (ω)

= CHN
DD×



(
1
3 + sin2θcos2φ

)(
τQ

1+(ω−ω−)
2τ2

Q
+

τQ

1+(ω+ω−)
2τ2

Q

)
+(

1
3 + sin2θsin2φ

)(
τQ

1+(ω−ω+)
2τ2

Q
+

τQ

1+(ω+ω+)
2τ2

Q

)
+(

1
3 + cos2θ

)(
τQ

1+(ω−ω0)
2τ2

Q
+

τQ

1+(ω+ω0)
2τ2

Q

)


(10)

where the frequencies ω−, ω+ and ω0 are defined as: ω−
2π = aQ

(
1− η

3
)
, ω+

2π = aQ
(
1 + η

3
)

and ω0 = ω+−ω−, aQ denotes the quadrupole coupling constant, while η is the asymmetry
parameter. The angles θ and φ describe the orientation of the principal axis system of the
electric field gradient tensor with respect to the 1H-14N dipole-dipole axis, while the
correlation time τQ characterizes time fluctuations of the 1H-14N dipole-dipole coupling.

The dipolar relaxation constant, CHN
DD , is defined as: CHN

DD = 2
3

(
µ0
4π

γHγN}
r3

HN

)2
, where rHN

denotes the 1H-14N inter-spin distance, while γN denotes 14N gyromagnetic factor.

2. Results
1H spin-lattice relaxation data for BSA–water mixtures, 20%wt and 40%wt of BSA,

versus temperature, are shown in Figure 1a,b.
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Figure 1. 1H spin-lattice relaxation rates for BSA–water mixtures versus temperature, (a) 20%wt of
BSA, (b) 40%wt of BSA. Stars show the changes in the relaxation rates upon cooling down.

Looking at Figure 1a, one sees that between 268 K and 263 K, the dynamics of the
system changed due to the freezing of the water fraction. Actually, the freezing process
has been captured—stars in Figure 1a. The temperature was set to 263 K, and, after 60 min,
the experiment began. The relaxation rates at the highest frequency correspond to those at
268 K, then in the course of time with progressing freezing, the relaxation rates reach the
values of the relaxation data represented by blue squares that have been obtained at 263 K
after waiting the next 60 min. The data for 263 K and below show Quadrupole Relaxation
Enhancement (QRE) effects (quadrupole peaks). For the mixture including 40%wt of BSA
(Figure 1b), the freezing temperature has been carefully investigated—it has turned out
that at 266 K, the system remains liquid, while it freezes at 265 K. Here, one also sees
QRE effects.
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Before proceeding with a quantitative analysis of the relaxation data, it is worth noting
some effects (Figure 2a). The ratio between the relaxation rates for the mixture containing
40%wt of BSA and 20%wt at 268 K and 273 K has a characteristic shape that, in fact, repeats
itself at 278 K (after multiplying the ratio by 0.87). At low temperatures, the ratio reaches
a factor close to one in the whole frequency range—that means that the relaxation data
tend to overlap. The overlapping is seen in Figure 2b, which also shows, for comparison,
relaxation data for solid BSA at 293 K taken from Ref. [16].
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Figure 2. (a) Ratio between spin-lattice relaxation rates for BSA–water mixtures (40%wt of BSA and
20%wt of BSA); (b) rescaled spin-lattice relaxation data for BSA–water mixtures compared with data
for solid BSA.

We begin the analysis of the relaxation data with the mixture including 20%wt of BSA
and the simplest concept of decomposing the relaxation data into contributions expressed
in terms of Lorentzian spectral densities and attributed to dynamical processes referred to
as slow, intermediate, and fast ones, according to Equation (2). The outcome of the analysis
is shown in Figure 3, while the obtained parameters are collected in Table 1.

Table 1. Parameters obtained from the analysis of 1H spin-lattice relaxation data for BSA–water
mixtures at higher temperatures (268 K and above) in terms of Equation (1). The dipolar relax-
ation constants, CDD

i and CDD
f , for 20%wt concentration of BSA yields: CDD

i = 7.84 × 106 Hz2,

CDD
f = 2.16 × 107 Hz2. The dipolar relaxation constants for 40%wt concentration of BSA are:

CDD
s = 5.61 × 106 Hz2, CDD

i = 1.45 × 107 Hz2 and CDD
f = 9.89 × 107 Hz2.

20%wt of BSA

Temp. [K] τi [s] τf [s] A [s−1]

268 1.97 × 10−7 2.28 × 10−8 2.52

273 1.65 × 10−7 1.91 × 10−8 2.25

278 1.27 × 10−7 1.39 × 10−8 1.62

298 8.33 × 10−8 9.62 × 10−9 0.98
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Table 1. Cont.

40%wt of BSA

Temp. [K] τs [s] τi [s] τf [s] A [s−1]

266 1.16 × 10−6 2.66 × 10−7 2.24 × 10−8 4.68

268 1.10 × 10−6 2.41 × 10−7 2.09 × 10−8 4.50

273 9.67 × 10−7 1.95 × 10−7 1.84 × 10−8 3.91

278 8.53 × 10−7 1.56 × 10−7 1.59 × 10−8 3.40
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Figure 3. 1H spin-lattice relaxation data for BSA–water mixture (20%wt of BSA) reproduced in
terms of Equation (3); black solid line—overall fit decomposed into a contribution associated with
intermediate dynamics (dashed-dotted black line) and fast dynamics (dashed black line), there is
no relaxation contribution associated with slow dynamics. Comparison fits obtained in terms of
Equation (5) are shown as the corresponding color lines (the lines are hardly visible as they almost
overlap with the black ones), they are decomposed into Lorentzian term (dashed-dotted line), a term
associated with three-dimensional translation diffusion (dashed line) and frequency independent
term (dotted line).

For the mixture including 20%wt of BSA, the relaxation data can be reproduced
using only two Lorentzian terms (plus the frequency independent term). The obtained
parameters have been associated with intermediate and fast dynamics. The association has
been made on the basis of the comparison with the parameters obtained for the mixture
including 40%wt of BSA. In that case, all three relaxation contributions are needed to
reproduce the data, as shown in Figure 4. The order of the values of the longer correlation
times obtained for 20%wt of BSA matches that for the correlation times characterizing
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intermediate dynamics for 40%wt BSA (Table 1). The analysis of the relaxation data for
40%wt of BSA is shown in Figure 4.
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Figure 4. 1H spin-lattice relaxation data for BSA–water mixture (40%wt of BSA) reproduced in terms
of Equation (3); black solid line—overall fit decomposed into a contribution associated with slow
dynamics (dashed-dotted black line), intermediate dynamics (dashed grey line), and fast dynamics
(dashed black line). Comparison fits obtained in terms of Equation (5) are shown as the corresponding
color lines, they are decomposed into a Lorentzian term (dashed-dotted line), a term associated with
three-dimensional translation diffusion (dashed line) and a frequency independent term (dotted line).

The obtained parameters give insight into the time scale of the molecular motion,
however, we aim at revealing not only the time scale but also the mechanism of the
movement of water molecules. Therefore, in the second step we have reproduced the
data in terms of Equation (5) as a sum of a relaxation contribution associated with three-
dimensional translation diffusion and a Lorentzian term. The fits have been performed
with the following adjustable parameters: CDD, τc, Dtrans, NH and A; the distance of the
closest approach has been set to the diameter of a water molecule: d = 2.7Å. The parameters
obtained for the case of 20%wt of BSA are collated in Table 2. The dipolar relaxation
constant, CDD = 7.29 × 106 Hz2 is very close to that obtained for the intermediate dynamics
(Equation (3)), CDD

i = 7.84 × 106 Hz2; the values of the correlation time, τc, are also similar
to that for τi. The fits are shown in Figure 3 for comparison. The same approach has
been applied to the relaxation data for the BSA–water (40%wt) mixture. The values of the
obtained parameters are discussed in the next section. At this stage one should notice that
this approach has led to a reduction in the number of the adjustable parameters—instead
of the two pairs of parameters: CDD

i , τi and CDD
f , τf , characterizing the intermediate and
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slow dynamics, the model involves only the translation diffusion coefficient, Dtrans, and
the NH number. The translation diffusion coefficients are rather small.

Table 2. Parameters obtained from the analysis of 1H spin-lattice relaxation data for BSA–water
mixtures in terms of Equation (5). The dipolar relaxation constant, CDD, for 20%wt concentration
of BSA yields: CDD = 7.29 × 106 Hz2, NH = 1.52 × 1027/m3; the corresponding values for 40%wt
concentration yield: CDD = 7.69 × 106 Hz2, NH = 2.84 × 1027/m3; the distance of closest approach
has been set in all cases to d = 2.7Å. The correlation time τtrans has been obtained from the relationship:
τtrans =

d2

2Dtrans
.

Temp. [K] τc [s] Dtrans [m2/s] A [s−1] τtrans [s]

20%wt of BSA

268 1.85 × 10−7 2.08 × 10−12 1.98 3.50 × 10−8

273 1.54 × 10−7 2.44 × 10−12 1.79 2.98 × 10−8

278 1.18 × 10−7 3.28 × 10−12 1.25 2.22 × 10−8

298 7.60 × 10−8 4.56 × 10−12 0.69 1.60 × 10−8

40%wt of BSA

266 9.08 × 10−7 5.56 × 10−13 5.00 1.31 × 10−7

268 8.47 × 10−7 6.10 × 10−13 4.84 1.20 × 10−7

273 7.32 × 10−7 7.23 × 10−13 4.31 1.01 × 10−7

278 6.35 × 10−7 8.68 × 10−13 3.82 8.40 × 10−8

In the pursuit of the mechanism of water diffusion, we have attempted to exploit
the model of two-dimensional translation diffusion (surface diffusion) represented by
Equation (7). The model of two-dimensional translation diffusion combined with a
Lorentzian relaxation contribution (Equation (9)) has led to the fits shown in Figure 5 for
20%wt of BSA and in Figure 6 for 40%wt of BSA. The obtained parameters are collated in
Table 3.

Table 3. Parameters obtained from the analysis of the 1H spin-lattice relaxation data for BSA–water
mixtures in terms of Equation (9). The dipolar relaxation constant, CDD, for 20% and 40%wt concen-
tration of BSA yield: CDD = 9.81 × 106 Hz2 and CDD = 8.28 × 106 Hz2, respectively, the relaxation
constant associated with two dimensional translation diffusion is Ctrans = 7.09 × 107 Hz2 for both
concentrations of BSA. The translation diffusion coefficient has been obtained from the relationship:
Dtrans =

d2

2τtrans
.

Temp. [K] τc [s] τtrans [s] A [s−1] Dtrans [m2/s]

20%wt of BSA

268 1.37 × 10−7 7.26 × 10−10 1.70 5.02 × 10−11

273 1.14 × 10−7 6.15 × 10−10 1.55 5.93 × 10−11

278 9.05 × 10−8 4.05 × 10−10 1.19 9.00 × 10−11

298 5.99 × 10−8 2.50 × 10−10 0.77 1.46 × 10−10

40%wt of BSA

266 6.92 × 10−7 7.14 × 10−9 4.32 5.11 × 10−12

268 6.39 × 10−7 6.64 × 10−9 4.01 5.49 × 10−12

273 5.42 × 10−7 5.67 × 10−9 3.50 6.43 × 10−12

278 4.63 × 10−7 4.79 × 10−9 3.03 7.61 × 10−12
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term (dotted line).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 11 of 24 
 

 

 

Figure 6. 1H spin-lattice relaxation data for BSA–water mixture (40%wt of BSA) reproduced in terms 

of Equation (9); solid line—overall fit decomposed into a Lorentzian term (dashed-dotted line), a 

term associated with two-dimensional translation diffusion (dashed line) and a frequency inde-

pendent term (dotted line). 

Following the line of two-dimensional translation diffusion, in the last step we have 

attempted to reproduce the relaxation data in terms of Equation (8) that includes the res-

idence life time, 𝜏𝑟𝑒𝑠. It has turned out that this concept enables reproducing the relaxa-

tion data for 20%wt and 40%wt of BSA with a contribution associated with two-dimen-

sional translation diffusion dominating over a broad frequency range, as shown in Figure 

7 and Figure 8, respectively. The obtained parameters are collated in Table 4. 

  

Figure 6. 1H spin-lattice relaxation data for BSA–water mixture (40%wt of BSA) reproduced in terms
of Equation (9); solid line—overall fit decomposed into a Lorentzian term (dashed-dotted line), a term
associated with two-dimensional translation diffusion (dashed line) and a frequency independent
term (dotted line).



Int. J. Mol. Sci. 2023, 24, 4093 11 of 21

Following the line of two-dimensional translation diffusion, in the last step we have
attempted to reproduce the relaxation data in terms of Equation (8) that includes the resi-
dence life time, τres. It has turned out that this concept enables reproducing the relaxation
data for 20%wt and 40%wt of BSA with a contribution associated with two-dimensional
translation diffusion dominating over a broad frequency range, as shown in Figures 7 and 8,
respectively. The obtained parameters are collated in Table 4.

Table 4. Parameters obtained from the analysis of the 1H spin-lattice relaxation data for BSA–water
mixtures in terms of Equation (8). The dipolar relaxation constant, CDD, for 20% and 40%wt concen-
tration of BSA yield: CDD = 4.31 × 107 Hz2 and CDD = 9.03 × 107 Hz2,, respectively, the relaxation
constant associated with two-dimensional translation diffusion is Ctrans = 8.04 × 106 Hz2 for 20%
of BSA and Ctrans = 1.07 × 107 Hz2 for 40% of BSA. The translation diffusion coefficient has been
obtained from the relationship: Dtrans =

d2

2τtrans
.

Temp. [K] τc [s] τtrans [s] τres [s] A [s−1] Dtrans [m2/s]

20%wt of BSA

268 6.70 × 10−9 5.17 × 10−8 4.81 × 10−7 2.06 7.05 × 10−13

273 5.46 × 10−9 4.33 × 10−8 4.07 × 10−7 1.90 8.42 × 10−13

278 4.13 × 10−9 3.28 × 10−8 3.12 × 10−7 1.31 1.11 × 10−12

298 2.78 × 10−9 2.14 × 10−8 2.09 × 10−7 0.80 1.70 × 10−12

40%wt of BSA

266 2.38 × 10−8 1.83 × 10−7 2.71 × 10−6 5.06 1.99 × 10−13

268 2.24 × 10−8 1.65 × 10−7 2.66 × 10−6 4.70 2.21 × 10−13

273 1.91 × 10−8 1.33 × 10−7 2.60 × 10−6 4.20 2.74 × 10−13

278 1.66 × 10−8 1.07 × 10−7 2.60 × 10−6 3.51 3.41 × 10−13
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Figure 7. 1H spin-lattice relaxation data for BSA–water mixture (20%wt of BSA) reproduced in terms
of Equation (8); solid line—overall fit decomposed into a term associated with two-dimensional trans-
lation diffusion (dashed line), a Lorentzian term (dashed-dotted line) and a frequency independent
term (dotted line).
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lation diffusion (dashed line), a Lorentzian term (dashed-dotted line) and a frequency independent
term (dotted line).

Eventually, we performed a quantitative analysis of the 1H spin-lattice relaxation
data at lower temperatures, showing QRE effects (quadrupole peaks). The data have
been interpreted as a sum of 1H-1H and 1H-14N relaxation contributions. The 1H-1H
relaxation contribution has been described in terms of Equation (3), while the 1H-14N
relaxation contribution is given by Equation (8). Because of the very similar shape of the
relaxation data (Figure 2b)—the data almost overlap after a simple rescaling (multiplication
by a factor)—we have limited ourselves to the case of 40%wt of BSA at 263 K (Figure 9).
The obtained parameters are as follows: CDD

s = 4.92 × 106 Hz2, CDD
i = 1.40 × 108 Hz2,

CDD
f = 5.62 × 108 Hz2, τs = 1.31 × 10−6 s, τi = 1.09 × 10−7 s, τf = 1.07 × 10−8 s,

CHN
DD = 2.27 × 107 Hz2, aQ = 3.36 × 106 Hz2, η = 0.42, τQ = 1.03× 10−6 s, θ = 55.4◦, φ = 53.0◦,

A = 10.8 s−1.
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contribution); solid line—overall fit decomposed into the 1H-1H relaxation contributions associated
with slow, intermediate, and fast dynamics (dashed lines), dashed-dotted line—1H-14N relaxation
contribution, dotted line—a frequency independent term.

3. Discussion

Aiming at revealing the timescale and the mechanism of water motion in highly
concentrated water–protein mixtures, in the first step we described the 1H spin-lattice
relaxation data as a sum of relaxation contributions expressed in terms of Lorentzian
spectral densities. The interpretation required two relaxation contributions for the case
of 20%wt of BSA and three contributions for the case of 40%wt of BSA. The correlation
times are shown in Figure 10. The τi and τf correlation times for 20% and 40%wt BSA are
close, the τs values for 40%wt of BSA are by about an order of magnitude longer than τi.
The correlation times follow (in a good approximation) the Arrhenius law. The dipolar
relaxation constant yield: CDD

i = 7.84 × 106 Hz2, CDD
f = 2.16 × 107 Hz2 for 20%wt of BSA,

CDD
s = 5.61 × 106 Hz2, CDD

i = 1.45 × 107 Hz2 and CDD
f = 9.89 × 107 Hz2 for 40%wt of BSA.
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The large number of parameters enables reproducing the relaxation data, although,
even then, the agreement is not very good in the whole frequency range. The analysis does
not provide indications regarding the mechanism of the dynamical processes associated
with the individual relaxation contributions. Therefore, in the next step we have attempted
to exploit the model of three-dimensional translation diffusion for water molecules present
in the system. However, the relaxation rates at low frequencies do not show linear depen-
dences on

√
ω. This implies that even water molecules indeed undergo three-dimensional

translation diffusion, the relaxation contribution associated with this motion does not
dominate the relaxation process in the low-frequency range. This is reflected by the results
shown in Figure 3 (20%wt BSA) and Figure 4 (40%wt BSA). Equation (5) used for the relax-
ation data for 20%wt BSA gives a relaxation contribution associated with three-dimensional
translation diffusion that dominates the overall relaxation in a relatively small frequency
range, from about 1 MHz to about 5 MHz—at lower frequencies the relaxation contribution
expressed in term of Lorentzian spectral densities prevails, while at higher frequencies
the frequency independent term takes over. This implies that in this way the concept of
three-dimensional translation diffusion can neither be confirmed not excluded, especially
as the fits do not show a very good agreement with the data in that range. Nevertheless,
Figure 8 includes the correlation times, τtrans, for comparison; the ratio τtrans/τf is below
two. As far as the dipolar relaxation constant, CDD, and the correlation time, τc, are con-
cerned, the quantities are very close to CDD

i and τi. The obvious gain from using the model
of three-dimensional translation diffusion for the case of 40%wt of BSA is reducing the
number of parameters. The relaxation contributions expressed in terms of CDD

i , τi and
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CDD
f , τf have been replaced by a relaxation contribution including only two adjustable

parameters: NH and τtrans, leading to a better (not worse) agreement with the experimental
data (Figure 4). The parameters CDD and τc do not differ considerably from CDD

s and τs.
The values of the correlation time, τtrans, are shown in Figure 8, the ratio τi/τtrans is of
about two.

This scenario of motion, although plausible at the first sight (not discussing at this stage
the origin of the dynamics reflected by the relaxation contribution with Lorentzian spectral
densities, characterized by CDD and τc) has turned out to be unambiguous. The relaxation
data for both 20%wt and 40%wt BSA can also be reproduced in terms of Equation (9),
in which the relaxation contribution associated with three-dimensional translation diffu-
sion has been replaced by a relaxation contribution corresponding to two-dimensional
translation diffusion under the assumption τtrans

τres
< ωτtrans (long τres). The success of this

undertaking is not surprising for 20%wt of BSA as in this case the relaxation is anyway
dominated by the relaxation term including Lorentzian spectral densities. However, the
agreement with the experimental data reached for 40%wt of BSA renders the mechanism
of the translation diffusion unambiguous. It is worth to mention at this stage the short
correlation times obtained for the two-dimensional translation diffusion compared to those
for three-dimensional motion.

This discussion brings one to the conclusion that to resolve the question about the
mechanism of molecular motion it is required that the relaxation contribution associated
with the dynamical process dominates the overall relaxation over a relatively broad range
of resonance frequencies—otherwise the characteristic features of the spectral density
functions can be masked by other relaxation contributions. This has been achieved for
the model given by Equation (8). The relaxation terms associated with two-dimensional
translation diffusion gives a dominating contribution over at least two decades of frequency.
The correlation times characterizing the two-dimensional translation motion for 20%wt and
40%wt BSA are included in Figure 10. They show that the translation diffusion of water
molecules in the 40%wt BSA mixture is about three times slower compared to the diffusion
in the 20%wt BSA mixture. For the case of 20%wt BSA, the residence lifetime of water
molecules on the protein surface is by an order of magnitude longer than the correlation
time for the translation diffusion, while for the case of 40%wt of BSA the ratio is about
five, the residence lifetime being weakly temperature dependent (almost independent).
The model of Equation (8) also includes a relaxation contribution represented in terms of
Lorentzian spectral densities. The correlation time, τc for the 40%wt of BSA, is close to the
τf values obtained from the analysis in terms of relaxation contributions with Lorentzian
spectral densities (Equation (3)). For the case of 20%wt of BSA, the correlation time τc is
shorter than τf .

On the basis of the performed analysis one can construct the following scenario of
the water dynamics. There is a fraction of water molecules undergoing two-dimensional
translation diffusion in the vicinity of the protein surface. The diffusion is interrupted by
adsorption on the protein surface for a time characterized by τres. The absorbed water
molecules follow the rotational dynamics of the protein molecules, characterized by the
correlation time τc. This concept is supported by the values of the dipolar relaxation
constants, CDD, obtained from the model of Equation (9), they yield: 4.31 × 107 Hz2 for
20%wt of BSA and 9.03 × 107 Hz2 for 40%wt of BSA. The dipolar relaxation constant
is proportional to the mole fraction of bound water molecules [44]—the increase of the
BSA concentration by factor two leads to as similar increase in the fraction of bound
water molecules. The frequency independent term, A, corresponds to a fraction of water
molecules the dynamics of which is affected by interactions with the macromolecules to a
much lesser extend—the dynamics remain so fast that there is no frequency dependence of
this relaxation contribution in the covered frequency range.

Eventually it is worth comparing the parameters obtained from the analysis of the
relaxation data for 40%wt BSA at 263 K (Figure 9) with those obtained for solid BSA [16].
The quadrupole parameters, aQ, η and τQ are almost the same as expected—they describe
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the properties of the electric field gradient tensor at the position of 14N nuclei in the protein
backbones. The correlation times τs and τi are shorter compared to the case of the solid
protein by about factor two, while τf remains the same. Performing this comparison
one should keep in mind that the model of Equation (3) should be treated as only a
parametrization of the data. For instance, the dynamical process referred to as the slow
dynamics (τs) for 40%wt BSA is not matched by a process occurring on a similar time scale
when the models involving translation diffusion are applied.

Finishing the discussion, we wish to point out that other NMR methods (NMR spec-
troscopy and diffusometry) are highly appreciated as a source of information about protein
(biomolecular) systems [45–48].

4. Materials and Methods

Bovine serum albumin (BSA) lyophilized powder was bought from Merck® company
(New York, NY, USA). Both BSA solutions were prepared by dissolving 0.25 g (20% concen-
tration) and 0.67 g (40% concentration) of BSA powder in 1ml of PBS (Phosphate buffered
saline) at room temperature with slow stirring (250 RPM) on the magnetic stirrer. Two
mg (one tablet) of solid PBS was dissolved in 200 mL of deionized water; pH was 7.4 at
25 ◦C. BSA powder was added to 1 mL of PBS in portions over a period of 5 h and then
transferred into 10 mm diameter NMR tube. After preparing, the solutions were stored in
the fridge.

1H spin-lattice relaxation measurements have been performed in the frequency range
from 10 kHz to 20 MHz versus temperature from 298 K to 253 K, using a “1 Tesla NMR
relaxometer”, produced by Stelar s.r.l. (Mede (PV), Italy). The temperature was controlled
with an accuracy of 0.5 K using a built-in VTC temperature controller. For measurements
performed at 298 K and above, the carrier gas was dry, compressed air, while for tem-
peratures below 298 K, was nitrogen. The experiments started from 298 K and then the
temperature was progressively decreased, up to 253 K. The switching time of the magnet
was set to 3 ms. The pre-polarization was applied below 10 MHz. For all temperatures,
60 values of T1 (R1 = 1/T1) in the whole frequency range were acquired. Additionally,
for those profiles where QRE peaks appeared, 40 more values of T1 were collected in
3.3–1.8 MHz range. For each resonance frequency, 32 magnetization values have been
recorded versus time in a logarithmic time scale. The relaxation processes have turned
out to be single-exponential for all temperatures in the whole frequency range for both
concentrations. Examples of the magnetization curves (1H magnetization versus time) are
shown in the Appendix A.

5. Conclusions
1H spin-lattice relaxation studies have been performed for BSA–water mixtures (20%wt

of BSA and 40%wt of BSA) in the frequency range from 10 kHz to 10 MHz, versus temper-
ature. The data have been used to enquire into the mechanism of water motion. For this
purpose, four models have been applied. In the first step, the data have been parametrized
in terms of relaxation contributions expressed by Lorentzian spectral densities. The large
number of parameters has allowed to reproduce the relaxation data—one should note that
in the case of 20%wt of BSA only two relaxation contributions are needed, while in the
case of 40%wt of BSA requires three relaxation contributions. In the next step, one of the
Lorentzian terms has been replaced by the model of three-dimensional translation diffusion.
At the first sight the concept has turned out to be successful, however a closer inspection
of the decomposition of the overall relaxation rates raised doubts regarding unambiguity
of the analysis. The relaxation contribution supposedly associated with the translation
diffusion does not dominate the relaxation process in the low frequency range. Conse-
quently, one cannot profit from the mathematical features characteristic of the spectral
density associated with three-dimensional translation diffusion. In the third step, the model
of three-dimensional translation diffusion has been replaced by a relaxation term assuming
two-dimensional translation motion. In this case, due to a significant contribution of a relax-
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ation contribution expressed in terms of Lorentzian spectral densities in the low frequency
range, the mathematical properties of the corresponding spectral density functions could
not be used as a discriminating factor. These examples demonstrate that unambiguous
analysis of NMR relaxometry data for complex molecular systems requires situations in
which the relaxation data follow the mathematical form of a specific spectral density over a
broad frequency range and this effect is not masked by other relaxation contributions. This
has been achieved for the model of two-dimensional translation diffusion modulated by
acts of adsorption to the surface with a residence lifetime not being much longer (orders of
magnitude) than the correlation time of the translation motion, rendering the conclusion
that the diffusion process is of two-dimensional character. The presented strategy of the
data analysis demonstrates the need for thorough evaluation of the applied models to profit
from the potential of NMR relaxometry.
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Appendix A

Selected 1H magnetization curves (1H magnetization versus time) for BSA–water
mixtures.
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resonance frequencies in the temperature range from 263 K to 253 K. Solid lines—single exponential
fits. On the left frequencies are selected from the entire range measured and, on the right, only from
areas with quadrupole peaks.
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Figure A4. Normalized 1H magnetization curves for BSA–water mixture (40%wt BSA) at selected
resonance frequencies in the temperature range from 263 K to 253 K. Solid lines—single exponential
fits. The frequencies are selected from the entire range measured.
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